A wrapper class for MotifHints is added to xcbutils. This class manages
the information about the read Motif hints, so that Client doesn't need
to have a copy of the read states.
The class is designed in a way that during Client::manage we get rid of
another roundtrip.
REVIEW: 122378
Xcb::GeometryHints is a convenient wrapper around the size hints
as described in ICCCM combined with the sanity checks so far applied
by KWin after reading the property.
Instead of accessing the members of the property structure, we are
now using the convenience methods.
During ::manage no further actions are triggered when reading the
size hints. Only when they are read later on the previous checks
are applied. During ::manage they can be ignored as it had a dedicated
isManaged check.
The method ::resizeWithCheck got a new argument of type xcb_gravity_t
which defaults to 0. This is needed from ::configureRequest which so
far temporarily changed the xSizeHints structure. By passing as an
argument this is no longer needed.
REVIEW: 122185
We are only using the UrgencyHint, InputHint and GroupLeader from
WMHints. Those are provided by NETWinInfo, so we can use the
functionality provided by NETWinInfo instead of calling XGetWMHints.
REVIEW: 120162
NOTE: this is not working completely yet, lots of code is still ifdefed
other parts are still broken.
The main difference for the new decoration API is that it is neither
QWidget nor QWindow based. It's just a QObject which processes input
events and has a paint method to render the decoration. This means all
the workarounds for the QWidget interception are removed. Also the paint
redirector is removed. Instead each compositor has now its own renderer
which can be optimized for the specific case. E.g. the OpenGL compositor
renders to a scratch image which gets copied into the combined texture,
the XRender compositor copies into the XPixmaps.
Input events are also changed. The events are composed into QMouseEvents
and passed through the decoration, which might accept them. If they are
not accpted we assume that it's a press on the decoration area allowing
us to resize/move the window. Input events are not completely working
yet, e.g. wheel events are not yet processed and double click on deco
is not yet working.
Overall KDecoration2 is way more stateful and KWin core needs more
adjustments for it. E.g. borders are allowed to be disabled at any time.
This is going to be a controversal change. It enforces KWin decorations
on all client side decorated windows from GTK+. Unfortunately we are
caught between a rock and a hard place. Keeping the status quo means
having broken windows and a more or less broken window manager due to
GTK+ including the shadow in the windows. This is no solution.
Enforcing server side decorations visually breaks the windows. This is
also no solution. So why do it?
It's our task to provide the best possible user experience and KWin is
a window manager which has always done great efforts to fix misbehaving
windows. One can think of the focus stealing prevention, the window rules
and lately the scripts. The best possible window management experience is
our aim. This means we cannot leave the users with the broken windows
from GTK.
The issues we noticed were reported to GTK+ about 2 months ago and we are
working on improving the situation. Unfortunately several issues are not
yet addressed and others will only be addressed in the next GTK+ release.
We are working on improving the NETWM spec (see [1]) to ensure that the
client side decorated windows are not in a broken state. This means the
enforcment is a temporary solution and will be re-evaluated with the next
GTK release. I would prefer to not have to do such a change, if some of
the bugs were fixed or GTK+ would not use client-side-decos on wms not
yet supporting those all of this would be a no issue.
For a complete list of the problems caused by GTK's decos see bug [2] and
the linked bug reports from there.
The change is done in a least inversive way in KWin. We just check for
the property _GTK_FRAME_EXTENTS and create a Q_PROPERTY in Client for it.
If we add support for the frame extents in future we would also need
this. So it's not a change just for enforcing the decoration.
The actual enforcing is done through a KWin script so users can still
disable it.
REVIEW: 119062
[1] https://mail.gnome.org/archives/wm-spec-list/2014-June/msg00002.html
[2] https://bugzilla.gnome.org/show_bug.cgi?id=729721
Use the timestamp from the xcb event which triggers the update whenever
possible. If we don't have access to the latest event, let's at least
update our own xTime prior to using it.
Slightly unrelated change included: Group switches the userTime from
XLib datatype to xcb datatype.
BUG: 335637
REVIEW: 118456
Qt doesn't like that we reparent the decoration using low level xcb
calls. So let's use a QWindow wrapper for the frame and let Qt do
the reparenting itself.
BUG: 334768
REVIEW: 118159
Only used for the delayedMoveResizeTimer as timeout slot. Code is small
so a lambda makes more sense. At the same time the code is slightly
improved to ensure that startDelayedMoveResize is never called while
the timer is already active.
This means that mousePressEvents are now required to come from the
decoration.
REVIEW: 117843
The sync protocol with e.g. Qt 4 windows is broken if our app time is
older than the one of the last sync alarm event. Thus we keep a timestamp
in the syncRequest struct of the last sent sync request. If the timestamp
is newer than our xTime when sending the next request, we update the
xTime to ensure that we have a new timestamp again.
BUG: 333512
REVIEW: 117734
So far the Unmanaged got released after an XCB_UNMAP_NOTIFY. This event
gets created after xcb_unmap_window or after xcb_destroy_window. In the
latter case the window is already distroyed and any of KWin's cleanup
calls will cause a BadWindow (or similar) error.
The idea to circumvent these errors is to try to wait for the
DESTROY_NOTIFY event. To do so the processing of the release is slightly
delayed. If KWin gets the destroy notify before the delay times out the
Unamanged gets released immediately but with a Destroy flag. For this a
new enum ReleaseToplevel is introduced and Unmanage::release takes this
as an argument instead of the bool which indicated OnShutdown. Also this
enum is added to Toplevel::finishCompositing so that it can ignore the
destroyed case and not generate an error.
