Test Plan: Tested with both the lock screen and the keyboard indicator plasmoid
Reviewers: #kwin, davidedmundson
Reviewed By: #kwin, davidedmundson
Subscribers: davidedmundson, kde-frameworks-devel
Tags: #frameworks
Differential Revision: https://phabricator.kde.org/D20191
Summary:
This implements a wrapper class for the wl_eglstream_controller Wayland
interface. It allows clients to inform the compositor when a new EGL Stream has
been created with an Wayland surface attached as its producer. The compositor
can then bind a GL texture as the stream's consumer allowing it access to the
surface's buffer contents for presentation. The only client currently expected
to make use of this interface is the NVIDIA EGL driver when running alongside a
compositor supporting EGLStream-based buffer sharing.
Reviewers: #kwin, romangg, davidedmundson
Reviewed By: #kwin, romangg, davidedmundson
Subscribers: kde-frameworks-devel
Tage: #frameworks
Differential Revision: https://phabricator.kde.org/D18824
Summary:
If automaticSocketNaming is enabled, it will use wl_display_add_socket_auto
to allocate the next free socket. The resulting name can be retrieved using
socketName after a successful start afterwards.
Test Plan: Ran the new autotest, passes. kwin_wayland still uses the old behaviour.
Reviewers: #kwin, #plasma, romangg
Reviewed By: #kwin, #plasma, romangg
Subscribers: davidedmundson, zzag, romangg, kde-frameworks-devel
Tags: #frameworks
Differential Revision: https://phabricator.kde.org/D17122
Summary:
Usual massive boilerplate.
Should allow us to remove the injection in our QPT, as Qt 5.12 implements
this protocol directly. Will probably be relevant for other toolkits as
it's more standardised than our custom one.
Client is mostly 1:1 with the protocol, server side has some tweaking to
fit with kwayland turning an event based API into a state based one.
Test Plan:
Relevant unit test
Tried in modified kwin with our QPT disabled
Reviewers: #kwin, zzag
Reviewed By: #kwin, zzag
Subscribers: zzag, kde-frameworks-devel
Tags: #frameworks
Differential Revision: https://phabricator.kde.org/D17498
Summary:
Implement the virtual desktop protocol discussed in
T4457 xml protocol, client and server part.
The PlasmaVirtualDesktopManagement interface manages the desktops
instantiation and layout, each desktop is a PlasmaVirtualDesktop
instance which contains unique id, name and position.
PlasmaWindow has new events: plasmaVirtualDesktopEntered
and plasmaVirtualDesktopLeft when a window enters or leaves a desktop,
and desktops as the list of desktops is in. A window can be on
any subset of desktops, if the list is empty, it's considered on all desktops.
Test Plan: Autotest
Reviewers: #kwin, #plasma, graesslin, hein, davidedmundson
Reviewed By: #kwin, #plasma, davidedmundson
Subscribers: davidedmundson, zzag, bshah, romangg, kde-frameworks-devel
Tags: #frameworks
Maniphest Tasks: T4457
Differential Revision: https://phabricator.kde.org/D12820
Summary:
Done primarily for XWayland which for legacy reasons doesn't assume the
logical size of a display is pixelSize / outputScale. Meaning xwayland
windows that position themselves are wrong in a scaled environment.
It also allows the possibility for us to support fractional scaling
whilst keeping wl_output::scale as an integer.
The protocol is a bit odd as it operates via the FooManager + Foo
pattern rather than using globals like Output so I've wrapped it so it
behaves more like globals.
Test Plan: #plasma
Reviewers: romangg
Subscribers: #frameworks
Tags: #frameworks
Maniphest Tasks: T8501
Differential Revision: https://phabricator.kde.org/D12235
Summary:
It's kept separate in case we ever merge the server decoration manager
interface upstream, and this is too kwin specific to have in a
potentially shared spec.
Code is a copy+paste of existing boilerplate.
Replaces use of the deprecated qt extended surface.
I'd like to target 5.42 as otherwise we'll have a regression when we
release Plasma 5.12 as Qt's XDGv6 doesn't have a working qt extended
surface.
