At the moment, our frame scheduling infrastructure is still heavily
based on Xinerama-style rendering. Specifically, we assume that painting
is driven by a single timer, etc.
This change introduces a new type - RenderLoop. Its main purpose is to
drive compositing on a specific output, or in case of X11, on the
overlay window.
With RenderLoop, compositing is synchronized to vblank events. It
exposes the last and the next estimated presentation timestamp. The
expected presentation timestamp can be used by effects to ensure that
animations are synchronized with the upcoming vblank event.
On Wayland, every outputs has its own render loop. On X11, per screen
rendering is not possible, therefore the platform exposes the render
loop for the overlay window. Ideally, the Scene has to expose the
RenderLoop, but as the first step towards better compositing scheduling
it's good as is for the time being.
The RenderLoop tries to minimize the latency by delaying compositing as
close as possible to the next vblank event. One tricky thing about it is
that if compositing is too close to the next vblank event, animations
may become a little bit choppy. However, increasing the latency reduces
the choppiness.
Given that, there is no any "silver bullet" solution for the choppiness
issue, a new option has been added in the Compositing KCM to specify the
amount of latency. By default, it's "Medium," but if a user is not
satisfied with the upstream default, they can tweak it.
The compositing timing algorithm assumes that glXSwapBuffers() and
eglSwapBuffers() block. While this was true long time ago with NVIDIA
drivers, nowadays, it's not the case. The NVIDIA driver queues
several buffers in advance and if the application runs out of them,
it will block. With Mesa driver, swapping buffer was never blocking.
This change makes the render backends swap buffers right after ending
a compositing cycle. This may potentially block, but it shouldn't be
an issue with modern drivers. In case it gets proven, we can move
glXSwapBuffers() and eglSwapBuffers() in a separate thread.
Note that this change breaks the compositing timing algorithm, but
it's already sort of broken with Mesa drivers.
If eglSwapBuffers() fails, frame scheduling will be broken. KWin can't
recover from that, but still, having a log message might be useful for
the debugging purposes.
Currently, the OpenGLBackend and the QPainterBackend have hooks to
indicate the start and the end of compositing cycle, but in both cases,
the hooks have different names. This change fixes that inconsistency.
In order to allow per screen rendering, we need the Compositor to be
able to drive rendering on each screen. Currently, it's not possible
because Scene::paint() paints all screen.
With this change, the Compositor will be able to ask the Scene to paint
only a screen with the specific id.
Summary:
Notify the driver about the parts of the screen that will be repainted.
In some cases this can be benefitial. This is especially useful on lima
and panfrost devices (e.g. pinephone, pinebook, pinebook pro).
Test Plan:
Tested on a pinebook pro with a late mesa version.
Basically I implemented it, then it didn't work and I fixed it.
Maybe next step we want to look into our damage algorithm.
The main advantage of SPDX license identifiers over the traditional
license headers is that it's more difficult to overlook inappropriate
licenses for kwin, for example GPL 3. We also don't have to copy a
lot of boilerplate text.
In order to create this change, I ran licensedigger -r -c from the
toplevel source directory.
Summary:
Otherwise it thinks outputs couldn't be created and it leaves.
Problem is that after this fix it crashes when it actually does things with:
kwin_wayland: /home/apol/devel/frameworks/kwin/composite.cpp:646: void KWin::Compositor::aboutToSwapBuffers(): Assertion `!m_bufferSwapPending' failed.
Test Plan: As said, it proceeds correctly and crashes elsewhere
Reviewers: #kwin, davidedmundson
Reviewed By: #kwin, davidedmundson
Subscribers: davidedmundson, kwin
Tags: #kwin
Differential Revision: https://phabricator.kde.org/D19921
Summary:
This patch rewrites large parts of the Wayland platform plugin, in order to
facilitate the testing of multi output behavior in nested KWin sessions.
For that a new class WaylandOutput is introduced, which is based on
AbstractOutput and by that shares functionality with our virtual and DRM
platform plugins.
The EGL/GBM and QPainter backends have been remodelled after the DRM one,
sharing similiarities there as well now.
