So far the DrmOutput connected to all input events when going into
power saving. As we now have the input filters it's better to just
install a filter when an output goes into powersave and remove the
input filter again when all outputs are enabled again.
To make this work InputRedirection gains a new method to add a new
filter as the first filter. This is a potentially dangerous method
as it allows to have a filter before LockScreenFilter gets the
events. But in case of DPMS it's something we actually want.
A nice new feature possible with the input filter is that we can
filter out the event which re-enables the outputs. Thus when getting
on a system with output off and screen locked, the first key hit
doesn't go to the lock screen.
Reviewed-By: Bhushan Shah
BUG: 341201
Fixed-in: 5.6.0 (Wayland-only)
Similar to the change regarding pointer and touch a
KeyboardInputRedirection is created. The Xkb class is also moved to
the new files keyboard_input.h and keyboard_input.cpp.
Just like in the case of PointerInputRedirection no signals are added,
but the existing signals in InputRedirection are directly invoked.
CI system is adjusted, so that OpenGL should work. At least latest
run didn't show the EGL warnings in the lock screen test. So let's
try to enable again. It's possible that this fails horribly. If that's
the case I'll revert again.
The dontCrashGlxgearsTest is kept on QPainter as locally it crashes
on teardown (needs fixing).
This is a complementary commit to 4c7450a1f6:
After Workspace gets destroyed it's possible that ShellClient's are still
around. Their tear down should not crash due to calling into Workspace.
All pointer related code is moved into a new class called
PointerInputRedirection.
The main idea is to simplify the code and make it easier to maintain.
Therefore also a few changes in the setup were performed:
* before init() is called, no processing is performed
* init() is only called on Wayland and after Workspace is created
* init property is set to false once Workspace or WaylandServer is
destroyed
Thus code can operate on the following assumptions:
* Workspace is valid
* WaylandServer is valid
* ScreenLocker integration is used
The various checks whether there is a waylandServer() and whether
there is a seat are no longer needed.
Some of the checks have been reordered to be faster in the most common
use case of using libinput. E.g. whether warping is supported is first
evaluated by the variable bound to whether we have libinput and only if
that is false the backend is checked.
The new class doesn't have signals but invokes the signals provided
by InputRedirection. I didn't want to add new signals as I consider
them as not needed. The areas in KWin needing those signals should
be ported to InputEventFilters.
So far the area based edges connected directly to global pointer pos
changed in InputRedirection. This didn't allow proper checking whether
the edge was triggered (e.g. missing timestamp).
This change merges the functionality into the new input filter mechanism.
There is now a dedicated input filter for screen edges, installed after
lock screen and before effects. It always passes events on, but also passes
all events through ScreenEdges to handle the activation. As it's installed
after the lock screen filter we don't need to check for screen locked any
more.
The code is now similar strucutured to the existing X11 based variants
and maybe will allow to also merge the X11 variant with the new one.
The logic should not be tied to whether libinput is used. It's relevant
for all Wayland backends whether they use libinput or not.
In addition this should generate a pointer motion event, so that proper
processing can take place and we get proper pointer enter events.
The test removes the second screen while the cursor is on it. This
should warp the pointer to the center of first screen and trigger
a focus enter event.
As can be seen by the expect failures currently it's bound to libinput
and also doesn't process the event as if it were a pointer event.
If the pointer is warped the position change should be treated like
a change coming from the input device. Our normal processing should
take place.
A problem in this case is the timestamp to pass to the wayland server.
Normally our timestamps come from the backend/libinput and we don't
know the next one. As an intermediate solution we just use the last
timestamp on the seat. In future a solution could be to not use the
backend's timestamp at all, but have our own timestamp handling.
When warping a pointer through Cursor::setPos it should be processed
just like any other pointer event. It should generate enter/leave event,
create motion events, etc. This is currently not the case as the test
shows.
A new test case which ensures that when stacking order changes the
pointer focus gets re-evaluated and updated. I was positively surprised
to notice that this already works.
Noticed two other problems while writing the test case:
* warping pointer does not re-evaluate the pointer pos
* deleting a ShellSurface (client) does not destroy the ShellClient (server)
When the screen gets locked any existing sequence gets cancelled
and the focused touch surface gets reset. While screen is locked
touch events are filtered to only go to lock screen or input methods.
Test case is added for touch event during lock screen.
Reviewed-By: Bhushan Shah
Instead of only making the active client the focused keyboard surface,
the method now also performs the lock screen security restriction.
Also just like udatePointerWindow the method becomes public, so that
it can be used from the LockScreenEventFilter and is connected for
lock state changes. This means as soon as the screen locks the current
focused keyboard surface will get a leave event and get an enter event
once the screen unlocks.
The auto test is adjusted to verify these new conditions.
Reviewed-By: Bhushan Shah
InputRedirection connects to lockStateChanged to udate the current
pointer window. This way we can ensure that the current pointer
surface gets reset as soon as the screen locks (c.f. the expect
fail in the autotest) and also that it restores to the surface under
the mouse once the screen is unlocked.
The relevant code was not yet lock screen aware and performed an
early exit. Part of the code was fine, e.g. findToplevel is lock
screen aware. So this change adjusts the methods for updating the
internal window and decoration to be lock screen aware, that is they
get reset. With that updatePointerWindow is also lock screen aware.
Thus the LockScreenFilter can also use updatePointerWindow just like
the normal handling and does not need to reimplement parts of it. As
it now relies on other code being correct it has an additional check
to verify that the current pointer surface is a surface which is allowed
to get events. If it isn't the events are not forwarded.
Reviewed-By: Bhushan Shah
The main motivation of this change is to remove the spaghetti code
in the input event handling. Each area of processing (e.g. lock screen)
is moved into a dedicated event filter. Processing the events now just
means calling a virtual method on each of the filters. As soon as the
method returns true, the processing is stopped.
This allows to have the security for the lock screen just in one place:
whenever the screen is locked the event filter can ensure that the events
are not further processed.
Currently all event filters are implemented directly in input.cpp and
are registered by InputRedirection itself. In future it would be better
to have those moved to the area they belong to and get registered from
there. E.g. the input filter for EffectsHandlerImpl should be created
by EffectsHandlerImpl. This requires an improved API to ensure that the
filters are installed in the correct sequence.
the result of animate is an array of animids: in order for
dumb QScript to understand what it is, we have to build it
as an actual JavaScript Array
reviewed-by: Martin Gräßlin <mgraesslin@kde.org>
This patch introduces additional method to Application class
that has default policy of restarting the app.
This method is overridden for wayland case disabling this step.
REVIEW: 126655
If the screen is locked and no lock screen is shown yet we unset
the focused keyboard surface on key event. Similar we restore when
screen is unlocked.
This should hopefully fix the broken lockscreen unit test which hits
the special condition as the greeter doesn't show up on build.kde.org.
The test creates a QRasterWindow which through KWin's internal QPA
is considered an internal window. In the test methods we simulate
various pointer events (enter/leave, press/release, wheel).
Let's get all debug events from libinput and forward them to a custom
log handler. This in turn can pass them to Qt's categorized logging.
So it's still easy to
* disable all libinput related logging
* configure the log level
Both was not possible before.
First test case is whether wheel events are forwarded correctly.
From the code it seems to me like up/down is inversed. Needs manual
testing.
As this requires working decorations it's possible that this test
will fail on build.kde.org.
If a decorated ShellClient is still around after Workspace got destroyed
this method is still invoked and can lead to a crash. As we have a
workspace initing test there already it makes sense to combine it with
a workspace being down check.