Before Deleted merge, it used to be equivalent to waiting until the
window is closed.
This fixes tests waiting until the window closing animation completes
and the Window object is destroyed.
Use input device specific apis to change the position of the cursor. The
main reason to do so is to break the assumption that Cursor position is
the same as pointer position, which I would like to rely on later to
merge tablet and pointer cursors.
We use the PMF syntax so the isValid() check is unnecessary as the
compiler will notify about wrong signal at compile time. It makes
writing autotests feel less boilerplaty.
Things such as Output, InputDevice and so on are made to be
multi-purpose. In order to make this separation more clear, this change
moves that code in the core directory. Some things still link to the
abstraction level above (kwin), they can be tackled in future refactors.
Ideally code in core/ should depend either on other code in core/ or
system libs.
Other policy enums are declared in options.h so let's do the same for
placement policy. Besides consistency, another advantage of moving the
enum in kwin namespace is that the enum could be forward declared.
This change adjusts the window management abstractions in kwin for the
drm backend providing more than just "desktop" outputs.
Besides that, it has other potential benefits - for example, the
Workspace could start managing allocation of the placeholder output by
itself, thus leading to some simplifications in the drm backend. Another
is that it lets us move wayland code from the drm backend.
With fractional scaling integer based logical geometry may not match
device pixels. Once we have a floating point base we can fix that. This
also is
important for our X11 scale override, with a scale of 2 we could
get logical sizes with halves.
We already have all input being floating point, this doubles down on it
for all remaining geometry.
- Outputs remain integer to ensure that any screen on the right remains
aligned.
- Placement also remains integer based for now.
- Repainting is untouched as we always expand outwards
(QRectF::toAdjustedRect().
- Decoration is untouched for now
- Rules are integer in the config, but floating in the adjusting/API
This should also be fine.
At some point we'll add a method to snap to the device pixel
grid. Effectively `round(value * dpr) / dpr` though right now things
mostly work.
This also gets rid of a lot of hacks for QRect right and bottom which
are very
confusing.
Parts to watch out in the port are:
QRectF::contains now includes edges
QRectF::right and bottom are now sane so previous hacks have to be
removed
QRectF(QPoint, QPoint) behaves differently for the same reason
QRectF::center too
In test results some adjusted values which are the result of
QRect.center because using QRectF's center should behave the same to the
user.
AbstractOutput is not so Abstract and it's common to avoid the word
"Abstract" in class names as it doesn't contribute any new information.
It also significantly reduces the line width in some places.
The .clang-format file is based on the one in ECM except the following
style options:
- AlwaysBreakBeforeMultilineStrings
- BinPackArguments
- BinPackParameters
- ColumnLimit
- BreakBeforeBraces
- KeepEmptyLinesAtTheStartOfBlocks
[5/6] Make autotests create fake input devices
Migrate all input simulation functions from kwinApp()->platform()->...
to the their counter part in the Test namespace.
dontInteractiveMoveResize() was added to workaround kwin sending bad
configure events when double clicking mpv to make it fullscreen.
With async geometry updates fixed, dontInteractiveMoveResize() can be
finally removed.
Another reason to remove dontInteractiveMoveResize() is that it can make
kwin crash with a debug build. For example, if you enable resizing
maximized windows in breeze decoration settings and resize a maximized
window, kwin would eventually crash in
the AbstractClient::handleInteractiveMoveResize() function because neither
isInteractiveMove() nor isInteractiveResize() return true.
On Wayland, the move resize geometry and the frame geometry are
completely out of sync.
This change synchronizes emitting of the clientStepUserMovedResized
signal to the move resize geometry changes.
It simplifies code of InternalClient and XdgSurfaceClient, and makes
adding support for other shell surface protocols easier as there's less
boilerplate stuff that you would need to take care of.
It's more common to see the parent object being the last argument in Qt
and this way you won't need to specify nullptr parent explicitly if the
xdg-popup or the xdg-toplevel surface doesn't need to be configured
implicitly, which makes tests slightly easier to read.
The English word "pack" is not really the correct word for these
actions, and does not succeed in communicating what they will do. Since
the actions simply move the active window as far as it will go in the
specified direction, the actions can be renamed to say that instead.
Also rename the action names in the code to match their new UI text for
clarity.
With a "Surface" type in kwin, KWayland::Client::Surface without fully
specified namespace will conflict with kwin's Surface type.
In some way, it also improves readability as it's clear where Surface
comes from.
Active output is a window management concept. It indicates what output
new windows have to be placed on if they have no output hint. So
Workspace seems to be a better place for it than the Screens class, which
is obsolete.
Window management features were written with synchronous geometry
updates in mind. Currently, this poses a big problem on Wayland because
geometry updates are done in asynchronous fashion there.
At the moment, geometry is updated in a so called pseudo-asynchronous
fashion, meaning that the frame geometry will be reset to the old value
once geometry updates are unblocked. The main drawback of this approach
is that it is too error prone, the data flow is hard to comprehend, etc.
It is worth noting that there is already a machinery to perform async
geometry which is used during interactive move/resize operations.
This change extends the move/resize geometry usage beyond interactive
move/resize to make asynchronous geometry updates less error prone and
easier to comprehend.
With the proposed solution, all geometry updates must be done on the
move/resize geometry first. After that, the new geometry is passed on to
the Client-specific implementation of moveResizeInternal().
To be more specific, the frameGeometry() returns the current frame
geometry, it is primarily useful only to the scene. If you want to move
or resize a window, you need to use moveResizeGeometry() because it
corresponds to the last requested frame geometry.
It is worth noting that the moveResizeGeometry() returns the desired
bounding geometry. The client may commit the xdg_toplevel surface with a
slightly smaller window geometry, for example to enforce a specific
aspect ratio. The client is not allowed to resize beyond the size as
indicated in moveResizeGeometry().
The data flow is very simple: moveResize() updates the move/resize
geometry and calls the client-specific implementation of the
moveResizeInternal() method. Based on whether a configure event is
needed, moveResizeInternal() will update the frameGeometry() either
immediately or after the client commits a new buffer.
Unfortunately, both the compositor and xdg-shell clients try to update
the window geometry. It means that it's possible to have conflicts
between the two. With this change, the compositor's move resize geometry
will be synced only if there are no pending configure events, meaning
that the user doesn't try to resize the window.
This is to improve code readability and make it easier to differentiate
between methods that are used during interactive move-resize and normal
move-resize methods in the future.
We need to emit the clientFinishUserMovedResized signal to notify
effects such as translucency that the interactive move-resize is
finished. Otherwise, the set() animation won't be cancelled and the
window will get stuck frozen.
BUG: 409376
We need to make sure that the information from
toplevelConfigureRequestedSpy is in place to be used, otherwise we get
an empty size and it doesn't work.