This brings back global menu support in KWin.
The DBusMenu infrastructure is different that we just read the DBus service name and
menu object path from the windows rather than passing around window IDs on DBus which
won't work on Wayland.
Differential Revision: https://phabricator.kde.org/D3089
Summary:
AbstractClient gains a new pure virtual killWindow method and this gets
implemented in ShellClient.
ShellClient performs the killing by sending a term signal to the
process. This can only work if the client connected through the socket
and didn't get a socketpair fd passed. In that case the pid is KWin's
and KWin doesn't want to terminate. Thus this is special handled to
destroy the connection instead.
In case terminating the process has no effect, the connection gets
destroyed after five seconds.
The KillWindow is adjusted to operate on AbstractClient instead of
Client.
This implements T4463.
Test Plan: Killed windows and auto test
Reviewers: #kwin, #plasma_on_wayland
Subscribers: plasma-devel, kwin
Tags: #plasma_on_wayland, #kwin
Differential Revision: https://phabricator.kde.org/D3370
Summary:
KWindowSystem provides a KDE specific property for the desktop file
name. This allows KWin to take the icon from the desktop file. The
advantage from the desktop file is that KWin normally gets higher
resolution icons than provided through the xproperty based icons used
previously. If the desktop file does not provide an icon name, KWin
falls back to the previous implementation.
As on Wayland the icon is taken from the desktop file name already the
code for X11 and Wayland is merged in AbstractClient. Also to the
PlasmaWindowInterface the appId is taken from the new desktop file
instead of the resourceName. Due to that for Xwayland windows where KWin
knows the desktop file name it can be passed to PlasmaWindowInterface.
This allows e.g. the task manager to better map the windows to
applications and provide better icons. Also it means that icons do not
need to be passed as bitmap data to the clients.
Test Plan:
Verified that icon is taking from desktop file if provided and
from X property if not provided and that Wayland windows still have icon.
Reviewers: #kwin, #plasma_on_wayland, hein
Subscribers: plasma-devel, kwin
Tags: #plasma_on_wayland, #kwin
Differential Revision: https://phabricator.kde.org/D3177
Summary:
On X11 one needs to force activate a panel to pass it focus. This change
implements something similar for Wayland but a little bit more stateful
by using a request on the PlasmaShellSurface. If set KWin will activate
the panel.
Reviewers: #kwin, #plasma_on_wayland
Subscribers: plasma-devel, kwin
Tags: #plasma_on_wayland, #kwin
Differential Revision: https://phabricator.kde.org/D3037
Summary:
This change ports ScreenEdges to operate on AbstractClient instead of
Client. For this AbstractClient gained a new pure virtual method
showOnScreenEdge which is also implemented in ShellClient.
In ShellClient the functionality is bound for the case windows can
cover a panel. If triggered the panel gets raised again.
The auto hiding panel, though, is not yet implemented. For that the
protocol needs to be adjusted to give a hint to the compositor when to
hide and hint back to the panel when it was shown. This needs a change
in KWayland and thus is not 5.8 material.
Test Plan: See added test case
Reviewers: #kwin, #plasma_on_wayland
Subscribers: plasma-devel, kwin
Tags: #plasma_on_wayland, #kwin
Differential Revision: https://phabricator.kde.org/D2793
Summary:
This change adds support for resizing outside the window decoration
(e.g. setting borders to NoSide or None).
To support this a new Toplevel::inputGeometry() -> QRect method is
added which exposes the geometry adjusted by the margins provided by
the decoration. This is checked in InputRedirection when finding a
Toplevel at a given position. The logic for figuring out whether the
event should go to the decoration or the window already handled the
situation correctly, so no further changes are needed.
BUG: 364607
FIXED-IN: 5.8.1
Reviewers: #kwin, #plasma_on_wayland
Subscribers: plasma-devel, kwin
Tags: #plasma_on_wayland, #kwin
Differential Revision: https://phabricator.kde.org/D2787
The properties:
* maximizable
* moveable
* moveableAcrossScreens
* resizeable
Were only defined on Client instead of AbstractClient. This resulted
in the EffectWindow having those properties evaluate always to false
for a ShellClient and breaking some effects.
BUG: 355947
Summary:
This allows Client to use the Wayland-specific implementation if there
is no icon geometry set through the X11 way. That way Xwayland windows
have an icon geometry even if Plasma is using Wayland and setting the
icon geometry in the Wayland way. Which is expected as Plasma is
ignorant about the windowing system a PlasmaWindow uses.
