So far the area based edges connected directly to global pointer pos
changed in InputRedirection. This didn't allow proper checking whether
the edge was triggered (e.g. missing timestamp).
This change merges the functionality into the new input filter mechanism.
There is now a dedicated input filter for screen edges, installed after
lock screen and before effects. It always passes events on, but also passes
all events through ScreenEdges to handle the activation. As it's installed
after the lock screen filter we don't need to check for screen locked any
more.
The code is now similar strucutured to the existing X11 based variants
and maybe will allow to also merge the X11 variant with the new one.
The logic should not be tied to whether libinput is used. It's relevant
for all Wayland backends whether they use libinput or not.
In addition this should generate a pointer motion event, so that proper
processing can take place and we get proper pointer enter events.
The test removes the second screen while the cursor is on it. This
should warp the pointer to the center of first screen and trigger
a focus enter event.
As can be seen by the expect failures currently it's bound to libinput
and also doesn't process the event as if it were a pointer event.
If the pointer is warped the position change should be treated like
a change coming from the input device. Our normal processing should
take place.
A problem in this case is the timestamp to pass to the wayland server.
Normally our timestamps come from the backend/libinput and we don't
know the next one. As an intermediate solution we just use the last
timestamp on the seat. In future a solution could be to not use the
backend's timestamp at all, but have our own timestamp handling.
When warping a pointer through Cursor::setPos it should be processed
just like any other pointer event. It should generate enter/leave event,
create motion events, etc. This is currently not the case as the test
shows.
A new test case which ensures that when stacking order changes the
pointer focus gets re-evaluated and updated. I was positively surprised
to notice that this already works.
Noticed two other problems while writing the test case:
* warping pointer does not re-evaluate the pointer pos
* deleting a ShellSurface (client) does not destroy the ShellClient (server)
When the screen gets locked any existing sequence gets cancelled
and the focused touch surface gets reset. While screen is locked
touch events are filtered to only go to lock screen or input methods.
Test case is added for touch event during lock screen.
Reviewed-By: Bhushan Shah
Instead of only making the active client the focused keyboard surface,
the method now also performs the lock screen security restriction.
Also just like udatePointerWindow the method becomes public, so that
it can be used from the LockScreenEventFilter and is connected for
lock state changes. This means as soon as the screen locks the current
focused keyboard surface will get a leave event and get an enter event
once the screen unlocks.
The auto test is adjusted to verify these new conditions.
Reviewed-By: Bhushan Shah
InputRedirection connects to lockStateChanged to udate the current
pointer window. This way we can ensure that the current pointer
surface gets reset as soon as the screen locks (c.f. the expect
fail in the autotest) and also that it restores to the surface under
the mouse once the screen is unlocked.
The relevant code was not yet lock screen aware and performed an
early exit. Part of the code was fine, e.g. findToplevel is lock
screen aware. So this change adjusts the methods for updating the
internal window and decoration to be lock screen aware, that is they
get reset. With that updatePointerWindow is also lock screen aware.
Thus the LockScreenFilter can also use updatePointerWindow just like
the normal handling and does not need to reimplement parts of it. As
it now relies on other code being correct it has an additional check
to verify that the current pointer surface is a surface which is allowed
to get events. If it isn't the events are not forwarded.
Reviewed-By: Bhushan Shah
The main motivation of this change is to remove the spaghetti code
in the input event handling. Each area of processing (e.g. lock screen)
is moved into a dedicated event filter. Processing the events now just
means calling a virtual method on each of the filters. As soon as the
method returns true, the processing is stopped.
This allows to have the security for the lock screen just in one place:
whenever the screen is locked the event filter can ensure that the events
are not further processed.
Currently all event filters are implemented directly in input.cpp and
are registered by InputRedirection itself. In future it would be better
to have those moved to the area they belong to and get registered from
there. E.g. the input filter for EffectsHandlerImpl should be created
by EffectsHandlerImpl. This requires an improved API to ensure that the
filters are installed in the correct sequence.
the result of animate is an array of animids: in order for
dumb QScript to understand what it is, we have to build it
as an actual JavaScript Array
reviewed-by: Martin Gräßlin <mgraesslin@kde.org>
This patch introduces additional method to Application class
that has default policy of restarting the app.
This method is overridden for wayland case disabling this step.
REVIEW: 126655
If the screen is locked and no lock screen is shown yet we unset
the focused keyboard surface on key event. Similar we restore when
screen is unlocked.
This should hopefully fix the broken lockscreen unit test which hits
the special condition as the greeter doesn't show up on build.kde.org.
The test creates a QRasterWindow which through KWin's internal QPA
is considered an internal window. In the test methods we simulate
various pointer events (enter/leave, press/release, wheel).
Let's get all debug events from libinput and forward them to a custom
log handler. This in turn can pass them to Qt's categorized logging.
So it's still easy to
* disable all libinput related logging
* configure the log level
Both was not possible before.
First test case is whether wheel events are forwarded correctly.
From the code it seems to me like up/down is inversed. Needs manual
testing.
As this requires working decorations it's possible that this test
will fail on build.kde.org.
If a decorated ShellClient is still around after Workspace got destroyed
this method is still invoked and can lead to a crash. As we have a
workspace initing test there already it makes sense to combine it with
a workspace being down check.
Interesting approach I would not have expected to work. A dummy Effect
class is created in the test and an instance is passed to
EffectsHandler's startMouseInterception. It doesn't verify whether it's
an Effect it knows or has created, so it's totally happy with the dummy.
It shows that motion and press/release are passed to the Effect when
screen is not locked and doesn't while the screen is locked.
Effects which require mipmaps need to check for LimitedNPOT and
disable the functionality if only limited NPOT is available.
Ideally the effects could also check whether the texture they
operate on is a power of two, but that's a little overkill for
the rather uncommon setup.
REVIEW: 126966
We need to also destroy all idle objects when we tear down the
internal client connection. Otherwise the cleanup tries to free
the object after our Wayland connection is already destroyed.
The idea was to block shaders that operate on
Texture2D while Texture2DRectangle was use, but
that's indeed controlled by TextureNPOT while
LimitedNPOT indicates Texture2D but without support
for mipmapping and exotic clamping
FIXED-IN: 5.6
REVIEW: 126959
required because the early initEGL to detect buffer_age support
can cause usage of the wrong driver in eglGetDisplay()
BUG: 358750
FIXED-IN: 5.6
REVIEW: 126958
On the CI system our tests failed due to the greeter failing to start
due to OpenGL problems. This was because we waited for a window to show
which never happened. Thus the test failed.
This change makes use of the new lockStateChanged signal to determine
when the screen gets locked/unlocked.
It's still possible that the test fails as I'm not able to reproduce
the failure condition on the CI system.
KSld goes to state AcquiringLock when starting the greeter process.
During this state it expects the input to be grabbed. So from KWin
perspective this means that the screen is locked and KWin should
filter out input events.