kwin/input.h

422 lines
14 KiB
C
Raw Normal View History

/********************************************************************
KWin - the KDE window manager
This file is part of the KDE project.
Copyright (C) 2013 Martin Gräßlin <mgraesslin@kde.org>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*********************************************************************/
#ifndef KWIN_INPUT_H
#define KWIN_INPUT_H
#include <kwinglobals.h>
#include <QAction>
#include <QObject>
#include <QPoint>
#include <QPointer>
#include <config-kwin.h>
#include <KSharedConfig>
#include <functional>
class KGlobalAccelInterface;
class QKeySequence;
class QMouseEvent;
class QKeyEvent;
class QWheelEvent;
namespace KWin
{
class GlobalShortcutsManager;
class Toplevel;
class InputEventFilter;
class InputEventSpy;
class KeyboardInputRedirection;
Implement support for pointer constraints Summary: There are two types of constraints supported: 1. Pointer confinement 2. Pointer locking In the case of confinement the pointer is confined to a given region of the surface. This is comparable to general operation where the pointer is confined to the screen region. In the second case the pointer gets locked. That means it cannot move at all. No further position updates are provided, only relative motion events can go to the application. There is a hint about cursor position update on unlock which is not yet implemented in KWayland::Server, thus also not in this change. The implementation in KWin grants the requests for pointer constraints when the pointer enters the constrained region, either by pointer movement or by e.g. stacking order changes. There is no confirmation from user required to enter that mode. But we want to show an OSD when the pointer gets constrained, this is not yet implemented, though. Breaking an active constraint is relatively easy. E.g. changing the stacking order will break the constraint if another surface is under the cursor. Also (in case of confinement) moving the pointer to an overlapping window breaks the confinement. But as soon as one moves the pointer back to the window a constraint might get honoured again. To properly break there is a dedicated event filter. It listens for a long press of the Escape key. If hold for 3sec the pointer constraint is broken and not activated again till the pointer got moved out of the window. Afterward when moving in the pointer might activate again. The escape filter ensures that the key press is forwarded to the application if it's a short press or if another key gets pressed during the three seconds. If the three seconds way fires, the later escape release is not sent to the application. This basic interaction is also ensured through an added auto test. This change implements T4605. Test Plan: Added auto test and nested KWin Wayland with D3488 Reviewers: #kwin, #plasma_on_wayland Subscribers: plasma-devel, kwin Tags: #plasma_on_wayland, #kwin Differential Revision: https://phabricator.kde.org/D3506
2016-11-25 06:17:43 +00:00
class PointerConstraintsFilter;
class PointerInputRedirection;
class TouchInputRedirection;
class WindowSelectorFilter;
namespace Decoration
{
class DecoratedClientImpl;
}
namespace LibInput
{
class Connection;
}
/**
* @brief This class is responsible for redirecting incoming input to the surface which currently
* has input or send enter/leave events.
*
* In addition input is intercepted before passed to the surfaces to have KWin internal areas
* getting input first (e.g. screen edges) and filter the input event out if we currently have
* a full input grab.
*
*/
class KWIN_EXPORT InputRedirection : public QObject
{
Q_OBJECT
public:
enum PointerButtonState {
PointerButtonReleased,
PointerButtonPressed
};
enum PointerAxis {
PointerAxisVertical,
PointerAxisHorizontal
};
enum KeyboardKeyState {
KeyboardKeyReleased,
KeyboardKeyPressed,
KeyboardKeyAutoRepeat
};
virtual ~InputRedirection();
void init();
/**
* @return const QPointF& The current global pointer position
*/
QPointF globalPointer() const;
Qt::MouseButtons qtButtonStates() const;
Qt::KeyboardModifiers keyboardModifiers() const;
Qt::KeyboardModifiers modifiersRelevantForGlobalShortcuts() const;
void registerShortcut(const QKeySequence &shortcut, QAction *action);
/**
* @overload
*
* Like registerShortcut, but also connects QAction::triggered to the @p slot on @p receiver.
* It's recommended to use this method as it ensures that the X11 timestamp is updated prior
* to the @p slot being invoked. If not using this overload it's required to ensure that
* registerShortcut is called before connecting to QAction's triggered signal.
