At some future point we will also need it in ShellClient and it allows us
to better share geometry related implementations.
Base implementation returns 0, that is no border.
Base implementation always returns QuickTileNone. Implementation in
Client overrides. Long term solution: provide functionality directly
in AbstractClient.
AbstractClient now also supports mainClients, so we can do the
fullscreen window check on setActive in a general way. This ensures
that we do get proper stacking changes for activating fullscreen
shell clients.
Whenever we set a transient we must register it with the parent and
remove it again. Also if a parent gets destroyed we must inform the
transients.
This fixes a crash in Deleted::copyToDeleted when connecting the main
clients. The crash condition was hit if the parent got destroyed
before the transient.
Reviewed-By: Marco Martin
Merges together the code from ShellClient and Client and removes the
starting differences. Long term it's better to have only one
implementation to prevent diversions in the implementation.
As it doesn't match exactly protected virtual methods are called
which allow more specific implementations for a certain aspect of the
layer resolving.
AbstractClient::mainClients is virtual and overriden in Client,
allMainClients has only a common implementation in AbstractClient.
In activation.cpp we still need one case where a temporary ClientList
needs to be constructed. Once transients are fully migrated that should
be removable again.
A transient ShellClient has an offset position to the parent surface.
Use this to position the ShellClient properly.
This fixes the random placement of menus.
For the appId we use:
* wl_shell windowClass for Wayland clients
* resourceName from window class for X11 clients
This is implemented by sharing the window class implementation in
Toplevel.
CCMAIL: hein@kde.org
The creation of PlasmaWindowInterface is moved from WaylandServer into
AbstractClient. This allows the sub classes to better control when to
create/destroy the Client.
For creation it's bound to becoming visible - that is Windows which are
only created but never shown are not announced at all.
For Client it's destroyed with the normal tear-down of a Client, for
ShellClient it's destroyed on unmapped (which also means a new one
will be created again in case of another mapping of the surface).
As a side effect, this works around the problem that ShellClients do not
yet get destroyed for QtWayland's menus (needs further investigation).
At the same time the functionality for the "original_skip_taskbar" is
splitted out. This removes the weird API with two boolean arguments to
the set method. Instead there is a dedicated method for the orignal
skip taskbar state which delegates to regular skipTaksbar.
* properties defined in AbstractClient
* implementation of isShade moved to AbstractClient
* implementation of setShade(bool) moved to AbstractClient
* default implementation for isShadeable added to AbstractClient
* default implementation for shadeMode returning ShadeNone
* default implementation fo setShade which does nothing
Moves the properties and the base implementation into AbstractClient.
Methods invoke a new protected virtual method which is implemented in
Client to update the TabGroup.
Moves the implmentation to AbstractClient. Methods are no longer virtual,
setActive calls a virtual protected method which is implemented in Client
for Client specific activation code.
A virtual base implementation is provided which does nothing. Needed
in AbstractClient to get Workspace::slotWindowGrow* to work with
active_client becoming an AbstractCliet.
The idea for this base class is to provide access to all elements which
make up a managed "Client" being it X11 or Wayland. They share a lot,
like they have a caption, they can be minimized, etc. etc.
Of course it would have also been possible to derive a new class from
Client, but that looks like the more difficult task as Client is very
X11 specific.
So far only a very small interface is extracted with pure-virtual
methods. This is going to change by moving the functionality up into
the AbstractClient.
The interface extracted so far is inspired by the usage of FocusChain
and users of FocusChain.