In the header for each request a method is created, with following
features:
* ignores requests working as destructor
* adjusts return type for requests containing newId
* adds QObject *parent = nullptr for requests containing newId
* adds the arguements
* turns arguments from wayland into Qt types
In the cpp the same logic is applied. Methods are not properly
implemented and won't compile in the case of returning.
* parses the protocol
* can derive file name to generate from protocol name
* detects which interface is a global and which one is referenced
* generates client code for global and for resource
* comes with a mapping.txt file to translate wl -> KWayland
The small tool added here allows to automate the process of generating
the boiler plate for an interface. Currently it's able to generate the
Client side code representing a wl_global.
The tool does not get installed, so run it from build directory:
Example usage:
./kwaylandScanner -c Foo -f foo -g wl_foo
This will generate a wrapper for the wl_foo interface in files:
foo.h and foo.cpp
The class is called KWayland::Client::Foo.
The tool will be extended. Following things are on the TODO list:
* parse xml to get the Wayland names
* add listener (if needed)
* generate code for Wayland interfaces representing Resources
* generate the Server boiler plate
CCMAIL: mart@kde.org
CCMAIL: sebas@kde.org
* Raises wl_seat supported version to 4 in both server and client
* Raises wl_keyboard supported version to 4 in wl_keyboard
* wl_pointer and wl_touch are still on version 3
* Raises minimum Wayland version to 1.6
a protocol to activate the blur behind windows and to
optionally set a sub region of the window where to apply
the blur to, in case the window is shaped
REVIEW:125015
This change addresses the sometimes cumbersome to use API of Registry.
So far to bind an interface one needed to connect to the signals when
setting up the registry. There was no other way to get the name and
version at a later point. This made it difficult to use one Registry
in different parts of an Wayland application.
This change adds a convenient:
struct AnnouncedInterface { quint32 name; quint32 version;};
AnnouncedInterface interface(Interface) const
QVector<AnnouncedInterface> interfaces(Interface) const
The first one is meant for interfaces like wl_shm which is normally only
announced once. The latter one is meant for interfaces like wl_output
for which normally multiple interfaces can get announced.
Those methods can be used without having to connect to the announced
spy.
REVIEW: 124734
The shadow protocol is inspired by the KWin's X11 protocol and the
DecorationShadow in KDecoration2.
A shadow is attached to a surface (after a commit on surface) and
consists of several image parts (represented through a buffer):
* top-left
* top
* top-right
* right
* bottom-right
* bottom
* bottom-left
* left
In addition there is an offset on each side.
For more information see also the X11 protocol described at [1].
Note: the protocol is currently missing documentation and changing
the shadow is not yet properly delegated to the server API.
[1] https://community.kde.org/KWin/Shadow
This interface allows a client to fake input events and the server
might use them. There is an authentication mechanismn in place which
requires the server to mark the client as authenticated in order for
any events to be emitted at all.
This interface is intended for use cases like kdeconnect which allows
to remote control a device.
The idle time interface is modelled for the use cases of the KIdleTime
framework to allow providing a Wayland specific implementation.
It supports registering idle timeouts which are triggered on server
side if there has not been any user activity on the seat for the
requested amount of time. Once user activity resumes a resume from idle
signal is emitted.
In additon there is the possibility to simulate user activity which
simulates the resume from idle.
Sending a new PlasmaWindow as an event is quite problematic. The main
problem here is that it sends an id of 0 and this doesn't make sense
when the interface gets bound and all existing windows are send to the
client.
This changes the interaction to have the client create the resource for
the PlasmaWindow instead of the server creating it. The server generates
"window ids" and sends those to the client. The client now binds a
PlasmaWindow with the "window id" in the normal way.
In case the server doesn't know the id any more, it directly sends an
unmapped and destroyes the newly created resource again. It is not a
protocol error as that can happen (common example: file open dialog of
Qt 5 applications on Xwayland).
on xwayland clients, send mouse press, move and release
corresponding to touchDown, move and release
this gives a very basic touchscreen support on
xwayland clients
reviewed-by: Martin Graesslin <mgraesslin@kde.org>
Server can set a themed icon name, client gets it directly turned into a
QIcon. That only works with QGuiApplications as can be seen in the
adjusted paneltest.
Sends an umap to the client and destroys the resource afterwards.
The PlasmaWindowInterface gets automatically destroyed once there
are no more resources bound to it.
Check whether the resource for the Keyboard/Pointer/TouchInterface
is still valid before trying to use it.
This was hitting crashes in wayland during the wl_foo_send_enter
calls.
The Qt surface extension is a small protocol to allow exchanging
additional data between QWindows and the compositor. What we are
currently only interested in is the possibility to close a surface
from the Compositor.
