The test case verifies that setting an override cursor during mouse
interception works and that it's also possible to change it. When
ending mouse interception the cursor image should be adjusted again.
The test shows that when mouse interception starts KWin should send
a pointer leave event to the current focused window and similar needs
to handle the stop of mouse interception.
Updating the focused pointer surface results in the cursor to change.
The CursorImage needs the current focused window to evaluate which cursor
to use, though. Thus we need to make sure that the window reflects the
current state before updating the seat.
This test case verifies that the cursor image and hot spot changes
correctly when focusing a window, changes when damaged and hides.
Test shows that when focusing a window the cursor image is not
removed, neither that unfocus sets back to fallback cursor properly.
Small regression: the command didn't get updated at all, so it was always
MouseNothing.
To prevent such a regression to sneak in again the change comes with
autotest for the action on inactive and active window.
As a Wayland server KWin does not have to emit additional key repeat
events (unlike X11). The clients are responsible for handling this based
on the provided key repeat information.
Internally KWin needs key repeat, though. E.g. the effects need key
repeat (filtering in Present Windows), window moving by keyboard needs
repeat, etc. etc.
This change introduces the internal key repeat. For each key press a
QTimer is started which gets canceled again on the key release. If the
timer fires it invoked processKey with a new KeyboardKeyAutoRepeat state.
This is handled just like a KeyPress, but states are not updated and
the QKeyEvent has autorepeat set to true.
The event filters check for the autorepeat state and filter the event
out if they are not interested in it. E.g. the filters passing the event
to the Wayland client need to filter it out.
Currently auto-repeat is bound to using libinput. This needs to be
modified. The only backend sending repeated events is X11, thus for
other backends it should be enabled.
Whether creating a timer on each key event is a good idea is something to
evaluate in future.
Reviewed-By: Bhushan Shah
Experimental testing in real world showed it's just a signing issue
in this specific case. The events passed to wayland clients scroll
in correct direction.
With that all the actions are implemented just like on X11.
There are two not yet implemented differences:
* hide splash window when clicking it
* replay event on special window
Implemented in the ForwardEventFilter: before forwarding the event
to the window we check whether a modifier is pressed and perform the
wheel command.
Possible improvements: each axis event triggers the same change, there
is no adjusted scaling.
This change implements the mouse command for modifier (alt/meta) plus
click in InputRedirection so that it also works on Wayland.
Modifier plus mouse wheel is not implemented yet.
For easier code in Options a new method is added which provides the
configured modifier as a Qt::KeyboardModifier instead of a Qt::Key code.
Test case is added which simulates all variants of modifiers plus
supported mouse buttons to trigger move.
Canceling the animation in the animationEnded handler triggers a crash.
This is due to multiple lists being iterated and manipulated at the same
time.
This adds a test case which simulates the crashy situation.
REVIEW: 126975
So far the key handler in the InternalWindowEventFilter used the
PointerInputRedirection's internal window. This had the result that
key events were only delivered to an internal window if the window
was under the cursor.
This change tries sending the event to the latest created and visible
window. Thus e.g. with nested context menus it goes to the current
sub menu as expected. The return value of sendEvent is used to filter
out the event.
This makes QCursor::pos and QCursor::setPos function correctly. KWin
actually wouldn't need it as KWin has the KWin::Cursor replacement, but
it allows Qt internal API to have it function correctly and also the
zoom effect does use QCursor::setPos.
The mapping is slightly inspired by the mapping in QtWayland.
But the mapping in QtWayland seems wrong. E.g. there is a linux kernel
button called BTN_BACK which is not mapped to Qt::BackButton.
Anyway we are not really interested in the mapping being 100 % correct
for the case in KWin. KWin internally uses only very few mouse buttons
and all others are only relevant to figure out whether buttons are
pressed. The button code itself is passed to the seat with the native
code.
The MoveResizeWindowTest is extended by a test case to verify that
the move only ends once all mouse buttons are released. So far this
is not yet the case as KWin has an incorrect mapping of buttons to
Qt::MouseButtons.