**/
template <typename T>
void registerShortcut(const QKeySequence &shortcut, QAction *action, T *receiver, void (T::*slot)());
void registerPointerShortcut(Qt::KeyboardModifiers modifiers, Qt::MouseButton pointerButtons, QAction *action);
void registerAxisShortcut(Qt::KeyboardModifiers modifiers, PointerAxisDirection axis, QAction *action);
void registerGlobalAccel(KGlobalAccelInterface *interface);
/**
* @internal
*/
void processPointerMotion(const QPointF &pos, uint32_t time);
/**
* @internal
*/
void processPointerButton(uint32_t button, PointerButtonState state, uint32_t time);
/**
* @internal
*/
void processPointerAxis(PointerAxis axis, qreal delta, uint32_t time);
/**
* @internal
*/
void processKeyboardKey(uint32_t key, KeyboardKeyState state, uint32_t time);
/**
* @internal
*/
void processKeyboardModifiers(uint32_t modsDepressed, uint32_t modsLatched, uint32_t modsLocked, uint32_t group);
/**
* @internal
**/
void processKeymapChange(int fd, uint32_t size);
void processTouchDown(qint32 id, const QPointF &pos, quint32 time);
void processTouchUp(qint32 id, quint32 time);
void processTouchMotion(qint32 id, const QPointF &pos, quint32 time);
void cancelTouch();
void touchFrame();
bool supportsPointerWarping() const;
void warpPointer(const QPointF &pos);
/**
* Adds the @p filter to the list of event filters and makes it the first
* event filter in processing.
*
* Note: the event filter will get events before the lock screen can get them, thus
* this is a security relevant method.
**/
2017-01-02 19:13:30 +00:00
void prependInputEventFilter(InputEventFilter *filter);
void uninstallInputEventFilter(InputEventFilter *filter);
/**
* Installs the @p spy for spying on events.
**/
void installInputEventSpy(InputEventSpy *spy);
/**
* Uninstalls the @p spy. This happens automatically when deleting an InputEventSpy.
**/
void uninstallInputEventSpy(InputEventSpy *spy);
Toplevel *findToplevel(const QPoint &pos);
GlobalShortcutsManager *shortcuts() const {
return m_shortcuts;
}
/**
* Sends an event through all InputFilters.
* The method @p function is invoked on each input filter. Processing is stopped if
* a filter returns @c true for @p function.
*
* The UnaryPredicate is defined like the UnaryPredicate of std::any_of.
* The signature of the function should be equivalent to the following:
* @code
* bool function(const InputEventFilter *spy);
* @endcode
*
* The intended usage is to std::bind the method to invoke on the filter with all arguments
* bind.
**/
template <class UnaryPredicate>
void processFilters(UnaryPredicate function) {
std::any_of(m_filters.constBegin(), m_filters.constEnd(), function);
}
/**
* Sends an event through all input event spies.
* The @p function is invoked on each InputEventSpy.
*
* The UnaryFunction is defined like the UnaryFunction of std::for_each.
* The signature of the function should be equivalent to the following:
* @code
* void function(const InputEventSpy *spy);
* @endcode
*
* The intended usage is to std::bind the method to invoke on the spies with all arguments
* bind.
**/
template <class UnaryFunction>
void processSpies(UnaryFunction function) {
std::for_each(m_spies.constBegin(), m_spies.constEnd(), function);
}
KeyboardInputRedirection *keyboard() const {
return m_keyboard;
}
PointerInputRedirection *pointer() const {
return m_pointer;
}
TouchInputRedirection *touch() const {
return m_touch;
}
bool hasAlphaNumericKeyboard();
void startInteractiveWindowSelection(std::function<void(KWin::Toplevel*)> callback, const QByteArray &cursorName);
void startInteractivePositionSelection(std::function<void(const QPoint &)> callback);
bool isSelectingWindow() const;
Implement support for pointer constraints Summary: There are two types of constraints supported: 1. Pointer confinement 2. Pointer locking In the case of confinement the pointer is confined to a given region of the surface. This is comparable to general operation where the pointer is confined to the screen region. In the second case the pointer gets locked. That means it cannot move at all. No further position updates are provided, only relative motion events can go to the application. There is a hint about cursor position update on unlock which is not yet implemented in KWayland::Server, thus also not in this change. The implementation in KWin grants the requests for pointer constraints when the pointer enters the constrained region, either by pointer movement or by e.g. stacking order changes. There is no confirmation from user required to enter that mode. But we want to show an OSD when the pointer gets constrained, this is not yet implemented, though. Breaking an active constraint is relatively easy. E.g. changing the stacking order will break the constraint if another surface is under the cursor. Also (in case of confinement) moving the pointer to an overlapping window breaks the confinement. But as soon as one moves the pointer back to the window a constraint might get honoured again. To properly break there is a dedicated event filter. It listens for a long press of the Escape key. If hold for 3sec the pointer constraint is broken and not activated again till the pointer got moved out of the window. Afterward when moving in the pointer might activate again. The escape filter ensures that the key press is forwarded to the application if it's a short press or if another key gets pressed during the three seconds. If the three seconds way fires, the later escape release is not sent to the application. This basic interaction is also ensured through an added auto test. This change implements T4605. Test Plan: Added auto test and nested KWin Wayland with D3488 Reviewers: #kwin, #plasma_on_wayland Subscribers: plasma-devel, kwin Tags: #plasma_on_wayland, #kwin Differential Revision: https://phabricator.kde.org/D3506
2016-11-25 06:17:43 +00:00
bool isBreakingPointerConstraints() const;
Q_SIGNALS:
/**
* @brief Emitted when the global pointer position changed
*
* @param pos The new global pointer position.
