In many cases it's irrelevant, what we care about is whether given effect
is loaded and performs its function. So remove these paranoid checks
except the tests where it's important to use OpenGL compositing.
Before Deleted merge, it used to be equivalent to waiting until the
window is closed.
This fixes tests waiting until the window closing animation completes
and the Window object is destroyed.
The virtual backend uses the surfaceless platform. On the other hand, we
move in a direction where the graphics buffer type is explicit, which
creates issues for the virtual backend.
This change ports the virtual backend to gbm so we could manually
allocate dmabuf buffers in order to unify buffer handling in kwin.
Its main drawback is that you won't be able to use the virtual backend
on setups without render nodes. On the other hand, given that the
compositor is meaningless without clients being able to share buffers
with it, it's reasonable to require some way to create and export prime
buffers.
We use the PMF syntax so the isValid() check is unnecessary as the
compiler will notify about wrong signal at compile time. It makes
writing autotests feel less boilerplaty.
Things such as Output, InputDevice and so on are made to be
multi-purpose. In order to make this separation more clear, this change
moves that code in the core directory. Some things still link to the
abstraction level above (kwin), they can be tackled in future refactors.
Ideally code in core/ should depend either on other code in core/ or
system libs.
With fractional scaling integer based logical geometry may not match
device pixels. Once we have a floating point base we can fix that. This
also is
important for our X11 scale override, with a scale of 2 we could
get logical sizes with halves.
We already have all input being floating point, this doubles down on it
for all remaining geometry.
- Outputs remain integer to ensure that any screen on the right remains
aligned.
- Placement also remains integer based for now.
- Repainting is untouched as we always expand outwards
(QRectF::toAdjustedRect().
- Decoration is untouched for now
- Rules are integer in the config, but floating in the adjusting/API
This should also be fine.
At some point we'll add a method to snap to the device pixel
grid. Effectively `round(value * dpr) / dpr` though right now things
mostly work.
This also gets rid of a lot of hacks for QRect right and bottom which
are very
confusing.
Parts to watch out in the port are:
QRectF::contains now includes edges
QRectF::right and bottom are now sane so previous hacks have to be
removed
QRectF(QPoint, QPoint) behaves differently for the same reason
QRectF::center too
In test results some adjusted values which are the result of
QRect.center because using QRectF's center should behave the same to the
user.
The .clang-format file is based on the one in ECM except the following
style options:
- AlwaysBreakBeforeMultilineStrings
- BinPackArguments
- BinPackParameters
- ColumnLimit
- BreakBeforeBraces
- KeepEmptyLinesAtTheStartOfBlocks
The main idea behind the render backend is to decouple low level bits
from scenes. The end goal is to make the render backend provide render
targets where the scene can render.
Design-wise, such a split is more flexible than the current state, for
example we could start experimenting with using qtquick (assuming that
the legacy scene is properly encapsulated) or creating multiple scenes,
for example for each output layer, etc.
So far, the RenderBackend class only contains one getter, more stuff will
be moved from the Scene as it makes sense.
The main motivation behind this change is to prepare kwin for importing
kwayland-server code in libkwin.
As is, builtin effects are linked with libkwin. Some builtin effects
have wayland specific code. If we move wayland stuff in libkwin, there's
going to be a circular dependency between kwin4_effect_builtins and
libkwin targets.
This change intends to break that dependency by linking builtin effects
to kwin executable.
The main issue with that is that EffectLoader would need to discover the
effects indirectly. QStaticPlugin is used for that purpose.
Besides breaking the cyclic dependency, it makes builtin effects use the
same plugin infrastructure in libkwineffects that external effects use.
Metadata in src/effects/effect_builtins.cpp was converted in a list of
python dictionaries, which was fed to a python script that generated
main.cpp and metadata.json files.
With a "Surface" type in kwin, KWayland::Client::Surface without fully
specified namespace will conflict with kwin's Surface type.
In some way, it also improves readability as it's clear where Surface
comes from.
When debugging modifier_only_shortcut_test in _waylandonly mode I saw
that it was failing, among other things, because some aspects were not
initialised.
This changes every test we have to run the new
Test::initWaylandWorkspace() that calls waylandServer()->initWorkspace()
but also makes sure that WaylandServer::initialized is emitted before we
proceed.
The main advantage of SPDX license identifiers over the traditional
license headers is that it's more difficult to overlook inappropriate
licenses for kwin, for example GPL 3. We also don't have to copy a
lot of boilerplate text.
In order to create this change, I ran licensedigger -r -c from the
toplevel source directory.
The new signal is emitted when the Application has fully been initialized.
It allows us to change the startup sequence, for example create workspace
before starting the Xwayland server, without making any adjustments in our
test suit.
Summary:
Currently, we have only one shell client type - XdgShellClient. We use
it when we are dealing with Wayland clients. But it isn't really a good
idea because we may need to support shell surfaces other than xdg-shell
ones, for example input panel surfaces.
In order to make kwin more extensible, this change replaces all usages
of the XdgShellClient class with the AbstractClient class.
Test Plan: Existing tests pass.
Reviewers: #kwin, davidedmundson
Reviewed By: #kwin, davidedmundson
Subscribers: davidedmundson, kwin
Tags: #kwin
Differential Revision: https://phabricator.kde.org/D27778
Summary:
In order to properly implement xdg_surface.set_window_geometry we need
two kinds of geometry - frame and buffer. The frame geometry specifies
visible bounds of the client on the screen, excluding client-side drop
shadows. The buffer geometry specifies rectangle on the screen that the
attached buffer or x11 pixmap occupies on the screen.
This change renames the geometry property to frameGeometry in order to
reflect the new meaning assigned to it as well to make it easier to
differentiate between frame geometry and buffer geometry in the future.
Reviewers: #kwin
Subscribers: kwin
Tags: #kwin
Differential Revision: https://phabricator.kde.org/D24334
Summary:
Rename ShellClient to XdgShellClient in order to reflect that it
represents only xdg-shell clients.
Test Plan: Compiles, tests still pass.
Reviewers: #kwin
Subscribers: kwin
Tags: #kwin
Differential Revision: https://phabricator.kde.org/D23589