Summary:
Unfortunately a rather large change which required more refactoring than
initially expected. The main problem was that some parts needed to go
into platformsupport so that the platform plugins can link them. Due to
the rather monolithic nature of scene_opengl.h a few changes were
required:
* SceneOpenGL::Texture -> SceneOpenGLTexture
* SceneOpenGL::TexturePrivate -> SceneOpenGLTexturePrivate
* texture based code into dedicated files
* SwapProfiler code into dedicated files
* SwapProfiler only used in x11 variants
* Safety checks for OpenGL scene moved into the new plugin
* signal declared in SceneOpenGL moved to Scene, so that we don't need
to include SceneOpenGL in composite
Test Plan: Nested OpenGL compositor works
Reviewers: #kwin, #plasma
Subscribers: plasma-devel, kwin
Tags: #kwin
Differential Revision: https://phabricator.kde.org/D7740
Summary:
Several of the subclasses are already derived from QObject.
The main reason is that the class should be moved out of KWin core in
order to move the OpenGL scene into a plugin. As Compositor calls into
the AbstractEglBackend to unbind the wayland display this creates a
problem which is easily solved by turning the AbstractEglBackend into a
QObject and connect to the signal emitted by the Compositor.
Test Plan: Compiles
Reviewers: #kwin, #plasma
Subscribers: plasma-devel, kwin
Tags: #kwin
Differential Revision: https://phabricator.kde.org/D7669
The Egl backend opens the drm device and creates a gbm_device from it.
From that it creates the EGL device. The EGL device outlives the EGL
backend (e.g. for compositor restart). So far the EGL backend destroyed
the gbm_device when going down which mesa did not like at all when a
new context got created on that EGL device.
Thus the ownership of gbm_device is also passed to the Platform so that
the compositor can be restarted.
This makes the TestSceneOpenGL no longer crash during the restart
compositor test.
Summary:
The egl implementation for the virtual platform tries to use a render
node if available. If there is no render node it looks for a virtual
(kernel driver vgem) device, which unfortunately does not create a
render node in mainline kernel (there are patches in ChromiumOS).
For this the Udev wrapper is extended to search for renderNode devices
and for virtual dri devices.
If either render node or vgem dri device is found, it is tried to be
opened (without logind escalation) and on success a gbm device is
created on it. If any step of this fails the so far default behavior
of default device is tried for creating the EGLDisplay.
All of this is compile optional, so that the virtual platform does not
hard depend on udev and/or gbm.
Test Plan:
Auto tests which need OpenGL executed and verified that they
use the render node or vgem device.
Reviewers: #kwin, #plasma_on_wayland
Subscribers: plasma-devel, kwin
Tags: #plasma_on_wayland, #kwin
Differential Revision: https://phabricator.kde.org/D2216
Summary:
Source code reorganization:
The base class AbstractBackend got renamed to Platform, thus the
"backends" are "platforms" now. As they are plugins they should go
together with other KWin plugins which are nowadays in the folder
plugins.
So new location is plugins/platforms/
Reviewers: #plasma, sebas
Subscribers: plasma-devel
Projects: #plasma
Differential Revision: https://phabricator.kde.org/D1353
2016-04-12 08:01:27 +02:00
Renamed from backends/virtual/egl_gbm_backend.h (Browse further)