With connection(), we will look up the x11 connection property on
kwinApp() object, which is less efficient than just calling a method on
the app object.
Since 4881dd63 replaced the double click timer for OffscreenQuickView
with a time check, we need to make sure the timestamp from
XInput/libinput is passed on to the actual QMouseEvent.
BUG: 448477
The gravity concept is a generic way to describe how a window must be
positioned during interactive resize. It works both when resizing the
window using a pointer or touch.
When moving or resizing a window on X11, the window based screen edges
won't receive pointer input, so handleInteractiveMoveResize() explicitly
pokes the ScreenEdges to check if there's any approached screen edge.
On Wayland, it's not an issue. This change moves X11-specific code to
X11Client to avoid checking screen edges twice.
KWin handles several types of pointing input devices, e.g. mice,
tablets, etc.
As is, enterEvent and leaveEvent are very ambiguous. This change
prepends "pointer" to those methods to make it explicit that they handle
pointer enter/leave events.
Xwayland will re-create the wl_surface object if the X11 window is
unmapped and mapped. That, and the fact that the order in which the
WL_SURFACE_ID client message event is received and the wl_surface object
is created is undefined can cause the following bug:
* WL_SURFACE_ID is received
* the old wl_surface object is destroyed, m_surfaceId is reset to 0
* new wl_surface is created but because m_surfaceId is 0, it won't be
associated with the x11 window
This change ensures that kwin will associate the wl_surface with x11
window by making it not reset cached surface id when the old wl_surface
is destroyed.
However, we cannot leave m_surfaceId as is because wayland aggressively
re-uses object ids so kwin can associate wrong surface with x11 window.
To prevent that, this change also makes Toplevel::setSurface() reset
cached surface id.
CCBUG: 442936
CCBUG: 426069
The main idea behind _NET_WM_FRAME_OVERLAP is to extend the borders of
the server-side decoration so the application can draw on top of it. It
was inspired by similar feature in Windows.
However, _NET_WM_FRAME_OVERLAP is basically unused. Neither GTK nor Qt
support it and I have never seen any application that uses it.
At the moment, kwin is the only compositing window manager that supports
_NET_WM_FRAME_OVERLAP. Neither mutter nor compiz nor compton and so on
support it.
Since _NET_WM_FRAME_OVERLAP is practically unused, there's no point for
keeping supporting it.
This change shouldn't affect any existing app as _NET_WM_FRAME_OVERLAP
atom is not listed in _NET_SUPPORTED.
It is error-prone to have multiple sources for the same data. If the
base implementation (Compositor::compositing()) changes, other helpers
can get out of sync.
Window management features were written with synchronous geometry
updates in mind. Currently, this poses a big problem on Wayland because
geometry updates are done in asynchronous fashion there.
At the moment, geometry is updated in a so called pseudo-asynchronous
fashion, meaning that the frame geometry will be reset to the old value
once geometry updates are unblocked. The main drawback of this approach
is that it is too error prone, the data flow is hard to comprehend, etc.
It is worth noting that there is already a machinery to perform async
geometry which is used during interactive move/resize operations.
This change extends the move/resize geometry usage beyond interactive
move/resize to make asynchronous geometry updates less error prone and
easier to comprehend.
With the proposed solution, all geometry updates must be done on the
move/resize geometry first. After that, the new geometry is passed on to
the Client-specific implementation of moveResizeInternal().
To be more specific, the frameGeometry() returns the current frame
geometry, it is primarily useful only to the scene. If you want to move
or resize a window, you need to use moveResizeGeometry() because it
corresponds to the last requested frame geometry.
It is worth noting that the moveResizeGeometry() returns the desired
bounding geometry. The client may commit the xdg_toplevel surface with a
slightly smaller window geometry, for example to enforce a specific
aspect ratio. The client is not allowed to resize beyond the size as
indicated in moveResizeGeometry().
The data flow is very simple: moveResize() updates the move/resize
geometry and calls the client-specific implementation of the
moveResizeInternal() method. Based on whether a configure event is
needed, moveResizeInternal() will update the frameGeometry() either
immediately or after the client commits a new buffer.
Unfortunately, both the compositor and xdg-shell clients try to update
the window geometry. It means that it's possible to have conflicts
between the two. With this change, the compositor's move resize geometry
will be synced only if there are no pending configure events, meaning
that the user doesn't try to resize the window.
This is to improve code readability and make it easier to differentiate
between methods that are used during interactive move-resize and normal
move-resize methods in the future.
This makes the implementation of the buffer geometry consistent with the
frame geometry and the client geometry and removes a virtual method call
from a few hot paths.
Currently, dealing with sub-surfaces is very difficult due to the scene
design being heavily influenced by X11 requirements.
The goal of this change is to re-work scene abstractions to make improving
the wayland support easier.
The Item class is based on the QQuickItem class. My hope is that one day
we will be able to transition to QtQuick for painting scene, but in
meanwhile it makes more sense to have a minimalistic internal item class.
The WindowItem class represents a window. The SurfaceItem class represents
the contents of either an X11, or a Wayland, or an internal surface. The
DecorationItem and the ShadowItem class represent the server-side deco and
drop-shadow, respectively.
At the moment, the SurfaceItem is bound to the scene window, but the long
term plan is to break that connection so we could re-use the SurfaceItem
for things such as software cursors and drag-and-drop additional icons.
One of the responsibilities of the Item is to schedule repaints as needed.
Ideally, there shouldn't be any addRepaint() calls in the core code. The
Item class schedules repaints on geometry updates. In the future, it also
has to request an update if its opacity or visibility changes.
Once in a while, we receive complaints from other fellow KDE developers
about the file organization of kwin. This change addresses some of those
complaints by moving all of source code in a separate directory, src/,
thus making the project structure more traditional. Things such as tests
are kept in their own toplevel directories.
This change may wreak havoc on merge requests that add new files to kwin,
but if a patch modifies an already existing file, git should be smart
enough to figure out that the file has been relocated.
We may potentially split the src/ directory further to make navigating
the source code easier, but hopefully this is good enough already.