*/
void globalPointerChanged(const QPointF &pos);
/**
* @brief Emitted when the state of a pointer button changed.
*
* @param button The button which changed
* @param state The new button state
*/
void pointerButtonStateChanged(uint32_t button, InputRedirection::PointerButtonState state);
/**
* @brief Emitted when a pointer axis changed
*
* @param axis The axis on which the even occurred
* @param delta The delta of the event.
*/
void pointerAxisChanged(InputRedirection::PointerAxis axis, qreal delta);
/**
* @brief Emitted when the modifiers changes.
*
* Only emitted for the mask which is provided by Qt::KeyboardModifiers, if other modifiers
* change signal is not emitted
*
* @param newMods The new modifiers state
* @param oldMods The previous modifiers state
*/
void keyboardModifiersChanged(Qt::KeyboardModifiers newMods, Qt::KeyboardModifiers oldMods);
/**
* @brief Emitted when the state of a key changed.
*
* @param keyCode The keycode of the key which changed
* @param oldMods The new key state
*/
void keyStateChanged(quint32 keyCode, InputRedirection::KeyboardKeyState state);
void hasAlphaNumericKeyboardChanged(bool set);
private:
void setupLibInput();
void setupLibInputWithScreens();
void setupWorkspace();
void reconfigure();
void setupInputFilters();
void installInputEventFilter(InputEventFilter *filter);
KeyboardInputRedirection *m_keyboard;
PointerInputRedirection *m_pointer;
TouchInputRedirection *m_touch;
GlobalShortcutsManager *m_shortcuts;
LibInput::Connection *m_libInput = nullptr;
WindowSelectorFilter *m_windowSelector = nullptr;
Implement support for pointer constraints Summary: There are two types of constraints supported: 1. Pointer confinement 2. Pointer locking In the case of confinement the pointer is confined to a given region of the surface. This is comparable to general operation where the pointer is confined to the screen region. In the second case the pointer gets locked. That means it cannot move at all. No further position updates are provided, only relative motion events can go to the application. There is a hint about cursor position update on unlock which is not yet implemented in KWayland::Server, thus also not in this change. The implementation in KWin grants the requests for pointer constraints when the pointer enters the constrained region, either by pointer movement or by e.g. stacking order changes. There is no confirmation from user required to enter that mode. But we want to show an OSD when the pointer gets constrained, this is not yet implemented, though. Breaking an active constraint is relatively easy. E.g. changing the stacking order will break the constraint if another surface is under the cursor. Also (in case of confinement) moving the pointer to an overlapping window breaks the confinement. But as soon as one moves the pointer back to the window a constraint might get honoured again. To properly break there is a dedicated event filter. It listens for a long press of the Escape key. If hold for 3sec the pointer constraint is broken and not activated again till the pointer got moved out of the window. Afterward when moving in the pointer might activate again. The escape filter ensures that the key press is forwarded to the application if it's a short press or if another key gets pressed during the three seconds. If the three seconds way fires, the later escape release is not sent to the application. This basic interaction is also ensured through an added auto test. This change implements T4605. Test Plan: Added auto test and nested KWin Wayland with D3488 Reviewers: #kwin, #plasma_on_wayland Subscribers: plasma-devel, kwin Tags: #plasma_on_wayland, #kwin Differential Revision: https://phabricator.kde.org/D3506
2016-11-25 06:17:43 +00:00
PointerConstraintsFilter *m_pointerConstraintsFilter = nullptr;
QVector<InputEventFilter*> m_filters;
QVector<InputEventSpy*> m_spies;
KSharedConfigPtr m_inputConfig;
KWIN_SINGLETON(InputRedirection)
friend InputRedirection *input();
friend class DecorationEventFilter;
friend class InternalWindowEventFilter;
friend class ForwardInputFilter;
};
/**
* Base class for filtering input events inside InputRedirection.
