So far the Seat interface is provided together with pointer and
keyboard. As always touch is not yet implemented. The pointer interface
is still lacking the set cursor callback. Keyboard on the other hand is
complete.
Both Keyboard and Pointer have the concept of a focused surface and only
to the bound interface belonging to the same client as the focused
surface events are sent.
The change comes with a set of new auto tests also verifying the client
side which wasn't possible before as we couldn't fake events.
ShellSurfaceInterface is not yet completely implemented. Several parts
are still TODO, e.g. move/resize is missing, setting to maximized is
missing and also flags for fullscreen are missing.
The surface test is extended as far as possible.
The Display provides a method to create the shm pool and a
BufferInterface class is added to the server module. It is created
from the SurfaceInterface when a buffer gets attached to the surface.
The BufferInterface can be referenced and once its unreferenced it
sends a buffer release to the client and destroys itself.
For the case that the buffer is a shm buffer the BufferInterface
provides a convenience method to turn it into a QImage.
The auto test for Surface is extended by attaching buffers to the
surface and verifying that the content is correct.
As far as it's currently possible to implement. CompositorInterface is
able to create a surface and emits the created SurfaceInterface. It
does not yet support regions.
The SurfaceInterface is already more complete. It keeps track of the
double buffered states and emits signals when one of the values are
changed after the committing. It supports frame callbacks and has a
hook to mark the frame as rendered.
What's still missing are the regions (as it's not implemented in
CompositorInterface) and attaching the buffer as we do not yet support
creating shm buffers and pools.
The client side test is changed to use our own server and extended to
test damage and frame callback. The test needs to be extended for scale
and transform, but that is still missing in the client side
implementation.
So far this new module contains:
* Display
* OutputInterface
Display manages the server socket and server event loop. In general it's
the entry point to any part of the server.
OutputInterface is the abstraction for the wl_output interface on server
side. An OutputInterface is created through the Display.
The auto tests for ConnectionThread and Output are adjusted to use the
internal server instead of starting Weston. Especially the Output test
could be extended to test much more as we have absolute control over
the server now.
Technically the Surface itself does not have a size, it's the
ShellSurface or the size of the FullScreenShell's Output. But it
simplifies a lot if we keep track of the size in the Surface as that
way we can hide the fact which kind of Shell is used.
The user of the Surface must connect either the FullscreenShell's
Output or the ShellSurface to set the size on the Surface.
This adds a SceneOpenGL::Texture::load(..., xcb_visualid_t) overload,
and uses it to bind window pixmaps to textures.
By taking the RGBA masks in the visual into account when choosing an
FBConfig for the GLXPixmap, we are able to disambiguate formats that
have the same depth, such as GL_RGB10_A2 and GL_RGBA8.
NativeText is translated (ie. matching
ctrl against eg. strg) and the shortcut
must be added to KGlobalAccel to feed
further extrapolations
BUG: 338579
REVIEW: 119949
until the event cycle finished - xcb_flush nor
even XSync around the cursor setting does not
help and the pushback operates on a false position,
purging the VD switch warp
BUG: 338593
REVIEW: 119960
The fullscreen shell is only provided with at least Weston 1.5.
It should be checked on runtime, but that's difficult as Weston doesn't
fail if it cannot find the shell.so. So we disable it based on the
assumption that if Wayland library is not 1.5 the Weston is also not 1.5.
A small test application to use the Wayland Client classes. It opens
a fullscreen Shell surface and reacts to input events:
* q quits
* left click toggles the background color animation
* right click quits
REVIEW: 119883
Moved from wayland_backend.[h|cpp] to buffer.[h|cpp] and
shm_pool.[h|cpp]. Buffer is slightly adjusted to have the ShmPool
passed in as a ctor argument and the ctor is private and friended with
ShmPool, so that it can only be constructed from ShmPool.
A Surface class is split out which holds a wl_surface and supports
attaching a buffer, setting the damage and emitting a signal when the
frame callback got called.
It doesn't come with a unit test yet as it first needs the ShmPool
and Buffer properly split out to easily set it up.
New classes Shell and ShellSurface are created. Both are in shell.[h|cpp]
to indicate their close relationship with the Shell having to create the
ShellSurface.
WaylandBackend is adjusted to hold a Shell* and ShellSurface* instead of
the lower level structs. This also required adjustements to the creation
of the Backend as it now doesn't set a default size any more. Thus the
backendReady signal may not be emitted before the initial configure
event arrived. This also makes it easier to support either the fullscreen
shell or wl_shell at the same time.
Of course a unit test is added for the two new classes. This needs to
be extended once we have more control over the mock Wayland server.
At the same time adding an autotest for the Output, moving the listener
into the Output class and providing enums for Subpixel and Transform.
KWin now requires wl_ouput interface version 2 as that allows us to emit
the changed signal in a better way.
The unit test is not yet capable of testing everything, we need a mock
Wayland server which is more flexible.
The FullscreenShell is a Wayland protocol provided by Weston to have
exactly one surface per output. This is exactly what KWin needs. So
in case the Wayland server we connect to provides the FullscreenShell
we prefer it over the normal Shell and mapping our surface as fullscreen.
The protocol is not yet part of wayland-client library, so the header
and source file needs to be generated. This is done during the build
process using the external tool wayland-scanner. The protocol
description is copied from the Westion 1.5 sources.
REVIEW: 119839