Test Plan: Attached unit test
Reviewers: #plasma, graesslin
Reviewed By: #plasma, graesslin
Subscribers: plasma-devel, #frameworks
Tags: #frameworks, #plasma
Differential Revision: https://phabricator.kde.org/D9599
Summary:
A protocol that attaches to a surface and contains two strings which can
change.
The intended use is for clients to link a DBus Appmenu object with a
surface.
This is in preparation for the Qt Extended Surface deprecation which
currently handles this in Kwin.
Test Plan: Attached unit test
Reviewers: #plasma, graesslin
Reviewed By: #plasma, graesslin
Subscribers: broulik, graesslin, plasma-devel, #frameworks
Tags: #frameworks, #plasma_on_wayland
Differential Revision: https://phabricator.kde.org/D8919
Summary:
This protocol allows to indicate that a wl_surface should inhibit idle
actions such as DPMS, screen locking if the surface is visible.
The protocol is quite simple: it just creates an IdleInhibitor for a
Surface. If such an IdleInhibitor exists the Surface is considered to
inhibit idle.
On the server side it is also exposed like that through the API. The
IdleInhibitorInterface is private to the library and only
SurfaceInterface is extended to expose whether it currently inhibits
idle.
CCBUG: 385956
Test Plan: New test case added
Reviewers: #frameworks, #kwin, #plasma_on_wayland
Subscribers: plasma-devel
Tags: #plasma_on_wayland, #frameworks
Differential Revision: https://phabricator.kde.org/D8396
Summary:
Implement the "foreign" wayland protocol.
A client can export a surface with an unique string as handle,
then another client can refer to that surface and set an own surface as
child of that surface.
Potential use cases are out-of-process dialogs, such as file dialogs,
meant to be used by sandboxed processes that may not have the access
it needs to implement such dialogs.
The handle needs to be shared between the processes with other means,
such as dbus or command line paramenters.
The public api of the server side only tracks parent/child relationships as this is the only data kwin would need it for, the rest of the api is not exported so should be safer from eventual protocol changes
Test Plan:
the autotest works, but has a lot of random crashes when deleting surfaces,
unfortunately backtraces don't tell much and the crashes never occur when running into valgrind
behavior may still be wrong, depending on how the protocol is supposed
to work if more clients try to set the same exported surface as parent
Reviewers: #plasma, #kwin, davidedmundson, graesslin
Reviewed By: #plasma, #kwin, graesslin
Subscribers: davidedmundson, graesslin, plasma-devel, #frameworks
Tags: #frameworks, #plasma_on_wayland
Differential Revision: https://phabricator.kde.org/D7369
Summary:
The pointer constraints protocol is an unstable protocol and thus
the implementation follows the semantics of unstable protocols.
The protocol allows to create a constraint on the pointer - either a
lock or a confinement on a surface. Those are not activated at once, but
when the compositor actively grants it.
During lock no further pointer motion is emitted, during confinement the
pointer is kept in a certain area.
This implements T4451.
Reviewers: #plasma_on_wayland
Subscribers: plasma-devel
Tags: #plasma_on_wayland
Differential Revision: https://phabricator.kde.org/D3466
Summary:
Pointer gestures are created for a pointer and there are two types of
gestures: swipe and pinch.
At a given time there can only be one active gesture. The implementation
in SeatInterface ensures that there can only be one active gesture.
Each gesture consists of a start event, 0 to multiple update events and
an end event. The end can also be a cancel. To better support this the
implementation doesn't follow the protocol and splits end and cancel
into dedicated methods in the server side and into dedicated signals in
the client side.
Reviewers: #plasma_on_wayland
Subscribers: plasma-devel
Tags: #plasma_on_wayland
Differential Revision: https://phabricator.kde.org/D3169
Summary:
This change implements the zwp_relative_pointer_v1 protocol which allows
to send relative motion events.
The (unstable) protocol consists of a RelativePointerManager which
creates RelativePointers for a given Pointer. This interface currently
only has one event to report the relative motion. It carries the delta,
the non-accelerated-delta and a timestamp in microsends granularity.
