Summary:
So far TabBox used highlight windows by passing window ids around through
an X property. This doesn't work on Wayland where we don't have window
ids for our TabBox and the Wayland windows.
This change introduces a new Effect::Feature for HighlightWindows which
the HighlightWindowsEffect provides. The EffectsHandlerImpl has a new
method to highlightWindows which it delegates to that effect if it is
loaded by invoking a new performFeature method.
The TabBoxHandler now passes the highlighting to the effects system
instead of updating the x11 property. Thus this works on Wayland and
at the same time improves the X11 side by no longer having to go through
the property protocol.
Test Plan: Verified that Alt+Tab highlights the windows on Wayland correctly.
Reviewers: #kwin, #plasma_on_wayland
Subscribers: plasma-devel, kwin
Tags: #plasma_on_wayland, #kwin
Differential Revision: https://phabricator.kde.org/D2630
Summary:
The Effect class is extended by three new virtual methods:
* touchDown
* touchMotion
* touchUp
The methods return a boolean value so that the events can be filtered
out. E.g. an effect which has also a mouse grab installed wants to
filter out all events, other effects don't need the events exclusively.
This is a difference to how e.g. keyboard and pointer events are handled.
But is more close to how KWin's internal input event passing works and
makes it easier to get touch event: one does not explicitly has to grab
the events. It's also closer to Wayland where all input events are
available.
As a first example the Present Windows effect is adjusted and allows to
activate windows through the touch screen. As much code as possible is
shared with pointer input.
Reviewers: #kwin, #plasma_on_wayland
Subscribers: plasma-devel, kwin
Tags: #plasma_on_wayland, #kwin
Differential Revision: https://phabricator.kde.org/D2450
Summary:
A new method to tell the effects system whether the compositor scene
is able to drive animations. E.g. on software emulation (llvmpipe) it's
better to not do any animations at all.
This information can be used by effects to adjust their behavior, e.g.
PresentWindows could skip transitions or effects can use it in their
supported check to completely disable themselves.
As a first step all scripted effects are considered to be unsupported
if animations are not supported. They inherit AnimationEffect and are
all about driving animations.
The information whether animations are supported comes from the Scene.
It's implemented in the following way:
* XRender: animations are always supported
* QPainter: animations are never supported
* OpenGL: animations are supported, except for software emulation
In addition - for easier testing - there is a new env variable
KWIN_EFFECTS_FORCE_ANIMATIONS to overwrite the selection.
Reviewers: #kwin, #plasma
Subscribers: kwin
Tags: #kwin
Differential Revision: https://phabricator.kde.org/D2386
It's created together with input, so that the input mechanismn already
has a way to check whether screen is locked.
Effects doesn't hold a member variable any more and instead uses the
singleton instance.
Being able to monitor whether the screen is locked is useful not only
to the effects system but overall in KWin. Thus to make it possible to
use it from more locations as a first step it's moved into dedicated
source files.
So far updating the cursor image was not really defined. It was possible
to use the cursor image from the wayland seat or have a custom set cursor
image. But there are no rules in place to decide which one to use when.
With this change a dedicated CursorImage class is introduced which tracks
the cursor image changes on the seat, on the decoration, in the effects
and so on. In addition it tracks which is the current source for the
image, that is whether e.g. the cursor from the seat or from effects
override should be used. Whenever the cursor image changes a signal is
emitted, which is connected to the signal in AbstractBackend.
Based on that the backends can directly show the image. The existing
code in the backends to install a cursor shape or to install the cursor
from the server is completely dropped. For the backend it's irrelevant
from where the image comes from.
A new feature added is that the cursor image is marked as rendered. This
is then passed on to the frame rendered in the Surface and thus animated
cursors are finally working. Unfortunately animated cursors are broken in
Qt (see https://bugreports.qt.io/browse/QTBUG-48181 ).
Some effects do X11 calls in their cleanup code through external
libraries (e.g. KSelectionOwner). As we cannot control that we need
to ensure the effects are unloaded prior to destroying the Xwayland
connection.
The signals operate on AbstractClient nowadays, so we can have one
implementation for both Client and ShellClient.
Only X specific connections are only done for Client.
The ShellClient is a Toplevel subclass for a
KWayland::Server::ShellSurfaceInterface. It gets created when a new
ShellSurfaceInterface is created and destoryed when it gets unmapped.
