We are going to switch to a proper nested approach similar to the
x11 backend. Given that we don't want to run on fullscreen anymore
but just open a nested window.
This gives a better tear down experience as it goes to black instead
of showing outdated screen and also it disables vsync which fixes a
crash on teardown.
For the functions from GL_FOO_robustness we want to resolve it by
ourselves in order to add a custom implementation if it's not available.
Unfortunately once epoxy.h is included this breaks as epoxy defines the
names and so through the preprocessor epoxy always wins.
So we need different names: all functions from robustness get a "kwin"
prefix and the usage is changed everywhere in kwin source code.
REVIEW: 125883
Begin of proper multiscreen support!
We load configuration sets for the connected outputs. Each set of
screens represents a unique configuration. For that we use the md5
sum of the edid+connector as uuid of an output. Each of the md5 sums
is then used to create a uuid of the output set. We can be quite certain
that this will generate unique ids for the use cases we will face.
The uuids are used as group names. And from there we read the global
position.
The uuids are considered internal information. It is not intended for
users to configure manually in the config file. The intended way to
configure will be the OutputManagementInterface which recently got added
to KWayland. Once KWin applies a configuration it will store it to config
so that it can be loaded on next startup.
The configuration looks like:
[DrmOutputs][abcdef0123][0123abcdef]
Position=0,0
[DrmOutputs][abcdef0123][fbca3bcdef]
Position=1280,0
This is an example for two outputs set next to each other.
Reviewed-By: Sebastian Kügler
As we don't have GLPLatform before the backend is fully created
the AbstractEglBackend has a new method isOpenGLES() -> bool
which determines based on QOpenGLContext::openGLModuleType().
Heavily inspired by how the glxbackend works: present happens on
rendering start and not on end frame. In addition present needs to
check whether there is something to show to not block incorrectly.
This is needed as present might also be called from going to idle.
With this change the Nexus5 has a decend refresh rate shown in the
totally accurate fps effect. Before it was capped at around 30 fps
which indicates that the refresh rate was halfed.
On the tearfing front the change seems to not have any negative
impact.
This changes how we synchronize through vsync. We use a mutex and a
wait condition to synchronize the threads. When presenting the frame
our main gui thread blocks and will be woken up by the vsync event
(or a timeout of max 1 frame time slot). In order to minimize the
blocked time we use the blocksForRetrace functionality from the GLX
compositor.
Given this change we no longer need to tell the compositor that we
are swapping the frame, it's blocked anyway. Also we don't need the
failsafe QTimer anymore.
With this change applied on a Nexus 5 it's succeeding the "Martin
tortures phone test". It doesn't tear anymore and has a smooth
experience.
I'm rather disappointed by the fact that we need to block in order
to get vsync. This means Android/hwcomposer is as bad as GLX. So
much for the "Android stack is so awesome", in fact it's not. Anybody
thinking it's awesome should compare to DRM/KMS and especially atomic
modesetting. Yes it's possible to present frames without tearing and
without having to block the rendering thread.
Reviewed-By: Marco Martin and Bhushan Shah
The newer API is designed for the case that outputs are disabled and
makes sure that we don't have to abuse the aboutToSwapBuffers. This
also prevents possible conflicts between blocking during rendering and
screens being off.
Reviewed-By: Bhushan Shah
According to the hwcomposer documentation:
"It is a (silent) error to have HWC_EVENT_VSYNC enabled when calling
hwc_composer_device.set(..., 0, 0, 0) (screen off)".
Because of that we may not enable vsync directly after toggling the
output, but need to wait till after calling the set call.
Reviewed-by: Bhushan Shah
Apparently we don't get a vsync event for the first frame during startup
which blocks the compositor till the end of days. Thus a timer is added
which calls vsync after 1 sec if we didn't get an event.
Note: qt5-qpa-hwcomposer-plugin does the vsync in a different way:
it uses a wait condition to truly block in present till the vsync.
Maybe we need to do that as well.
Very basic: all screens have same size and are ordered from left to
right. It's mostly meant to allow easy test cases with multi-screen.
The quick tiling test demonstrates how it's used.
Based on a previous patch done by David Edmundson and heavily
inspired by qt5-qpa-hwcomposer-plugin [1].
The change requires a newer libhybris than the one used by Ubuntu. In
fact it allows to build against current master (at the day of writing [2]).
REVIEW: 125606
[1] https://github.com/mer-hybris/qt5-qpa-hwcomposer-plugin
[2] bd6df6a306
Libinput does work on libhybris enabled devices. There is no need to
use Android's input stack. This simplifies our code a lot and increases
sharing with normal Linux systems.
What's tricky is to convince the system to use libinput through with our
logind helper. Logind fails to open the files for us if we start KWin
over either ssh or adb shell. We need to get it into a proper session, so
only a kwin started through a helper like simplelogin will be able to use
libinput.
