The Xrender backend was added at the time when OpenGL drivers were not
particularly stable. Nowadays though, it's a totally different situation.
The OpenGL render backend has been the default one for many years. It's
quite stable, and it allows implementing many advanced features that
other render backends don't.
Many features are not tested with it during the development cycle; the
only time when it is noticed is when changes in other parts of kwin break
the build in the xrender backend. Effectively, the xrender backend is
unmaintained nowadays.
Given that the xrender backend is effectively unmaintained and our focus
being shifted towards wayland, this change drops the xrender backend in
favor of the opengl backend.
Besides being de-facto unmaintained, another issue is that QtQuick does
not support and most likely will never support the Xrender API. This
poses a problem as we want thumbnail items to be natively integrated in
the qtquick scene graph.
With the ongoing scene redesign, it needs to be rewritten. However,
given that it is not used widely based on support information from
various bug reports and our available man power is sparse, the most
reasonable thing is to drop the effect, unfortunately.
With the ongoing scene redesign, it needs to be rewritten. However,
given that it is not used widely based on support information from
various bug reports and our available man power is sparse, the most
reasonable thing is to drop the effect, unfortunately.
With the ongoing scene redesign, it needs to be rewritten. However,
given that it is not used widely based on support information from
various bug reports and our available man power is sparse, the most
reasonable thing is to drop the effect, unfortunately.
With the ongoing scene redesign, it needs to be rewritten. However,
given that it is not used widely based on support information from
various bug reports and our available man power is sparse, the most
reasonable thing is to drop the effect, unfortunately.
Window management features were written with synchronous geometry
updates in mind. Currently, this poses a big problem on Wayland because
geometry updates are done in asynchronous fashion there.
At the moment, geometry is updated in a so called pseudo-asynchronous
fashion, meaning that the frame geometry will be reset to the old value
once geometry updates are unblocked. The main drawback of this approach
is that it is too error prone, the data flow is hard to comprehend, etc.
It is worth noting that there is already a machinery to perform async
geometry which is used during interactive move/resize operations.
This change extends the move/resize geometry usage beyond interactive
move/resize to make asynchronous geometry updates less error prone and
easier to comprehend.
With the proposed solution, all geometry updates must be done on the
move/resize geometry first. After that, the new geometry is passed on to
the Client-specific implementation of moveResizeInternal().
To be more specific, the frameGeometry() returns the current frame
geometry, it is primarily useful only to the scene. If you want to move
or resize a window, you need to use moveResizeGeometry() because it
corresponds to the last requested frame geometry.
It is worth noting that the moveResizeGeometry() returns the desired
bounding geometry. The client may commit the xdg_toplevel surface with a
slightly smaller window geometry, for example to enforce a specific
aspect ratio. The client is not allowed to resize beyond the size as
indicated in moveResizeGeometry().
The data flow is very simple: moveResize() updates the move/resize
geometry and calls the client-specific implementation of the
moveResizeInternal() method. Based on whether a configure event is
needed, moveResizeInternal() will update the frameGeometry() either
immediately or after the client commits a new buffer.
Unfortunately, both the compositor and xdg-shell clients try to update
the window geometry. It means that it's possible to have conflicts
between the two. With this change, the compositor's move resize geometry
will be synced only if there are no pending configure events, meaning
that the user doesn't try to resize the window.
This is to improve code readability and make it easier to differentiate
between methods that are used during interactive move-resize and normal
move-resize methods in the future.
We need to emit the clientFinishUserMovedResized signal to notify
effects such as translucency that the interactive move-resize is
finished. Otherwise, the set() animation won't be cancelled and the
window will get stuck frozen.
BUG: 409376
The order in which Xwayland surfaces are associated with X11 windows is
undefined, meaning that we cannot assume that a newly created X11 window
won't have a surface associated with it already.
On X11, the lockscreen greeter is an override-redirect window so the
scale and the glide effect ignore it.
On Wayland, the lockscreen greeter is a regular window so both effects
try to animate it upon the screen being unlocked, which looks bad.
This reduces the number of usages of xStackingOrder(), which simplifies
the reasoning about when it can be marked as dirty.
Since internal windows are now in the regular stack, InternalWindowTest
can use stackingOrder().
As for X11ClientTest, there's no specific reason why it uses the x stack
instead of the regular one.
We need to make sure that the information from
toplevelConfigureRequestedSpy is in place to be used, otherwise we get
an empty size and it doesn't work.
We were expecting a tooltip to be closed when clicking its
transientParent, but it's explicitly not something we are after. We
close popups when we click either other clients or the actual client on
the decoration.
This change makes it so we end up clicking another window instead of the
parent one that is unrelated.
When debugging modifier_only_shortcut_test in _waylandonly mode I saw
that it was failing, among other things, because some aspects were not
initialised.
This changes every test we have to run the new
Test::initWaylandWorkspace() that calls waylandServer()->initWorkspace()
but also makes sure that WaylandServer::initialized is emitted before we
proceed.
Starting with 48c3376927e5e9c13377bf3cfc8b0c411783e7f3 in kglobalaccel,
KGlobalAccel won't work in desktop environments other than Plasma.
We need to set XDG_CURRENT_DESKTOP=KDE to ensure that global shortcuts
still work.
Currently, the fullscreen state is update synchronously, but it needs to
be done in asynchronous fashion.
This change removes some tests as they don't add any value, testFullscreen()
covers them all.
Xcursors don't support hidpi so if a hidpi cursor is needed, kwin will
scale the desired size by the scale factor and ask Xcursor helpers to
load a theme with the given name and the size.
However, the theme loading code doesn't take into account that Xcursor
theme loading helpers may not return cursor sprites of size size * scale
if the theme has no such a size.
For example, if the cursor theme only provides 24, 36, and 48 sizes and
kwin attempts to load cursors of size 48 with a scale factor of 2, we
will get cursors of size 48 instead of 96. Unfortunately, this will
result in the issue where the cursor shrinks when hovering decorations
because kwin doesn't know that the effective scale factor (1) is
different from the requested scale factor (2).
In order to fix loading of HiDPI cursors, we need to approximate the
effective scale factor of every cursor sprite as we load it.
If a decoration is created for an already mapped maximized window, check
the workspace position to ensure that the window still fits the maximize
area.
BUG: 432326
Re-use Qt's implementation of handling non-Latin layouts here
For full ASCII range support (Alt+`, etc.) Qt needs to be patched still,
see QTBUG-90611
BUG: 375518
At the moment, the session code is far from being extensible. If we
decide to add support for libseatd, it will be a challenging task with
the current design of session management code. The goal of this
refactoring is to fix that.
Another motivation behind this change is to prepare session related code
for upstreaming to kwayland-server where it belongs.