*
* The idea behind the InputEventFilter is to have task oriented
* filters. E.g. there is one filter taking care of a locked screen,
* one to take care of interacting with window decorations, etc.
*
* A concrete subclass can reimplement the virtual methods and decide
* whether an event should be filtered out or not by returning either
* @c true or @c false. E.g. the lock screen filter can easily ensure
* that all events are filtered out.
*
* As soon as a filter returns @c true the processing is stopped. If
* a filter returns @c false the next one is invoked. This means a filter
* installed early gets to see more events than a filter installed later on.
*
* Deleting an instance of InputEventFilter automatically uninstalls it from
* InputRedirection.
**/
class KWIN_EXPORT InputEventFilter
{
public:
InputEventFilter();
virtual ~InputEventFilter();
/**
* Event filter for pointer events which can be described by a QMouseEvent.
*
* Please note that the button translation in QMouseEvent cannot cover all
* possible buttons. Because of that also the @p nativeButton code is passed
* through the filter. For internal areas it's fine to use @p event, but for
* passing to client windows the @p nativeButton should be used.
*
* @param event The event information about the move or button press/release
* @param nativeButton The native key code of the button, for move events 0
* @return @c true to stop further event processing, @c false to pass to next filter
**/
virtual bool pointerEvent(QMouseEvent *event, quint32 nativeButton);
/**
* Event filter for pointer axis events.
*
* @param event The event information about the axis event
* @return @c true to stop further event processing, @c false to pass to next filter
**/
virtual bool wheelEvent(QWheelEvent *event);
/**
* Event filter for keyboard events.
*
* @param event The event information about the key event
* @return @c tru to stop further event processing, @c false to pass to next filter.
**/
virtual bool keyEvent(QKeyEvent *event);
virtual bool touchDown(quint32 id, const QPointF &pos, quint32 time);
virtual bool touchMotion(quint32 id, const QPointF &pos, quint32 time);
virtual bool touchUp(quint32 id, quint32 time);
virtual bool pinchGestureBegin(int fingerCount, quint32 time);
virtual bool pinchGestureUpdate(qreal scale, qreal angleDelta, const QSizeF &delta, quint32 time);
virtual bool pinchGestureEnd(quint32 time);
virtual bool pinchGestureCancelled(quint32 time);
virtual bool swipeGestureBegin(int fingerCount, quint32 time);
virtual bool swipeGestureUpdate(const QSizeF &delta, quint32 time);
virtual bool swipeGestureEnd(quint32 time);
virtual bool swipeGestureCancelled(quint32 time);
protected:
void passToWaylandServer(QKeyEvent *event);
};
class InputDeviceHandler : public QObject
{
Q_OBJECT
public:
virtual ~InputDeviceHandler();
QPointer<Toplevel> window() const {
return m_window;
}
QPointer<Decoration::DecoratedClientImpl> decoration() const {
return m_decoration;
}
QPointer<QWindow> internalWindow() const {
return m_internalWindow;
}
Q_SIGNALS:
void decorationChanged();
void internalWindowChanged();
protected:
explicit InputDeviceHandler(InputRedirection *parent);
void updateDecoration(Toplevel *t, const QPointF &pos);
void updateInternalWindow(const QPointF &pos);
InputRedirection *m_input;
/**
* @brief The Toplevel which currently receives events
*/
QPointer<Toplevel> m_window;
/**
* @brief The Decoration which currently receives events.
**/
QPointer<Decoration::DecoratedClientImpl> m_decoration;
QPointer<QWindow> m_internalWindow;
};
inline
InputRedirection *input()
{
return InputRedirection::s_self;
}
template <typename T>
inline
void InputRedirection::registerShortcut(const QKeySequence &shortcut, QAction *action, T *receiver, void (T::*slot)()) {
registerShortcut(shortcut, action);
connect(action, &QAction::triggered, receiver, slot);
}
} // namespace KWin
Q_DECLARE_METATYPE(KWin::InputRedirection::KeyboardKeyState)
Q_DECLARE_METATYPE(KWin::InputRedirection::PointerButtonState)
Q_DECLARE_METATYPE(KWin::InputRedirection::PointerAxis)
#endif // KWIN_INPUT_H