kwin/src/plugins/platforms/drm/drm_object_connector.h

93 lines
1.8 KiB
C
Raw Normal View History

2020-08-02 22:22:19 +00:00
/*
KWin - the KDE window manager
This file is part of the KDE project.
2020-08-02 22:22:19 +00:00
SPDX-FileCopyrightText: 2016 Roman Gilg <subdiff@gmail.com>
2020-08-02 22:22:19 +00:00
SPDX-License-Identifier: GPL-2.0-or-later
*/
#ifndef KWIN_DRM_OBJECT_CONNECTOR_H
#define KWIN_DRM_OBJECT_CONNECTOR_H
2021-03-31 11:22:23 +00:00
#include <QSize>
#include "drm_object.h"
#include "edid.h"
namespace KWin
{
class DrmConnector : public DrmObject
{
public:
DrmConnector(DrmGpu *gpu, uint32_t connectorId);
Run clang-tidy with modernize-use-override check Summary: Currently code base of kwin can be viewed as two pieces. One is very ancient, and the other one is more modern, which uses new C++ features. The main problem with the ancient code is that it was written before C++11 era. So, no override or final keywords, lambdas, etc. Quite recently, KDE compiler settings were changed to show a warning if a virtual method has missing override keyword. As you might have already guessed, this fired back at us because of that ancient code. We had about 500 new compiler warnings. A "solution" was proposed to that problem - disable -Wno-suggest-override and the other similar warning for clang. It's hard to call a solution because those warnings are disabled not only for the old code, but also for new. This is not what we want! The main argument for not actually fixing the problem was that git history will be screwed as well because of human factor. While good git history is a very important thing, we should not go crazy about it and block every change that somehow alters git history. git blame allows to specify starting revision for a reason. The other argument (human factor) can be easily solved by using tools such as clang-tidy. clang-tidy is a clang-based linter for C++. It can be used for various things, e.g. fixing coding style(e.g. add missing braces to if statements, readability-braces-around-statements check), or in our case add missing override keywords. Test Plan: Compiles. Reviewers: #kwin, davidedmundson Reviewed By: #kwin, davidedmundson Subscribers: davidedmundson, apol, romangg, kwin Tags: #kwin Differential Revision: https://phabricator.kde.org/D22371
2019-07-22 16:52:26 +00:00
~DrmConnector() override;
bool init() override;
2021-03-10 21:04:32 +00:00
enum class PropertyIndex : uint32_t {
CrtcId = 0,
NonDesktop = 1,
2021-03-31 11:22:23 +00:00
Dpms = 2,
Edid = 3,
Overscan = 4,
VrrCapable = 5,
2021-06-22 21:28:08 +00:00
Underscan = 6,
Underscan_vborder = 7,
Underscan_hborder = 8,
Count
};
[DRM plugin] Remember static kernel objects, amplify use of DrmCrtc To get an image from KWin to the screen in the DRM pipeline we combine a CRTC, an encoder and a connector. These objects are static in the sense, that they represent real hardware on the graphics card, which doesn't change in a session. See here for more details: https://01.org/linuxgraphics/gfx-docs/drm/gpu/drm-kms.html Until now we used DrmOutput as the main representation for such an active rendering pipeline. I.e. it gets created and destroyed on hot plug events of displays. On the other side we had no fixed representation of the static kernel objects throughout the lifetime of KWin. This has several disadvantages: * We always need to query all available static objects on an hot plug event. * We can't manipulate the frame buffer of a CRTC after an output has been disconnected * Adding functionality for driving multiple displays on a single CRTC (i.e. cloning) would be difficult * We can't destroy the last frame buffer on display disconnect because the CRTC still accesses it and have therefore a memory leak on every display disconnect This patch solves these issues by storing representations of all available CRTC and Connector objects in DrmBackend on init via DrmCrtc and DrmConnector instances. On an hotplug event these vectors are looped for a fitting CRTC and Connector combinations. Buffer handling is moved to the respective CRTC instance. All changes in overview: * Query all available CRTCs and Connectors and save for subsequent hotplug events * Fix logic errors in `queryResources()` * Move framebuffers, buffer flip and blank logic in DrmCrtc * Remove `restoreSaved()`. It isn't necessary and is dangerous if the old framebuffer was deleted in the meantime. Also could reveal sensitive user info from old session. Test Plan: Login, logout, VT switching, connect and disconnect external monitor, energy saving mode. Reviewers: #kwin Subscribers: kwin, #kwin Tags: #kwin Differential Revision: https://phabricator.kde.org/D5118