So far the usage is still rather limited. The ShellClient is opened
at position (0/0). While it's possible to pass pointer events to it,
it's not yet possible to activate it, so no keyboard focus.
So far the effects could just use the connection() and rootWindow()
provided by kwinglobals. Thus an internal detail from KWin core is
accessed directly.
To be more consistent with the rest of the API it's wrapped through the
EffectsHandler and with a convenient method in Effect.
The connection() is provided as xcbConnection() to free the very generic
name connection which could create confusion once we provide a wayland
connection to the Effects.
The rootWindow() is provided as x11RootWindow() to indicate that it is
for the X11 world.
REVIEW: 117597
The EffectLoader is a subclass of AbstractEffectLoader delegating all
methods to instances of:
* BuiltInEffectLoader
* ScriptedEffectLoader
* PluginEffectLoader
It's used by the EffectsHandlerImpl and replaces the complete Effect
loading mechanism we so far found in it. This also means that KLibrary
is no longer needed to load the Effects as the PluginEffectLoader uses
the KPluginTrader, which removes lots of deprecated functionality.
REVIEW: 117054
All the connections in EffectsHandlerImpl are replaced by the new syntax.
Where it makes sense the wrapping slot method is added as a lambda and
the slot method is removed.
REVIEW: 117076
Implemented in KWin core to forward to new global shortcut system. This
method should be extended/changed once we go to Qt5/KF5 to make the usage
easier (no more KAction).
Each global shortcut in the effects makes use of this new method.
InputRedirection forwards pointer events (currently motion, press and
release) through the EffectsHandlerImpl for the case that an effect has
intercepted pointer events.
If the KWin operation mode is not X11 only, the window for intercepting
the mouse events is no longer created.
EffectsHandlerImpl::isEffectsSupported performs the check whether the
effect with the given name is supported by the current compositor.
The check is the following:
* if effect is already loaded, it is supported
* if the effect cannot be found, it is not supported
* if it's a scripted effect, it's always supported
* if it's a built-in effect, we ask BuiltInEffects::supported
* for all other effects we resolve the library and the supported
method
The idea behind providing this functionality in the DBus interface is
to allow filtering in the effects KCM for the effects which are
supported by the current compositor.
In addition a areEffectsSupported method is added which takes a
list of names and returns a list of bools.
REVIEW: 116665
Screens provides a size which is constructed from the size of
the bounding geometry of all screens and provides an overload taking
an int to return the size of a specified screen. For geometry() a new
ovload is added without an argument, which is just a convenient wrapper
for QRect(QPoint(0, 0), size()).
Both new methods are exported to effects and scripting as new
properties there called virtualScreenSize and virtualScreenGeometry.
The (virtual) size gets cached in screens and is updated whenever the
count or geometry changes.
Construction of Screens is slightly changed by moving the init code
from ctor into a virtual method init(). Reason is that we ended in
a loop with accessing the singleton pointer before it was set.
REVIEW: 116114
Loading all effects during startup can take some time[1] and during
that time the screen is frozen as the loading blocks the compositor.
This change doesn't load effects directly but puts them into a queue.
The loading is controlled by invoking the dequeue through a queued
connection. Thus we get a firing compositing timer in between and can
ensure that a frame is rendered when needed and also react to X events
during the loading.
[1] On my high-end system the set of effects I use take about 200 msec
to load.
REVIEW: 115297
As all effects have always been compiled into the same .so file it's
questionable whether resolving the effects through a library is useful
at all. By linking against the built-in effects we gain the following
advantages:
* don't have to load/unload the KLibrary
* don't have to resolve the create, supported and enabled functions
* no version check required
* no dependency resolving (effects don't use it)
* remove the KWIN_EFFECT macros from the effects
All the effects are now registered in an effects_builtins file which
maps the name to a factory method and supported or enabled by default
methods.
During loading the effects we first check whether there is a built-in
effect by the given name and make a shortcut to create it through that.
If that's not possible the normal plugin loading is used.
Completely unscientific testing [1] showed an improvement of almost 10
msec during loading all the effects I use.
[1] QElapsedTimer around the loading code, start kwin five times, take
average.
REVIEW: 115073
Effects can access the QPainter used by SceneQPainter to directly render
into the back buffer.
Obviously only available in Compositing Type QPainterCompositing.