Pointer grabbing has been rewritten to support multiple outputs, now using
pointer locking instead of confining and drawing in this case onto a sub-
surface, which get dynamically recreated in between the different output
surfaces while the cursor is being moved.
Window resizing is possible if host supports xdg-shell, but currently the
mode size does not yet fill the new window size.
The number of outputs can be set by command line argument `--output-count`,
scaling is also supported by setting the argument `--scale`.
Further steps could be:
* Enabling automatic fill of resized windows via Wayland mode change
* Multiple diverging initial sizes and scale factors for mulitple outputs
**Watch it in action:** https://youtu.be/FYItn1jvkbI
Test Plan: Tested it in live session.
Reviewers: #kwin, davidedmundson
Reviewed By: #kwin, davidedmundson
Subscribers: davidedmundson, zzag, kwin
Tags: #kwin
Differential Revision: https://phabricator.kde.org/D18465
Summary:
Unfortunately a rather large change which required more refactoring than
initially expected. The main problem was that some parts needed to go
into platformsupport so that the platform plugins can link them. Due to
the rather monolithic nature of scene_opengl.h a few changes were
required:
* SceneOpenGL::Texture -> SceneOpenGLTexture
* SceneOpenGL::TexturePrivate -> SceneOpenGLTexturePrivate
* texture based code into dedicated files
* SwapProfiler code into dedicated files
* SwapProfiler only used in x11 variants
* Safety checks for OpenGL scene moved into the new plugin
* signal declared in SceneOpenGL moved to Scene, so that we don't need
to include SceneOpenGL in composite
Test Plan: Nested OpenGL compositor works
Reviewers: #kwin, #plasma
Subscribers: plasma-devel, kwin
Tags: #kwin
Differential Revision: https://phabricator.kde.org/D7740
Summary:
Several of the subclasses are already derived from QObject.
The main reason is that the class should be moved out of KWin core in
order to move the OpenGL scene into a plugin. As Compositor calls into
the AbstractEglBackend to unbind the wayland display this creates a
problem which is easily solved by turning the AbstractEglBackend into a
QObject and connect to the signal emitted by the Compositor.
Test Plan: Compiles
Reviewers: #kwin, #plasma
Subscribers: plasma-devel, kwin
Tags: #kwin
Differential Revision: https://phabricator.kde.org/D7669
Summary:
KWin needs to support restarting the OpenGL compositor in case of a
graphics reset event.
On Wayland the tricky part is that the applications should not notice
this. Most importantly KWin cannot just destroy the EGLDisplay and create
a new one. But this is how a restart works: the complete compositor gets
torn down and recreated - including the EGLDisplay.
This change moves ownership of the EGLDisplay to the Platform.
The AbstractEglBackend subclasses query the Platform whether there is
already an EGLDisplay. Only if there is no EGLDisplay the EGLDisplay is
created and only if no EGLDisplay is registered with Wayland the bind
is performed.
Another change is regarding the destruction: the AbstractEglDisplay does
no longer unbind the Wayland display and does no longer destroy the
EGLDisplay. The EGLDisplay is destroyed by the Platform - so very late
on application exit. The Wayland display is unbound when the Compositor
terminates.
Test Plan:
Limited testing with the added auto-test. This one needs to
be extended to fully verify that OpenGL applications continue to work.
But this requires build.kde.org to support OpenGL on Wayland.
Reviewers: #kwin, #plasma_on_wayland
Subscribers: plasma-devel, kwin
Tags: #plasma_on_wayland, #kwin
Differential Revision: https://phabricator.kde.org/D2202
Summary:
Source code reorganization:
The base class AbstractBackend got renamed to Platform, thus the
"backends" are "platforms" now. As they are plugins they should go
together with other KWin plugins which are nowadays in the folder
plugins.
So new location is plugins/platforms/
Reviewers: #plasma, sebas
Subscribers: plasma-devel
Projects: #plasma
Differential Revision: https://phabricator.kde.org/D1353
2016-04-12 08:01:27 +02:00
Renamed from backends/wayland/egl_wayland_backend.cpp (Browse further)