So far KSldApp was always either in state AcquiringLock or Unlocked
during the tests. Due to a fix in WaylandServer it now can also enter
the Locked state. But this is timing related and also depends on whether
the greeter works at all. E.g. on build.kde.org the greeter fails to
start, so it never enters the Locked state.
The adjusted test now considers that the state might have changed to
Locked and expects one additional signal to be emitted.
CI system is adjusted, so that OpenGL should work. At least latest
run didn't show the EGL warnings in the lock screen test. So let's
try to enable again. It's possible that this fails horribly. If that's
the case I'll revert again.
The dontCrashGlxgearsTest is kept on QPainter as locally it crashes
on teardown (needs fixing).
The logic should not be tied to whether libinput is used. It's relevant
for all Wayland backends whether they use libinput or not.
In addition this should generate a pointer motion event, so that proper
processing can take place and we get proper pointer enter events.
The test removes the second screen while the cursor is on it. This
should warp the pointer to the center of first screen and trigger
a focus enter event.
As can be seen by the expect failures currently it's bound to libinput
and also doesn't process the event as if it were a pointer event.
If the pointer is warped the position change should be treated like
a change coming from the input device. Our normal processing should
take place.
A problem in this case is the timestamp to pass to the wayland server.
Normally our timestamps come from the backend/libinput and we don't
know the next one. As an intermediate solution we just use the last
timestamp on the seat. In future a solution could be to not use the
backend's timestamp at all, but have our own timestamp handling.
When warping a pointer through Cursor::setPos it should be processed
just like any other pointer event. It should generate enter/leave event,
create motion events, etc. This is currently not the case as the test
shows.
A new test case which ensures that when stacking order changes the
pointer focus gets re-evaluated and updated. I was positively surprised
to notice that this already works.
Noticed two other problems while writing the test case:
* warping pointer does not re-evaluate the pointer pos
* deleting a ShellSurface (client) does not destroy the ShellClient (server)
When the screen gets locked any existing sequence gets cancelled
and the focused touch surface gets reset. While screen is locked
touch events are filtered to only go to lock screen or input methods.
Test case is added for touch event during lock screen.
Reviewed-By: Bhushan Shah
Instead of only making the active client the focused keyboard surface,
the method now also performs the lock screen security restriction.
Also just like udatePointerWindow the method becomes public, so that
it can be used from the LockScreenEventFilter and is connected for
lock state changes. This means as soon as the screen locks the current
focused keyboard surface will get a leave event and get an enter event
once the screen unlocks.
The auto test is adjusted to verify these new conditions.
Reviewed-By: Bhushan Shah
InputRedirection connects to lockStateChanged to udate the current
pointer window. This way we can ensure that the current pointer
surface gets reset as soon as the screen locks (c.f. the expect
fail in the autotest) and also that it restores to the surface under
the mouse once the screen is unlocked.
The relevant code was not yet lock screen aware and performed an
early exit. Part of the code was fine, e.g. findToplevel is lock
screen aware. So this change adjusts the methods for updating the
internal window and decoration to be lock screen aware, that is they
get reset. With that updatePointerWindow is also lock screen aware.
Thus the LockScreenFilter can also use updatePointerWindow just like
the normal handling and does not need to reimplement parts of it. As
it now relies on other code being correct it has an additional check
to verify that the current pointer surface is a surface which is allowed
to get events. If it isn't the events are not forwarded.
Reviewed-By: Bhushan Shah
The test creates a QRasterWindow which through KWin's internal QPA
is considered an internal window. In the test methods we simulate
various pointer events (enter/leave, press/release, wheel).
First test case is whether wheel events are forwarded correctly.
From the code it seems to me like up/down is inversed. Needs manual
testing.
As this requires working decorations it's possible that this test
will fail on build.kde.org.