Client used to have dedicated methods for different icon sizes instead
of combining all pixmaps into one QIcon. This resulted in various parts
of KWin having different access to the icons:
* effects only got one pixmap of size 32x32
* decorations only got the 16x16 and 32x32 pixmaps combined into a QIcon
* tabbox could request all icon sizes, but only as pixmap
Now all sizes are available in one QIcon allowing to easily access the
best fitting icon in a given UI.
With QtQuick2 it's possible that the scene graph rendering context either
lives in an own thread or uses the main GUI thread. In the latter case
it's the same thread as our compositing OpenGL context lives in. This
means our basic assumption that between two rendering passes the context
stays current does not hold.
The code already ensured that before we start a rendering pass the
context is made current, but there are many more possible cases. If we
use OpenGL in areas not triggered by the rendering loop but in response
to other events the context needs to be made current. This includes the
loading and unloading of effects (some effects use OpenGL in the static
effect check, in the ctor and dtor), background loading of texture data,
lazy loading after first usage invoked by shortcut, etc. etc.
To properly handle these cases new methods are added to EffectsHandler
to make the compositing OpenGL context current. These calls delegate down
into the scene. On non-OpenGL scenes they are noop, but on OpenGL they go
into the backend and make the context current. In addition they ensure
that Qt doesn't think that it's QOpenGLContext is current by calling
doneCurrent() on the QOpenGLContext::currentContext(). This unfortunately
causes an additional call to makeCurrent with a null context, but there
is no other way to tell Qt - it doesn't notice when a different context
is made current with low level API calls. In the multi-threaded
architecture this doesn't matter as ::currentContext() returns null.
A short evaluation showed that a transition to QOpenGLContext doesn't
seem feasible. Qt only supports either GLX or EGL while KWin supports
both and when entering the transition phase for Wayland, it would become
extremely tricky if our native platform is X11, but we want a Wayland
EGL context. A future solution might be to have a "KWin-QPA plugin" which
uses either xcb or Wayland and hides everything from Qt.
The API documentation is extended to describe when the effects-framework
ensures that an OpenGL context is current. The effects are changed to
make the context current in cases where it's not guaranteed. This has
been done by looking for creation or deletion of GLTextures and Shaders.
If there are other OpenGL usages outside the rendering loop, ctor/dtor
this needs to be changed, too.
Button Press/Release do no longer fall through to motion notify as
there is no shared mouse event in xcb. Also the methods in Effects and
TabBox are adjusted to process only button press/release or motion
notify.
ScreenEdges are no longer checked for button press/release. They don't
interact on button press/release so there is no need to check it.
This provides some sort of synthetic XSYNC support
for unmanaged clients and allows them to do an initial
update after mapping and before being painted (prevent
flicker)
Also it helps with Unmanaged clients performing quick
map/unmap/map cycles what also seems to induce the black
window issue on the nvidia blob.
CCBUG: 284888
BUG: 319184
FIXED-IN: 4.11
REVIEW: 111292
Eg. gtk+ alters the modality after mapping and
before unmapping the window.
Therfore the former implementation ahd a wrong idea
about the modality until the window was activated and
again had a wrong idea when the dialog closed, keeping
the main client dimmed.
Modality changes at runtime are uncommon but legal and can
happen anytime.
BUG: 321340
FIXED-IN: 4.11
REVIEW: 111154
Cross fading with previous pixmap is achieved by referencing the old
window pixmap. WindowPaintData has a cross-fade-factor which interpolates
between 0.0 (completely old pixmap) to 1.0 (completely new pixmap).
If a cross fading factor is set and a previous pixmap is valid this one
is rendered on top of the current pixmap with opacity adjusted. This
results in a smoother fading.
To simplify the setup the AnimationEffect is extended and also takes care
about correctly (un)referencing the previous window pixmap. The maximize
effect is adjusted to make use of this new capabilities.
Unfortunately this setup has a huge problem with the case that the window
decoration gets smaller (e.g. from normal to maximized state). In this
situation it can happen that the old window is rendered with parts outside
the content resulting in video garbage being shown. To prevent this a set
of new WindowQuads is generated with normalized texture coordinates in
the safe area which contains real content.
For OpenGL2Window a PreviousContentLeaf is added which is only set up in
case the crass fading factor is set.
REVIEW: 110578