In order to move the code from ShellClient to AbstractClient
WaylandServer gained a new findAbstractClient(Surface*) method which
is just like findClient(Surface*) with the difference that it returns
an AbstractClient instead of a ShellClient*.
Test Plan:
minimized/unminimized an X client on Wayland, verified
animation is correct (though broken in general for minimize)
Reviewers: #kwin, #plasma_on_wayland
Subscribers: plasma-devel, kwin
Tags: #plasma_on_wayland, #kwin
Differential Revision: https://phabricator.kde.org/D2530
Summary:
So far when a ShellClient got unmapped ready_for_painting was set to
false. That is the ShellClient was treated in the same way as a not
yet shown window. It was completely excluded from painting, a close
animation impossible.
This change makes use of the functionality available in
Client::hiddenInternal(). The window is considered as hidden, thus
still excluded from e.g. getting input events, but could be rendered
any time as we still have a previous window pixmap (if referenced).
This allows to have it considered in the rendering pass, but effects
still cannot make use of it as that state is not yet exposed to the
effects.
Reviewers: #kwin, #plasma_on_wayland
Subscribers: plasma-devel, kwin
Tags: #plasma_on_wayland, #kwin
Differential Revision: https://phabricator.kde.org/D2083
Summary:
Mouse actions like wheel and double click were restricted to the titleBar
area. This made the top most pixel non-interactive as it's not part of the
titleBarArea.
This change makes the complete titlebarPosition interactive. That is it
includes for a "normal" (top) setup also the TopLeft/Top/Right section.
Thus the top most pixel can be double clicked, mouse wheeled, etc.
For the Wayland case the test case is adjusted.
BUG: 362860
FIXED-IN: 5.7.0
Reviewers: #plasma
Subscribers: plasma-devel
Projects: #plasma
Differential Revision: https://phabricator.kde.org/D1596
General handling for mouse driven focus and auto raise should and can
be shared between Client and ShellClient. Thus the code is moved to
AbstractClient and invoked from Client::enterNotifyEvent.
If a ShellClient supports the ServerSideDecoration interface we can
create a server decoration for it. For that updateDecoration is added
as a pure virtual method in AbstractClient and a more-or-less code copy
from Client is added to ShellClient.
Geometry handling is adjusted to consider the window decoration offsets.
Replacement for calls to info->input() which is only valid for the Client
sub class, but not for ShellClient.
In ShellClient the implementation is swapped with wantsInput() and
wantsInput() has a new implementation which properly delegates to rules()
just like Client does.
This includes the methods:
* decoration()
* decoration() const
* isDecorated() const
In addition new protected methods are added to destroy the Decoration
and to set it.
Usage of m_decoration in Client code is adjusted.
make the minimize effect work by reading taskGeometry
from plasmawindowmanagement and returning as iconGeometry()
there is one task geometry per panel window, iconGeometry()
will return the geometry associated to the nearest panel
from the window
REVIEW:125873
Properly handle the mouse press/release events in InputRedirection
while we move windows. If it's the last mouse release event we end
the move resize of the window. For that we reuse the code written
in Client.
Methods are no longer virtual. The only x11 specific usage in these
methods (resizeInc) is replaced by a virtual method. Default resize
increments is QSize(1,1) for AbstractClient.
Method no longer virtual and only implemented in AbstractClient.
The implementaton works in a generic way nowadyas.
Added an autotest for the basic packTo behavior for packing against
a screen border. Packing towards other clients still needs adjustments
in the Placement code.
Sync related code is split out into dedicated virtual methods so that
Client can provide the X11 specific implementation. General handling,
though is completely in AbstractClient.
Implementation is moved to abstract_client.cpp as so far events.cpp
does not have any code from AbstractClient.
This includes moving the electricMaximizingDelay from Client to
AbstractClient.
The implementation of positionGeometryTip is X specific, we need to
figure out whether that one makes sense for Wayland. Given that, let's
have it virtual to ease the transition of code which calls it.
The implementation calls a virtual doStartMoveResize() which allows
Client to do it's X11 specific tasks (creating moveResizeWindow, grabbing
input).
The base implementation is no longer virtual.
Includes moving the m_cursor and Qt::CursorShape cursor() method to
AbstractClient. In addition AbstractClient now emits a signal whenever
the shape changes allowing Client to react on it (update the low level
cursor) and also hopefully the Wayland Backends to react to it, so that
we have the cursor.