Software cursor has always been a major source of problems. Hopefully,
porting it to RenderLayer will help us with that.
Note that the cursor layer is currently visible only when using software
cursor, however it will be changed once the Compositor can allocate
a real hardware cursor plane.
Currently, software cursor uses graphics-specific APIs (OpenGL and
QPainter) to paint itself. That will be changed in the future when
rendering parts are extracted from the Scene in a reusable helper.
This is the first tiny step towards the layer-based compositing in kwin.
The RenderLayer represents a layer with some contents. The actual
contents is represented by the RenderLayerDelegate class.
Currently, the RenderLayer is just a simple class responsible for
geometry, and repaints, but it will grow in the future. For example,
render layers need to form a tree.
The next (missing) biggest component in the layer-based compositing are
output layers. When output layers are added, each render layer would
have an output layer assigned to it or have its output layer inherited
from the parent.
The render layer tree wouldn't be affected by changes to the output
layer tree so transition between software and hardware cursors can be
seamless.
The next big milestone will be to try to port some of existing kwin
functionality to the RenderLayer, e.g. software cursor or screen edges.
The responsibilities of the Scene must be reduced to painting only so we
can move forward with the layer-based compositing.
This change moves direct scanout logic from the opengl scene to the base
scene class and the compositor. It makes the opengl scene less
overloaded and allows to share direct scanout logic.
Having a render loop in the Platform has always been awkward. Another
way to interpret the platform not supporting per screen rendering would
be that all outputs share the same render loop.
On X11, Scene::painted_screen is going to correspond to the primary
screen, we should not rely on this assumption though!
The Compositor contains nothing that can potentially get dirty and need
repainting.
As is, the advantages of this move aren't really noticeable, but it
makes sense with multiple scenes.
Backend parts are far from ideal, they can be improved later on as we
progress with the scene redesign.
The main idea behind the render backend is to decouple low level bits
from scenes. The end goal is to make the render backend provide render
targets where the scene can render.
Design-wise, such a split is more flexible than the current state, for
example we could start experimenting with using qtquick (assuming that
the legacy scene is properly encapsulated) or creating multiple scenes,
for example for each output layer, etc.
So far, the RenderBackend class only contains one getter, more stuff will
be moved from the Scene as it makes sense.
Currently, the scene owns the renderer, which puts more
responsibilities on the scene other than painting windows and it also
puts some limitations on what we can do, for example, there can be only
one scene, etc.
This change decouples the scene and the renderer so the scene is more
swappable.
Scenes are no longer implemented as plugins because opengl backend
and scene creation needs to be wrapped in opengl safety points. We
could still create the render backend and then go through the list
of scene plugins, but accessing concrete scene implementation is
much much simpler. Besides that, having scenes implemented as plugins
is not worthwhile because there are only two scenes and each contributes
very small amount of binary size. On the other hand, we still need to
take into account how many times kwin accesses the hard drive to load
plugins in order to function as expected.
When the aboutToDestroy signal is emitted, the compositor object is
already partially destroyed. This contradicts to the name of the signal.
In addition to that, it will be better to call the stop method in the
destructors of X11Compositor and WaylandClient as it allows them to add
custom cleanup code when compositing is turned off.
Once in a while, we receive complaints from other fellow KDE developers
about the file organization of kwin. This change addresses some of those
complaints by moving all of source code in a separate directory, src/,
thus making the project structure more traditional. Things such as tests
are kept in their own toplevel directories.
This change may wreak havoc on merge requests that add new files to kwin,
but if a patch modifies an already existing file, git should be smart
enough to figure out that the file has been relocated.
We may potentially split the src/ directory further to make navigating
the source code easier, but hopefully this is good enough already.