Interesting approach I would not have expected to work. A dummy Effect
class is created in the test and an instance is passed to
EffectsHandler's startMouseInterception. It doesn't verify whether it's
an Effect it knows or has created, so it's totally happy with the dummy.
It shows that motion and press/release are passed to the Effect when
screen is not locked and doesn't while the screen is locked.
On the CI system our tests failed due to the greeter failing to start
due to OpenGL problems. This was because we waited for a window to show
which never happened. Thus the test failed.
This change makes use of the new lockStateChanged signal to determine
when the screen gets locked/unlocked.
It's still possible that the test fails as I'm not able to reproduce
the failure condition on the CI system.
First test case is to ensure that pointer motion events trigger a
leave event on the surface the pointer is on.
The test case shows errors in the input handling.
More tests need to be added.
Trigger quick tiling by moving the window. For moving the window only
keyboard keys are used.
The test experienced some problems with the Outline triggering crashes.
To work around them the test disables the Outline by specifying an
invalid configuration.
Ensures that all Wayland objects are destroyed and the cleanup handling
is performed before tearing down the Compositor. This fixes for example
a crash if a Surface with a Shadow is still around at tear down.
WaitForFinished blocks our main thread, but Xwayland wants to talk
to Wayland and blocks as well. So let's ensure events are processed
while terminating Xwayland.
Some effects do X11 calls in their cleanup code through external
libraries (e.g. KSelectionOwner). As we cannot control that we need
to ensure the effects are unloaded prior to destroying the Xwayland
connection.
We need to destroy the ClientConnections we create. Also we need
to disconnect our Xwayland error handling before destroying it, otherwise
it would trigger the abort for crashing Xwayland.
During Compositor tear down Xwayland is already destroyed. Thus it
doesn't make sense to try to delete the support properties: either
it freezes in xcb or it crashes because the connection is null.
At the same time we also ensure that the connection internally is
reset to null. Note: the one in kwinglobals.h caches and could cause
use-after-free errors. Any tear-down code must be migrated to
kwinApp()->x11Connection().
We need to destroy the compositor after Xwayland terminated and after
the internal Wayland connection is destroyed. This means when destroying
the Workspace we may no longer destroy the Compositor at the same time.
Also we need to ensure that other tear down functionality doesn't call
into the no longer existing internal client connection.
With this change kwin doesn't crash when exiting with Wayland and/or
X11 windows still open.
-use qstringliteral only when necessary (i.e. not in concat or comparison)
-use qbytearray instead of qstring when dealing with latin1 input and output (glplatform)
-use qstringref to extract numbers from strings (glplatform)
-define qt_use_qstringbuilder to optimize all string concatenations
-anidata: use ctor init lists, add windowType member initialization
REVIEW: 125933
Methods are no longer virtual. The only x11 specific usage in these
methods (resizeInc) is replaced by a virtual method. Default resize
increments is QSize(1,1) for AbstractClient.
Don't emit both geometryShapeChanged and geometryChanged: the one
is set up to call the other.
Also adjust tests because maximize changes triggers too many geometry
changed signals.
Method no longer virtual and only implemented in AbstractClient.
The implementaton works in a generic way nowadyas.
Added an autotest for the basic packTo behavior for packing against
a screen border. Packing towards other clients still needs adjustments
in the Placement code.
The signals operate on AbstractClient nowadays, so we can have one
implementation for both Client and ShellClient.
Only X specific connections are only done for Client.
So far only moving through useractions menu is possible and only through
cursor control (mouse events are lost).
A basic first autotest is added to validate the moving of Windows.
The problem we had was closing a glxgears through an Aurorae theme
crashed KWin inside QtQuick.
This test case simulates the sequence:
1. starts glxgears
2. wait till we have a Client for it
3. send mouse move to guessed close button position
4. send mouse press/release at that position
5. verify the window is closed
6. verify glxgears exits
With the given commit reverted this crashes, with it in place it passes.
Please note: on CI it might fail as glxgears is not yet installed. [1]
Also we cannot enforce using Aurorae from the test yet, though on
the CI system it should get picked automatically as no other deco
plugin should be installed.
