With the new virtual desktop model, we have an issue where the old
code that uses desktop() needs to be ported to desktops().
However, using no desktop() is better as we don't need to deal with
cases where a window can be on several desktops, which can be annoying
sometimes.
This change removes the desktop arg in electricBorderMaximizeGeometry()
and ports it to a Workspace::clientArea() overload that requires no
desktop.
Under the hood, Workspace::clientArea() still uses desktop(), but it
could also use a different strategy to compute the client area if the
window is on several virtual desktops, e.g. intersect client area on
every virtual desktop.
With the new virtual desktops model, a window can be on several virtual
desktops. Currently, scripts have no any way to get the list of desktops
the window is on. This change addresses that.
toplevel.h is included in many places. Changing virtualdesktops.h may
trigger rebuild of all kwin.
With this change, only cpp files that use virtualdesktops.h will need to
be recompiled.
The main idea behind _NET_WM_FRAME_OVERLAP is to extend the borders of
the server-side decoration so the application can draw on top of it. It
was inspired by similar feature in Windows.
However, _NET_WM_FRAME_OVERLAP is basically unused. Neither GTK nor Qt
support it and I have never seen any application that uses it.
At the moment, kwin is the only compositing window manager that supports
_NET_WM_FRAME_OVERLAP. Neither mutter nor compiz nor compton and so on
support it.
Since _NET_WM_FRAME_OVERLAP is practically unused, there's no point for
keeping supporting it.
This change shouldn't affect any existing app as _NET_WM_FRAME_OVERLAP
atom is not listed in _NET_SUPPORTED.
AbstractClient::doPerformInteractiveMoveResize() is only used by the
X11Client to reset a boolean flag when the client doesn't support sync
counters.
X11Client can call performInteractiveMoveResize() only in two cases: the
sync request timer expires or the client increments the sync counter.
This change removes the AbstractClient::doPerformInteractiveMoveResize()
function and adds a function to handle the case where the sync timer
expires explicitly. This removes a virtual function in the AbstractClient
and makes code more readable.
Window management features were written with synchronous geometry
updates in mind. Currently, this poses a big problem on Wayland because
geometry updates are done in asynchronous fashion there.
At the moment, geometry is updated in a so called pseudo-asynchronous
fashion, meaning that the frame geometry will be reset to the old value
once geometry updates are unblocked. The main drawback of this approach
is that it is too error prone, the data flow is hard to comprehend, etc.
It is worth noting that there is already a machinery to perform async
geometry which is used during interactive move/resize operations.
This change extends the move/resize geometry usage beyond interactive
move/resize to make asynchronous geometry updates less error prone and
easier to comprehend.
With the proposed solution, all geometry updates must be done on the
move/resize geometry first. After that, the new geometry is passed on to
the Client-specific implementation of moveResizeInternal().
To be more specific, the frameGeometry() returns the current frame
geometry, it is primarily useful only to the scene. If you want to move
or resize a window, you need to use moveResizeGeometry() because it
corresponds to the last requested frame geometry.
It is worth noting that the moveResizeGeometry() returns the desired
bounding geometry. The client may commit the xdg_toplevel surface with a
slightly smaller window geometry, for example to enforce a specific
aspect ratio. The client is not allowed to resize beyond the size as
indicated in moveResizeGeometry().
The data flow is very simple: moveResize() updates the move/resize
geometry and calls the client-specific implementation of the
moveResizeInternal() method. Based on whether a configure event is
needed, moveResizeInternal() will update the frameGeometry() either
immediately or after the client commits a new buffer.
Unfortunately, both the compositor and xdg-shell clients try to update
the window geometry. It means that it's possible to have conflicts
between the two. With this change, the compositor's move resize geometry
will be synced only if there are no pending configure events, meaning
that the user doesn't try to resize the window.
This is to improve code readability and make it easier to differentiate
between methods that are used during interactive move-resize and normal
move-resize methods in the future.
With the client-side decoration changes, kwin will properly determine
whether the window needs to be configured even if the frame geometry has
not changed.
This change slightly changes the semantics of the setFrameGeometry()
method. Prior to this, it was possible to force a geometry, i.e. block
other geometry updates, however such a behavior is counter-intuitive and
it exponentially increases the complexity of code.
As far as I know, the force flag was needed to propagate geometry
changes if the frame geometry doesn't change, but the client geometry
does. With the client-side decoration changes, the force flag is not
needed, as kwin now takes into account the client geometry and the frame
geometry when determining whether to send a configure event.
Currently, the fullscreen state is update synchronously, but it needs to
be done in asynchronous fashion.
This change removes some tests as they don't add any value, testFullscreen()
covers them all.
screen() only gets updated after AbstractClient::sendToScreen if invoked
by a shortcut or menu (as opposed to moveresize), so we can't use it in
AbstractClient::updateGeometryRestoresForFullscreen as it points to the
old screen.
Currently, dealing with sub-surfaces is very difficult due to the scene
design being heavily influenced by X11 requirements.
The goal of this change is to re-work scene abstractions to make improving
the wayland support easier.
The Item class is based on the QQuickItem class. My hope is that one day
we will be able to transition to QtQuick for painting scene, but in
meanwhile it makes more sense to have a minimalistic internal item class.
The WindowItem class represents a window. The SurfaceItem class represents
the contents of either an X11, or a Wayland, or an internal surface. The
DecorationItem and the ShadowItem class represent the server-side deco and
drop-shadow, respectively.
At the moment, the SurfaceItem is bound to the scene window, but the long
term plan is to break that connection so we could re-use the SurfaceItem
for things such as software cursors and drag-and-drop additional icons.
One of the responsibilities of the Item is to schedule repaints as needed.
Ideally, there shouldn't be any addRepaint() calls in the core code. The
Item class schedules repaints on geometry updates. In the future, it also
has to request an update if its opacity or visibility changes.
Our wayland interface lifespan only needs to live as long as the window
is mapped.
Given this corresponds directly to the lifespan of AbstractClient we can
just set a parent and everything is handled implicitly.
We're now sharing most of the X11Client activity behavior accross all
clients. This allows to cleanup some of the existing virtuals and remove
quite a bit of code overalls.
Has to introduce an extra platform specific hook since X11Client
serializes the activity information in an atom and we will probably need
to do something similar on the Wayland platform at some point.
This allows us to start interacting with the activities with kwin
wayland. They are not restored properly accross sessions though since
nothing is really persisted and the session management still seems to
be amiss.
Once in a while, we receive complaints from other fellow KDE developers
about the file organization of kwin. This change addresses some of those
complaints by moving all of source code in a separate directory, src/,
thus making the project structure more traditional. Things such as tests
are kept in their own toplevel directories.
This change may wreak havoc on merge requests that add new files to kwin,
but if a patch modifies an already existing file, git should be smart
enough to figure out that the file has been relocated.
We may potentially split the src/ directory further to make navigating
the source code easier, but hopefully this is good enough already.