Effects are given the interval between two consecutive frames. The main
flaw of this approach is that if the Compositor transitions from the idle
state to "active" state, i.e. when there is something to repaint,
effects may see a very large interval between the last painted frame and
the current. In order to address this issue, the Scene invalidates the
timer that is used to measure time between consecutive frames before the
Compositor is about to become idle.
While this works perfectly fine with Xinerama-style rendering, with per
screen rendering, determining whether the compositor is about to idle is
rather a tedious task mostly because a single output can't be used for
the test.
Furthermore, since the Compositor schedules pointless repaints just to
ensure that it's idle, it might take several attempts to figure out
whether the scene timer must be invalidated if you use (true) per screen
rendering.
Ideally, all effects should use a timeline helper that is aware of the
underlying render loop and its timings. However, this option is off the
table because it will involve a lot of work to implement it.
Alternative and much simpler option is to pass the expected presentation
time to effects rather than time between consecutive frames. This means
that effects are responsible for determining how much animation timelines
have to be advanced. Typically, an effect would have to store the
presentation timestamp provided in either prePaint{Screen,Window} and
use it in the subsequent prePaint{Screen,Window} call to estimate the
amount of time passed between the next and the last frames.
Unfortunately, this is an API incompatible change. However, it shouldn't
take a lot of work to port third-party binary effects, which don't use the
AnimationEffect class, to the new API. On the bright side, we no longer
need to be concerned about the Compositor getting idle.
We do still try to determine whether the Compositor is about to idle,
primarily, because the OpenGL render backend swaps buffers on present,
but that will change with the ongoing compositing timing rework.
The main advantage of SPDX license identifiers over the traditional
license headers is that it's more difficult to overlook inappropriate
licenses for kwin, for example GPL 3. We also don't have to copy a
lot of boilerplate text.
In order to create this change, I ran licensedigger -r -c from the
toplevel source directory.
Summary:
Won't make things go much faster since everything that was
being passed by value is refcounted but still const & is a bit faster
than refcounting
For shared pointers instead of adding const & we move them into the
destination variable saving some cpu usage but at the same time making
clear the pointer is being stored by not being const &
Reviewers: zzag
Reviewed By: zzag
Subscribers: zzag, kwin
Tags: #kwin
Differential Revision: https://phabricator.kde.org/D25022
Summary:
Because KWin is a very old project, we use three kinds of null pointer
literals: 0, NULL, and nullptr. Since C++11, it's recommended to use
nullptr keyword.
This change converts all usages of 0 and NULL literal to nullptr. Even
though it breaks git history, we need to do it in order to have consistent
code as well to ease code reviews (it's very tempting for some people to
add unrelated changes to their patches, e.g. converting NULL to nullptr).
Test Plan: Compiles.
Reviewers: #kwin, davidedmundson, romangg
Reviewed By: #kwin, davidedmundson, romangg
Subscribers: romangg, kwin
Tags: #kwin
Differential Revision: https://phabricator.kde.org/D23618
Summary:
If a virtual desktop is removed, then desktopChanged will be followed by
numberDesktopsChanged signal. In which case, we have to cancel the
active animation because front_desktop might be no longer valid when
it's time to perform compositing.
BUG: 406452
Reviewers: #kwin, davidedmundson
Reviewed By: #kwin, davidedmundson
Subscribers: kwin
Tags: #kwin
Differential Revision: https://phabricator.kde.org/D21064