2017-05-09 18:02:49 +00:00
2021-06-22 21:28:08 +00:00
enum class UnderscanOptions : uint32_t {
Off = 0,
On = 1,
Auto = 2,
};
[DRM plugin] Remember static kernel objects, amplify use of DrmCrtc To get an image from KWin to the screen in the DRM pipeline we combine a CRTC, an encoder and a connector. These objects are static in the sense, that they represent real hardware on the graphics card, which doesn't change in a session. See here for more details: https://01.org/linuxgraphics/gfx-docs/drm/gpu/drm-kms.html Until now we used DrmOutput as the main representation for such an active rendering pipeline. I.e. it gets created and destroyed on hot plug events of displays. On the other side we had no fixed representation of the static kernel objects throughout the lifetime of KWin. This has several disadvantages: * We always need to query all available static objects on an hot plug event. * We can't manipulate the frame buffer of a CRTC after an output has been disconnected * Adding functionality for driving multiple displays on a single CRTC (i.e. cloning) would be difficult * We can't destroy the last frame buffer on display disconnect because the CRTC still accesses it and have therefore a memory leak on every display disconnect This patch solves these issues by storing representations of all available CRTC and Connector objects in DrmBackend on init via DrmCrtc and DrmConnector instances. On an hotplug event these vectors are looped for a fitting CRTC and Connector combinations. Buffer handling is moved to the respective CRTC instance. All changes in overview: * Query all available CRTCs and Connectors and save for subsequent hotplug events * Fix logic errors in `queryResources()` * Move framebuffers, buffer flip and blank logic in DrmCrtc * Remove `restoreSaved()`. It isn't necessary and is dangerous if the old framebuffer was deleted in the meantime. Also could reveal sensitive user info from old session. Test Plan: Login, logout, VT switching, connect and disconnect external monitor, energy saving mode. Reviewers: #kwin Subscribers: kwin, #kwin Tags: #kwin Differential Revision: https://phabricator.kde.org/D5118
2017-05-09 18:02:49 +00:00
QVector<uint32_t> encoders() {
return m_encoders;
}
2020-11-27 19:57:24 +00:00
[DRM plugin] Remember static kernel objects, amplify use of DrmCrtc To get an image from KWin to the screen in the DRM pipeline we combine a CRTC, an encoder and a connector. These objects are static in the sense, that they represent real hardware on the graphics card, which doesn't change in a session. See here for more details: https://01.org/linuxgraphics/gfx-docs/drm/gpu/drm-kms.html Until now we used DrmOutput as the main representation for such an active rendering pipeline. I.e. it gets created and destroyed on hot plug events of displays. On the other side we had no fixed representation of the static kernel objects throughout the lifetime of KWin. This has several disadvantages: * We always need to query all available static objects on an hot plug event. * We can't manipulate the frame buffer of a CRTC after an output has been disconnected * Adding functionality for driving multiple displays on a single CRTC (i.e. cloning) would be difficult * We can't destroy the last frame buffer on display disconnect because the CRTC still accesses it and have therefore a memory leak on every display disconnect This patch solves these issues by storing representations of all available CRTC and Connector objects in DrmBackend on init via DrmCrtc and DrmConnector instances. On an hotplug event these vectors are looped for a fitting CRTC and Connector combinations. Buffer handling is moved to the respective CRTC instance. All changes in overview: * Query all available CRTCs and Connectors and save for subsequent hotplug events * Fix logic errors in `queryResources()` * Move framebuffers, buffer flip and blank logic in DrmCrtc * Remove `restoreSaved()`. It isn't necessary and is dangerous if the old framebuffer was deleted in the meantime. Also could reveal sensitive user info from old session. Test Plan: Login, logout, VT switching, connect and disconnect external monitor, energy saving mode. Reviewers: #kwin Subscribers: kwin, #kwin Tags: #kwin Differential Revision: https://phabricator.kde.org/D5118
2017-05-09 18:02:49 +00:00
bool isConnected();
2020-11-27 19:57:24 +00:00
bool isNonDesktop() const {
2021-03-10 21:04:32 +00:00
auto prop = m_props.at(static_cast<uint32_t>(PropertyIndex::NonDesktop));
if (!prop) {
return false;
}
return prop->value();
}
2021-03-31 11:22:23 +00:00
Property *dpms() const {
return m_props[static_cast<uint32_t>(PropertyIndex::Dpms)];