On the server side the implementation is mostly internal. Once a
RelativePointerManagerInterface is created one can send relative motion
events through the SeatInterface. The SeatInterface takes care of
sending it to the responding RelativePointerInterface. The protocol does
not restrict the sending of "normal" and relative motion events. Thus it
can be combined in any way one wants. This allows to have a rather
simple implementation. A user of the SeatInterface can just start to
feed the relative motion events (if the information is available) to the
SeatInterface together with the pointer events.
On client side a new RelativePointerManager and RelativePointer class
are added. The RelativePointerManager creates the RelativePointer for a
given Pointer. The event sent to RelativePointer is transformed in a
normal signal.
Reviewers: #plasma
Subscribers: plasma-devel
Tags: #plasma_on_wayland
Differential Revision: https://phabricator.kde.org/D2978
Summary:
This change introduces support for the unstable xdg-shell interface in
the server. The implementation is based on version 5 of the unstable
interface. This is the version used by toolkits like e.g. GTK.
There is also a version 6 of the protocol under development which is
incompatible. This makes it difficult to implement it in a backward
compatible way.
Because of that the implementation is a little bit different to other
interfaces and inspired by the TextInput interfaces:
On client side an XdgShell class is exposed which does not represent
it directly. Instead it delegates everything to an XdgShellUnstableV5
implementation. For the Surface/Popup the same is done.
In the Registry it's possible to create an XdgShell and it accepts
the XdgShellUnstableV5 and in future will accept XdgUnstableV6, etc.
On server side it also follows the approach from TextInput. That is
there is a version enum which gets passed to the factory method in
Display. It currently supports only V5, but in future can be extended
for V6. As there is lots of similar code between wl_shell, xdg_shell
and in future xdg_shell_unstable_v6 a templated GenericShellInterface
class is added which combines the common parts.
Reviewers: #plasma_on_wayland
Subscribers: plasma-devel
Tags: #plasma_on_wayland
Differential Revision: https://phabricator.kde.org/D2102
Summary:
This change introduces support for text input. Text input allows to
compose text on the server (e.g. through a virtual keyboard) and sent
the composed text to the client.
There are multiple interfaces for text input. QtWayland 5.6 uses
wl_text_input, QtWayland 5.7 uses zwp_text_input_v2.
wl_text_input is from pre Wayland-Protocols times and considered as
UnstableV0 in this implementation. The other interface is UnstableV2.
Unfortunately the V2 variant is not yet part of Wayland-Protocols, but
used in Qt.
The implementation hides the different interfaces as good as possible.
The general idea is the same, the differences are rather minor.
This means changes to how interfaces are wrapped normally. On client
side in the Registry a manager is factored which represent either of
the two interfaces. Similar on the server side Display's factory method
takes an argument to decide which interface should be factored. This
way a user of the library can expose both interfaces and thus be
compatible with Qt 5.6 and Qt 5.7 onwards.
Reviewers: #plasma
Subscribers: plasma-devel
Tags: #plasma
Differential Revision: https://phabricator.kde.org/D1631
This implements the server part of the screen management protocol. The
protocol is implemented as a wayland protocol.
It provides the following mechanisms:
- a list of outputs, close to wl_output, with additional properties for
enabled, uuid, edid, etc.. These OutputDevices correspond to a
connected output that can be enabled by the compositor, but is not
necessarily currently used for rendering.
- a global OutputManagement, which allows creating config objects, one
per client. The client can make changes to the outputs through
setScale(outputdevice*, scale) for example.
- an OutputConfiguration resource, that can be handed to a client and
used for configuration. Changes are double buffered here. Only after
OutputConfiguration.apply() has been called, the changes are relayed
over the global OutputManagement.
The compositor is responsible to handle changes.
For a more detailed description, see the API docs in especially
outputconfiguration.h.
