Implementation goes to AbstractClient, method is no longer virtual.
The X11 specific code is moved to a new virtual protected doMove
method implemented in Client.
Method added so that we can call into TabGroup::updateStates from code
in AbstractClient. Default implementation does nothing, implementation
in Client performs the actuall call.
As a first case added to Client::move in order to be able to move the
implementation to AbstractClient.
The usage was always to trigger repaints on the old and the new
visibleRect. And store the new visibleRect as the future old one.
This is now encapsulated in a dedicated method called
addRepaintDuringGeometryUpdates().
In Client existing method is marked as override, in ShellClient a new
override is added which delegates to requestGeometry. Existing method
is renamed to doSetGeometry and all internal calls delegat to it.
Needs better merging with the implementation of Client.
The changeMaximize method is added as a pure virtual protected method
to AbstractClient. This replaces the previous pure virtual maximize
method. Which is now directly implemented in AbstractClient (reusing
the implementation previously in Client).
At some future point we will also need it in ShellClient and it allows us
to better share geometry related implementations.
Base implementation returns 0, that is no border.
Base implementation always returns QuickTileNone. Implementation in
Client overrides. Long term solution: provide functionality directly
in AbstractClient.
Add action type to screen edge show to allow raise/lower as well as
autohide
Add an action type to screen edge show to allow raise/lower as well as
autohide. This uses the same atom, using a mask to separate type and
location.
The logic for handling geometry changes is moved from the screenedge to
the client so that we can handle both types without screenedge needing
to know what the raise is for.
REVIEW: 124272
Merges together the code from ShellClient and Client and removes the
starting differences. Long term it's better to have only one
implementation to prevent diversions in the implementation.
As it doesn't match exactly protected virtual methods are called
which allow more specific implementations for a certain aspect of the
layer resolving.
AbstractClient::mainClients is virtual and overriden in Client,
allMainClients has only a common implementation in AbstractClient.
In activation.cpp we still need one case where a temporary ClientList
needs to be constructed. Once transients are fully migrated that should
be removable again.
The user might just want to move the window from
one screen to another, no point in wasting time to
show the indicator
BUG: 352050
REVIEW: 125024
FIXED-IN: 5.5
Prime target is to preserve the in-screen
condition of client AND window.i[1]
Atm. when the client is fully in sight
(but the window is not) - regardless of snapping
or screen change - a workspace update (screen change,
resolution change, adding/removing a strutting panel)
would allow the client to partiall escape screen bounds.
This is changed so that if the client is fully in sight,
it's kept fully in sight (but not the decoration)
If the entire window was fully in sight, it's also kept
(as is right now)
The code handles inner screen edges (if the client was in sight,
the entire window will be if we'd bleed to the other screen)
[1] I'd say that handling the client is more relevant,
but foresee more complaints if the window wasn't handled anymore ;-)
During that, i stumbled across some other issues.
- when a window centered on one screen is moved to a screen smaller
than the window, the window is shrinked to the dimensions of that
screen and now randomly touches eg. left AND right edge. When
moved back, the right and bottom edge were preferred
(to the window was "moved" into the lower right corner).
It's now kept centered.
- geom_restore was saved before keeping the window in the new
screen area (causing accidental drops on screen changes)
BUG: 330968
REVIEW: 122517
FIXED-IN: 5.4
Prime target is to preserve the in-screen condition
of client AND window.[1]
Atm. when the client is fully in sight (but the window is not) -
regardless of snapping or screen change - a workspace update
(screen change, resolution change, adding/removing a strutting
panel) would allow the client to partiall escape screen bounds.
This is changed so that if the client is fully in sight,
it's kept fully in sight (but not the decoration)
If the entire window was fully in sight, it's also kept
(as is right now)
The code handles inner screen edges (if the client was in sight,
the entire window will be if we'd bleed to the other screen)
[1] I'd say that handling the client is more relevant,
but foresee more complaints if the window wasn't handled anymore ;-)
During that, i stumbled across some other issues.
- when a window centered on one screen is moved to a screen
smaller than the window, the window is shrinked to the dimensions
of that screen and now randomly touches eg. left AND right edge.
When moved back, the right and bottom edge were preferred
(to the window was "moved" into the lower right corner).
It's now kept centered.
- geom_restore was saved before keeping the window in the new
screen area (causing accidental drops on screen changes)
BUG: 330968
REVIEW: 116029
FIXED-IN: 5.3
At the same time the functionality for the "original_skip_taskbar" is
splitted out. This removes the weird API with two boolean arguments to
the set method. Instead there is a dedicated method for the orignal
skip taskbar state which delegates to regular skipTaksbar.
So far input events were sent through Xwayland which is not needed as
we have all information available. Even more it had the pointer surface
on the wrong window when interacting with decorations as it was on the
window and not on the decoration.
... not them becoming visible.
Latter doesn't work for most cases (unminimizing)
for obvious reasons (they're not minimized) and
when a new window is mapped, the focus stealing
prevention seems a good filter
(if it's not good enough to gain the focus,
it's not good enough to break the state either)
REVIEW: 123783
CCBUG: 346837
CCBUG: 346933
CCBUG: 347212
* properties defined in AbstractClient
* implementation of isShade moved to AbstractClient
* implementation of setShade(bool) moved to AbstractClient
* default implementation for isShadeable added to AbstractClient
* default implementation for shadeMode returning ShadeNone
* default implementation fo setShade which does nothing
Moves the properties and the base implementation into AbstractClient.
Methods invoke a new protected virtual method which is implemented in
Client to update the TabGroup.
Moves the implmentation to AbstractClient. Methods are no longer virtual,
setActive calls a virtual protected method which is implemented in Client
for Client specific activation code.
A virtual base implementation is provided which does nothing. Needed
in AbstractClient to get Workspace::slotWindowGrow* to work with
active_client becoming an AbstractCliet.
The change is mostly straight forward. Effects are straight forward
adjusted. Client::findModal is moved up, this causes still a few
dynamic_casts to Client. Mostly because Workspace::activateClient still
operates on Client.
The idea for this base class is to provide access to all elements which
make up a managed "Client" being it X11 or Wayland. They share a lot,
like they have a caption, they can be minimized, etc. etc.
Of course it would have also been possible to derive a new class from
Client, but that looks like the more difficult task as Client is very
X11 specific.
So far only a very small interface is extracted with pure-virtual
methods. This is going to change by moving the functionality up into
the AbstractClient.
The interface extracted so far is inspired by the usage of FocusChain
and users of FocusChain.
This is an alternative approach suggested by the
NETWM spec.
The advantage is, that windows are not minimized
at all what apparently lead to some confusion
about the nature of the mode (which was abused
to tidy up) and a secret config key to allow for
that unrelated behavior.
Instead the ShowDesktopIsMinimizeAll key is removed
and replaced by a dedicated script + shortcut.
Bonus: less code to remember "minimized" windows =)