If a ShellClient supports the ServerSideDecoration interface we can
create a server decoration for it. For that updateDecoration is added
as a pure virtual method in AbstractClient and a more-or-less code copy
from Client is added to ShellClient.
Geometry handling is adjusted to consider the window decoration offsets.
Replacement for calls to info->input() which is only valid for the Client
sub class, but not for ShellClient.
In ShellClient the implementation is swapped with wantsInput() and
wantsInput() has a new implementation which properly delegates to rules()
just like Client does.
This includes the methods:
* decoration()
* decoration() const
* isDecorated() const
In addition new protected methods are added to destroy the Decoration
and to set it.
Usage of m_decoration in Client code is adjusted.
make the minimize effect work by reading taskGeometry
from plasmawindowmanagement and returning as iconGeometry()
there is one task geometry per panel window, iconGeometry()
will return the geometry associated to the nearest panel
from the window
REVIEW:125873
Properly handle the mouse press/release events in InputRedirection
while we move windows. If it's the last mouse release event we end
the move resize of the window. For that we reuse the code written
in Client.
Methods are no longer virtual. The only x11 specific usage in these
methods (resizeInc) is replaced by a virtual method. Default resize
increments is QSize(1,1) for AbstractClient.
Method no longer virtual and only implemented in AbstractClient.
The implementaton works in a generic way nowadyas.
Added an autotest for the basic packTo behavior for packing against
a screen border. Packing towards other clients still needs adjustments
in the Placement code.
Sync related code is split out into dedicated virtual methods so that
Client can provide the X11 specific implementation. General handling,
though is completely in AbstractClient.
Implementation is moved to abstract_client.cpp as so far events.cpp
does not have any code from AbstractClient.
This includes moving the electricMaximizingDelay from Client to
AbstractClient.
The implementation of positionGeometryTip is X specific, we need to
figure out whether that one makes sense for Wayland. Given that, let's
have it virtual to ease the transition of code which calls it.
The implementation calls a virtual doStartMoveResize() which allows
Client to do it's X11 specific tasks (creating moveResizeWindow, grabbing
input).
The base implementation is no longer virtual.
Includes moving the m_cursor and Qt::CursorShape cursor() method to
AbstractClient. In addition AbstractClient now emits a signal whenever
the shape changes allowing Client to react on it (update the low level
cursor) and also hopefully the Wayland Backends to react to it, so that
we have the cursor.
Implementation goes to AbstractClient, method is no longer virtual.
The X11 specific code is moved to a new virtual protected doMove
method implemented in Client.
Method added so that we can call into TabGroup::updateStates from code
in AbstractClient. Default implementation does nothing, implementation
in Client performs the actuall call.
As a first case added to Client::move in order to be able to move the
implementation to AbstractClient.
The usage was always to trigger repaints on the old and the new
visibleRect. And store the new visibleRect as the future old one.
This is now encapsulated in a dedicated method called
addRepaintDuringGeometryUpdates().