REVIEW:125942
Adding support for a org_kde_kwin_dpms interface. On server side
Dpms is mostly bound to the OutputInterface exposing just a very
small manager. Whether Dpms is supported and which mode is used is
tracked directly on the OutputInterface.
a protocol to activate the blur behind windows and to
optionally set a sub region of the window where to apply
the blur to, in case the window is shaped
REVIEW:125015
The shadow protocol is inspired by the KWin's X11 protocol and the
DecorationShadow in KDecoration2.
A shadow is attached to a surface (after a commit on surface) and
consists of several image parts (represented through a buffer):
* top-left
* top
* top-right
* right
* bottom-right
* bottom
* bottom-left
* left
In addition there is an offset on each side.
For more information see also the X11 protocol described at [1].
Note: the protocol is currently missing documentation and changing
the shadow is not yet properly delegated to the server API.
[1] https://community.kde.org/KWin/Shadow
This interface allows a client to fake input events and the server
might use them. There is an authentication mechanismn in place which
requires the server to mark the client as authenticated in order for
any events to be emitted at all.
This interface is intended for use cases like kdeconnect which allows
to remote control a device.
The idle time interface is modelled for the use cases of the KIdleTime
framework to allow providing a Wayland specific implementation.
It supports registering idle timeouts which are triggered on server
side if there has not been any user activity on the seat for the
requested amount of time. Once user activity resumes a resume from idle
signal is emitted.
In additon there is the possibility to simulate user activity which
simulates the resume from idle.
The Qt surface extension is a small protocol to allow exchanging
additional data between QWindows and the compositor. What we are
currently only interested in is the possibility to close a surface
from the Compositor.
Protocol description is copied from QtWayland 5.4.2 branch.
Uses eglQueryWaylandBufferWL (if available) to determine the size of the
buffer. In order to do so, the server library links against egl (1) and
one needs to register the EGLDisplay in Server::Display by the user of
the library. For this a new method Display::setEglDisplay is added.
1: not using epoxy as it doesn't wrap the Wayland interfaces yet.
If one passes StartMode::ConnectClientsOnly the socket in
XDG_RUNTIME_DIR is not created and instead one can only connect to
this server using the Display::createClient method. A very nice
solution to just have a Server and one dedicated Client talk to each
other.
The ClientConnection is managed by Display. Whenever one tries to
get a ClientConnection for a wl_client* and it doesn't exist yet a
new one will be created and a clientConnected signal will be emitted.
Also there is a clientDisconnected signal.
ClientConnection provides access to pid, uid and gid. The idea is
to extend it to provide access to all the resources created for the
client.
Event dispatching in Display requires a QSocketNotifier which
requires the QCoreApplication to be created. This requirement renders
it impossible to create the server before the QCoreApplication is
created. But there are use cases which need this:
Let's assume we want to integrate a wayland server into an existing
X11 dependent application which uses QApplication and enforces the
xcb plugin. This means said application requires that an X Server is
up and running before the QApplication is created. If we want said
application to connect to an Xwayland server we need to be able to
create the Wayland server AND the Xwayland server before creating
the QApplication.
The solution is to only create the socket notifier if the
QCoreApplication exists. For the case that it doesn't exist an
additional method is added which needs to be called once the
QCoreApplication got created. In addition a manual event dispatch
method is added which allows to block for events when we don't
have a QSocketNotifier set up yet.
This implements the subcompositor and subsurface protocol on both
Client and Server side.
Client:
New classes SubCompositor and SubSurface. The SubCompositor can be
created through the Registry and creates the SubSurface which is
bound to a Surface and has a parent Surface. The SubSurface class
provides convenient wrappers for all calls exposed in the
wl_subsurface interface.
Server:
New classes SubCompositorInterface and SubSurfaceInterface. Support
for all commands is added, though the API probably still can need
some fine tuning. The synchronized vs. desynchronized behavior is
not yet exposed in the API. This could also be delegated towards
the user of the library.
This makes it possible to install and then use it. Installation is still
commented since we can't give enough stability guarantees for now.
In detail:
- do not actually install headers
- generate the export header into Wayland/Server
- include it from there
REVIEW:120579