REVIEW: 117422
Adds NET::WM2BlockCompositing to the Client's properties which allows to
read the state from the NETWinInfo object and get updates without having
to resolve the atom ourselve.
REVIEW: 117561
Excluded are the signals to Appmenu as that's currently excluded from
build.
Private slots with only one connection are turned into lambdas.
REVIEW: 117355
Instead of passing the macro based Predicate to findClient it now
expects a function which can be passed to std::find_if.
Existing code like:
xcb_window_t window; // our test window
Client *c = findClient(WindowMatchPredicated(window));
becomes:
Client *c = findClient([window](const Client *c) {
return c->window() == window;
});
The advantage is that it is way more flexible and has the logic what
to check for directly with the code and not hidden in the macro
definition.
In addition there is a simplified overload for the very common case of
matching a window id against one of Client's windows. This overloaded
method takes a Predicate and the window id.
Above example becomes:
Client *c = findClient(Predicate::WindowMatch, w);
Existing code is migrated to use the simplified method taking
MatchPredicate and window id. The very few cases where a more complex
condition is tested the lambda function is used. As these are very
local tests only used in one function it's not worthwhile to add further
overloads to the findClient method in Workspace.
With this change all the Predicate macro definitions are removed from
utils.h as they are now completely unused.
REVIEW: 116916
As can be seen in [1] the patches to KWin were in CVS HEAD before the
protocol got standardized and it never got any adoption. It's neither in
the NETWM spec, nor implemented in Qt4 nor in Qt5. KWin did not even add
the protocol to the NET::Supported property.
Thus it doesn't make much sense to keep a protocol which nobody speaks.
Still the code around the protocol is kept and also the names are kept.
Only difference is that Client::takeActivity got removed and the code
moved to the only calling place in Workspace. Motivated by that change
the enum defined in utils.h is moved into Workspace, it's turned into
a proper QFlags class and used as a type in the method argument instead
of a generic long.
[1] https://mail.gnome.org/archives/wm-spec-list/2004-April/msg00013.html
REVIEW: 116922
Major new functionality is xkbcommon support. InputRedirection holds an
instance to a small wrapper class which has the xkb context, keymap and
state. The keymap is initialied from the file descriptor we get from the
Wayland backend.
InputRedirection uses this to translate the keycodes into keysymbols and
to QString and to track the modifiers as provided by the
Qt::KeybordModifiers flags.
This provides us enough information for internal usage (e.g. pass through
effects if they have "grabbed" the keyboard).
If KWin doesn't filter out the key events, it passes them on to the
currently active Client respectively an unmanaged on top of the stack.
This needs still some improvement (not each unmanaged should get the
event). The Client/Unmnaged still uses xtest extension to send the key
events to the window. So keylogging is still possible.
InputRedirection keeps track of the Toplevel which is currently the one
which should get pointer events. This is determined by checking whether
there is an Unmanaged or a Client at the pointer position. At the moment
this is still slightly incorrect, e.g. pointer grabs are ignored,
unmanaged are not checked whether they are output only and input shapes
are not yet tracked.
The pointer events are delivered to the Toplevel as:
* enter
* leave
* move
* button press
* axis event
Nevertheless move events are still generated in InputRedirection through
xcb test for simplicity. They are still send to the root window, so all
windows get mouse move.
Button press and axis are generated only in the implementations of the
event handlers and delivered directly to the window, so other windows
won't see it.
In KCommonDecoration the OnAllDesktops button gets hidden or shown
depending on the number of desktops. For that KDecoration is extended
by a new property which delegates to the bridge to return whether
onAllDesktops is available. In KWin Core this is implemented using
the number of desktops.
FEATURE: 321611
FIXED-IN: 5.0.0
REVIEW: 116076
This provides a new protocol intended to be used by auto-hiding panels
to make use of the centralized screen edges. To use it a Client can
set an X11 property of type _KDE_NET_WM_SCREEN_EDGE_SHOW to KWin.
As value it takes:
* 0: top edge
* 1: right edge
* 2: bottom edge
* 3: left edge
KWin will hide the Client (hide because unmap or minimize would break
it) and create an Edge. If that Edge gets triggered the Client is shown
again and the property gets deleted. If the Client doesn't border the
specified screen edge the Client gets shown immediately so that we
never end in a situation that we cannot unhide the auto-hidden panel
again. The exact process is described in the documentation of
ScreenEdges. The Client can request to be shown again by deleting the
property.
If KWin gets restarted the state is read from the property and it is
tried to create the edge as described.
As this is a KWin specific extension we need to discuss what it means
for Clients using this feature with other WMs: it does nothing. As
the Client gets hidden by KWin and not by the Client, it just doesn't
get hidden if the WM doesn't provide the feature. In case of an
auto-hiding panel this seems like a good solution given that we don't
want to hide it if we cannot unhide it. Of course there's the option
for the Client to provide that feature itself and if that's wanted we
would need to announce the feature in the _NET_SUPPORTED atom. At the
moment that doesn't sound like being needed as Plasma doesn't want to
provide an own implementation.
The implementation comes with a small test application showing how
the feature is intended to be used.
REVIEW: 115910