}
const Edid *edid() const {
return &m_edid;
2021-03-31 11:22:23 +00:00
}
QString connectorName() const;
QString modelName() const;
bool isInternal() const;
QSize physicalSize() const;
bool hasOverscan() const;
uint32_t overscan() const;
2021-06-22 21:28:08 +00:00
void setOverscan(uint32_t overscan, const QSize &modeSize);
bool vrrCapable() const;
[DRM plugin] Remember static kernel objects, amplify use of DrmCrtc To get an image from KWin to the screen in the DRM pipeline we combine a CRTC, an encoder and a connector. These objects are static in the sense, that they represent real hardware on the graphics card, which doesn't change in a session. See here for more details: https://01.org/linuxgraphics/gfx-docs/drm/gpu/drm-kms.html Until now we used DrmOutput as the main representation for such an active rendering pipeline. I.e. it gets created and destroyed on hot plug events of displays. On the other side we had no fixed representation of the static kernel objects throughout the lifetime of KWin. This has several disadvantages: * We always need to query all available static objects on an hot plug event. * We can't manipulate the frame buffer of a CRTC after an output has been disconnected * Adding functionality for driving multiple displays on a single CRTC (i.e. cloning) would be difficult * We can't destroy the last frame buffer on display disconnect because the CRTC still accesses it and have therefore a memory leak on every display disconnect This patch solves these issues by storing representations of all available CRTC and Connector objects in DrmBackend on init via DrmCrtc and DrmConnector instances. On an hotplug event these vectors are looped for a fitting CRTC and Connector combinations. Buffer handling is moved to the respective CRTC instance. All changes in overview: * Query all available CRTCs and Connectors and save for subsequent hotplug events * Fix logic errors in `queryResources()` * Move framebuffers, buffer flip and blank logic in DrmCrtc * Remove `restoreSaved()`. It isn't necessary and is dangerous if the old framebuffer was deleted in the meantime. Also could reveal sensitive user info from old session. Test Plan: Login, logout, VT switching, connect and disconnect external monitor, energy saving mode. Reviewers: #kwin Subscribers: kwin, #kwin Tags: #kwin Differential Revision: https://phabricator.kde.org/D5118
2017-05-09 18:02:49 +00:00
private:
2021-03-10 21:04:32 +00:00
DrmScopedPointer<drmModeConnector> m_conn;
[DRM plugin] Remember static kernel objects, amplify use of DrmCrtc To get an image from KWin to the screen in the DRM pipeline we combine a CRTC, an encoder and a connector. These objects are static in the sense, that they represent real hardware on the graphics card, which doesn't change in a session. See here for more details: https://01.org/linuxgraphics/gfx-docs/drm/gpu/drm-kms.html Until now we used DrmOutput as the main representation for such an active rendering pipeline. I.e. it gets created and destroyed on hot plug events of displays. On the other side we had no fixed representation of the static kernel objects throughout the lifetime of KWin. This has several disadvantages: * We always need to query all available static objects on an hot plug event. * We can't manipulate the frame buffer of a CRTC after an output has been disconnected * Adding functionality for driving multiple displays on a single CRTC (i.e. cloning) would be difficult * We can't destroy the last frame buffer on display disconnect because the CRTC still accesses it and have therefore a memory leak on every display disconnect This patch solves these issues by storing representations of all available CRTC and Connector objects in DrmBackend on init via DrmCrtc and DrmConnector instances. On an hotplug event these vectors are looped for a fitting CRTC and Connector combinations. Buffer handling is moved to the respective CRTC instance. All changes in overview: * Query all available CRTCs and Connectors and save for subsequent hotplug events * Fix logic errors in `queryResources()` * Move framebuffers, buffer flip and blank logic in DrmCrtc * Remove `restoreSaved()`. It isn't necessary and is dangerous if the old framebuffer was deleted in the meantime. Also could reveal sensitive user info from old session. Test Plan: Login, logout, VT switching, connect and disconnect external monitor, energy saving mode. Reviewers: #kwin Subscribers: kwin, #kwin Tags: #kwin Differential Revision: https://phabricator.kde.org/D5118
2017-05-09 18:02:49 +00:00
QVector<uint32_t> m_encoders;
Edid m_edid;
2021-03-31 11:22:23 +00:00
QSize m_physicalSize = QSize(-1, -1);
};
}
#endif