Protocol description is copied from QtWayland 5.4.2 branch.
Before emitting the new damage we need to restrict it to the geometry
of the surface. That's required by the documentation and at least
QtWayland/OpenGL emits non-sense damage events.
If a resource is null, because e.g. the surface got already destroyed,
wayland will create an error while marshalling arguments causing
the connected client to in worst case abort.
Apparently we need to add a small delay after starting weston otherwise
it fails to connect on the CI system.
Additionally we switch to using headless-backend.so which should also
make the setup more robust.
Running real world applications (Xwayland) showed that it doesn't like
at all that we do a dispatch when we are going to flush. This caused
in a very reliable manner a "Connection closed" error in XWayland, taking
down the client and in return the (xwayland-enabled) server.
BufferInterface used to have a SurfaceInterface as parent. This could
result in easily hitting the abort condition that the BufferInterface
was still referenced when it gets deleted by just having one other
user referencing the BufferInterface.
There is no need to have the BufferInterface deleted when the
SurfaceInterface to which it belongs gets deleted. The BufferInterface
will get deleted once it's completely unreferenced and also has a
destroy listener.
Basically just wraps the size of the attached buffer. Convenience to
not have to go down to the Buffer to read the size.
TODO: apply buffer scale and transform.
Uses eglQueryWaylandBufferWL (if available) to determine the size of the
buffer. In order to do so, the server library links against egl (1) and
one needs to register the EGLDisplay in Server::Display by the user of
the library. For this a new method Display::setEglDisplay is added.
1: not using epoxy as it doesn't wrap the Wayland interfaces yet.
This change demonstrates how one can install a custom event dispatcher
before creating the QGuiApplication and how to process Wayland events
using the event dispatcher to e.g. start an Xwayland server prior to
creating the application.
It also allows to use
--platform wayland
on the test application. The wayland QPA plugin will connect to the
KWayland server started prior to creating the application.
Please note that such a setup will freeze unless QtWayland has commit
1e32e71 [1].
[1] 1e32e71403
This allows to start the Wayland server before the QCoreApplication is
created with an eventDispatcher being installed through
QCoreApplication::setEventDispatcher.
Instead of performing dispatchEvents for a hard coded number of
expected events from Xwayland, we use select on the pipe to figure
out whether Xwayland has started writing the display number. As long
as select does not indicate that the pipe is ready we need to dispatch
further events.
Anologous to the implementation in Pointer:
* signal entered and left
* Surface *enteredSurface()
The passed in keys are not yet passed along and
currently ignored.
Now the code handles correctly the attaching of a null buffer
(emits a signal unmapped) and if a commit doesn't have a pending
buffer it won't be reset. Damage requests are ignored if no buffer
has been attached yet.
Properly reset focus when surfaces get added/removed. E.g. when
writing in Kate additional surfaces are created for which we do
not want to pass focus.
If one passes StartMode::ConnectClientsOnly the socket in
XDG_RUNTIME_DIR is not created and instead one can only connect to
this server using the Display::createClient method. A very nice
solution to just have a Server and one dedicated Client talk to each
other.
The selection is supposed to be sent to the DataDeviceInterface just
before getting keyboard focus. In order to do that the SeatInterface
keeps track of the DataDeviceInterface which is the current selection
and the DataDeviceInterface of the focused keyboard client.
SeatInterface friends DataDeviceManagerInterface so that the latter
can register each created DataDevice for the SeatInterface.
The button state is a seat-global state and not a per pointer state.
All pressed/released and axis events are moved to the SeatInterface
and just invoke the related method on the focused surface pointer.
Makes PointerInterface more like other Interface classes wrapping
wl_resource. The most important change is the handling of the
focused surface. This is now kept in the SeatInterface and can also
be set if there is no PointerInterface for the client yet.
The unit tests had to be adjusted and some are also disabled as the
button events are not yet moved into SeatInterface.
This method is supposed to return the PointerInterface for the current
focused surface. At the moment it just creates the one global
PointerInterface. The existing SeatInterface::pointer method got
removed as that is actually wrong usage.
There can only be one focused surface per Seat, thus the information
should be hold in the seat.
This only adjusts the API, the actual data is still hold in the
PointerInterface. This still needs adjustment.
The ClientConnection is managed by Display. Whenever one tries to
get a ClientConnection for a wl_client* and it doesn't exist yet a
new one will be created and a clientConnected signal will be emitted.
Also there is a clientDisconnected signal.
ClientConnection provides access to pid, uid and gid. The idea is
to extend it to provide access to all the resources created for the
client.
Required information is passed through the ctor of Private.
::create is still virtual as ShellSurfaceInterface is retrieving
client information. This can be fixed once we have a better wl_client
encapsulation class.