[1] Sysadmin ticket already created
If the size is the same it's basically just a window movement. That's
nothing we need to roundtrip to the client, but can adjust the geometry
change directly.
The quick tiling test is adjusted to test this together with
sendToScreen. Each window is also sent to the next screen to verify the
state doesn't change and geometry is updated.
Note: the flag for quick maximization seems to get lost in this setup.
Very basic: all screens have same size and are ordered from left to
right. It's mostly meant to allow easy test cases with multi-screen.
The quick tiling test demonstrates how it's used.
Last commit removed a setGeometry call that I thought was only used to clear an edge (which we don't want) but was in fact crucial to the next test.
REVIEW: 125635
This is needed to properly restore to a valid geometry after quick
maximizing. Note: this is not yet perfect, actually it should be done
after initial placing, which means we do need a manage method like
Client.
The autotest for quick tiling is extended to cover maximize changes
and cover this case.
Base test verifies the quick tile positions. No maximization or direct
state changes tested yet.
Required to have Toplevel and AbstractClient exported. Otherwise we
cannot use the SignalSpy.
Add action type to screen edge show to allow raise/lower as well as
autohide
Add an action type to screen edge show to allow raise/lower as well as
autohide. This uses the same atom, using a mask to separate type and
location.
The logic for handling geometry changes is moved from the screenedge to
the client so that we can handle both types without screenedge needing
to know what the raise is for.
REVIEW: 124272
As expected in a025791d7b the tests
fail on the CI system due to llvmpipe. Let's try whether enforcing
O2 makes them run, if not update to switch to Q is following.
If the surface indicates that it doesn't want keyboard focus we shouldn't
give it keyboard focus.
This was a problem with Kate's autocompletion tool tip windows.
REVIEW: 125553
This is the beginning of a new testing era for KWin: finally we are
able to test against a running KWin. This works by making use of the
new virtual framebuffer backend for Wayland. It starts a specific
Application subclass which is mostly a fork of ApplicationWayland.
The individual tests are able to influence the socket name and the
size of the virtual screen. This is supposed to be done in
initTestCase. To know when KWin is fully started one can use the
workspaceCreated signal of KWin::Application. KWin is not started in
another process, but the kwin library is used, so the test has pretty
much full introspection to everything going on inside KWin. It can
access the Workspace, WaylandServer, fake input events through
InputRedirection and so on.
Once the test KWin is running it's possible to connect to it using
KWayland::Client library. This allows to introspect the Workspace
to see whether all worked as expected (e.g. correct stacking order,
active window and so on).
This first autotest is mostly meant to illustrate how to setup a
test and how one can use KWayland::Client to interact with the mock
KWin. For more tests it is suggested to move the connections to the
Wayland server in the init() and cleanup() methods.
The change also affects the qpa plugin: the specific check to only
run in binaries called kwin_wayland doesn't hold any more. This can
now be overwritten by an env variable.
Please note that this first test will probably fail in the CI system
as it might not have XWayland which is needed by KWin.
With Qt 5.5 the physicalSize of a screen is broken if the X system does
not provide the XRandR extension. This caused our screen edge test to
fail on the CI system (Xvfb) due to approach window being based on the
dpi.
The problem itself is addressed for Qt in:
https://codereview.qt-project.org/126808
This change just worksaround till the change has made it into our CI
system (at which point the expected fails will break).
Reviewed-By: David Edmundson
The test put a reference to the XCB::Window as data
to the _net_wm_transient property, not the window ID
This "works" (you get various garbage transients for
the leader in addition) as long as the window id itself
is the first item in the structure (because that is what
the test resolves to verify what it has done) bug fails
when the XCB::Window structure changes and anything
is the first item (or, btw., when the compiler feels
to re-align the structure and adds some padding...)
So let's fix the test by at least passing the proper
data reference.
is FIXED-IN: 5.4.1
REVIEW: 124888
also see REVIEW: 124864