REVIEW: 125608
The backend is based on drm's gbm backend and also uses the GBM
platform, but with the default display allowing the driver to pick
a device. In addition it doesn't use a surface, but a surfaceless
context with a framebuffer object to render to. Given that it diverged
too much from drm's backend to allow more code sharing.
If KWin is started from a tty it gets a proper driver, if KWin is started
in a X11 session it only gets llvmpipe. Given that there is a chance that
the autotests using the virtual backend will fail. In that case a follow
up patch will enforce either O2 or Q.
A new backend which doesn't present the rendered output. It uses a
QPainter scene, renders to a QImage but doesn't present it anywhere.
Thus a real virtual backend.
By exporting the environment variable KWIN_WAYLAND_VIRTUAL_SCREENSHOTS
the backend creates a temporary dir, prints the path to std-out and
saves each rendered frame into that directory. Of course with exit it
will be deleted again.
Distributions do package each backend plugin in a dedicated package,
which means just because KWin got compiled with a specific backend,
doesn't mean it is also available at runtime.
In order to better support this reality this change introduces a
list-backends command line option. Each of the plugins got the json
metadata extended by the KPlugin syntax, so that we have a name and
description to print.
As we already locate all plugins anyway, the additional findPlugins for
the selected backend is changed to search the list of all plugin meta
data.
When pressing right control key the input gets grabbed/released.
The grab is for both keyboard and pointer and pointer is also confined
to the window.
How to grab/ungrab is added to the window title.
Our server announces the DpmsManagerInterface and in the DRM backend
we announce support for Dpms on the OutputInterface (if the Output
supports it) and we connect to changing Dpms requests.
If an Output went into DPMS standby we need to re-enable the Output
once we get any input event.
For this we connect to the signals of InputRedirection once we go
to standby. Once we enable again, we disconnect (to not handle the
events all the time), blank the screen (initial modesetting) and
trigger a complete repaint.
Let's rather not build the plugin if we don't have the dependency
then building it without OpenGL support. Simplifies the code a bit
and makes the backend overall more useful and goes along with e.g.
the Wayland one which has EGL also as a hard dependency for the
plugin.
REVIEW: 124697
It doesn't make much sense any more as we do no longer link EGL since the
switch to epoxy. And epoxy pulls it in at runtime if needed.
Even more on Wayland it's just plain stupid to have EGL disabled. So
removing the option just simplifies our code base without any
disadvantages.
REVIEW: 124695
During cleanup the KWayland::OutputInterface is already destroyed before
we hit the cleanup code of DrmOutput. Thus guard with a QPointer to not
delete twice.
We don't need to queue the method invokation any more to ensure the
Wayland server connection is flushed since we have the dispatch method
in waylandServer().
Libhybris input events are generated in a different thread, but we want
them in the main thread (InputRedirection and KWayland are not (yet)
thread safe). Thus all events need to be send to the main thread using
QMetaObject::invokeMethod.
Unfortunately on libhybris enabled systems libinput doesn't work, thus
the backend needs to handle input events which can be read from hybris.
So far the backend only handles touch events properly, though some
aspects look wrong. E.g. motion gives only for one touch contact point.
Unfortunately the documentation is quite weak, so there might be
something important missing.
Allows to read the DPI information and export the physical display
size from it. DPI is scaled by 1000 in hwcomposer, split by X and Y,
which allows to calculate size in mm from pixel size.
This backend interacts with libhybris to create a hwcomposer which is
used for creating the egl context and surface. The initial version of
this backend is based on test_hwcomposer.cpp provided by libhybris.
Please note that using the hwcomposer backend requires a newer libepoxy,
the latest stable release is not able to bring up OpenGLES, so one needs
a master build of libepoxy.
Notes on licensing:
libhybris is Apache 2.0 licensed, which is not compatile with GPLv2.
But it is compatible with GPLv3. Thus the source files in the hwcomposer
backend are licensed GPLv3+ and not GPLv2+ as the rest of KWin. If one
uses KWin without the hwcomposer backend (which is obviously the default)
the licence doesn't change. But if the hwcomposer backend is used the
overall license of KWin changes to GPLv3+.
Each of the backends becomes a plugin. This allows kwin_wayland to load
the requested plugin and kwin itself doesn't need to link all the
libraries needed. E.g. libdrm is no longer linked if running kwin_x11.
Also this allows to create backends for the non-standard EGL platforms
(examples could be raspberrypi or Android devices).
With this change all backends need to emit the screensQueried signal
at some point. So far only x11 backend did not provide the signal,
wayland had a comparable delayed init mechanism. Now all backends use
the same mechanism.
Replaces the functionality of the WaylandBackend and makes it available
to all backends by providing the functionality directly in
AbstractBackend. By default a backend is not ready and the implementation
must call setReady(true) to indicate that setup has finished
successfully. The compositor won't start till the backend indicates that
it is ready.
The aim is to be able to create a plugin for each of the backends.
The following directories are created:
* backends/drm
* backends/fbdev
* backends/wayland
* backends/x11