Summary:
If a buffer gets destroyed the texture created from it is still valid.
In such a situation the OpenGLWindowPixmap should return true for isValid
and not false as it did. Similar in QPainter compositor the pixmap is
valid if there is an image copied from the buffer.
This change ensures that for example minimizing an XWayland window
still has a texture during the minimize animation.
BUG: 368440
Test Plan:
Minimize animation plays for X windows and minimized windows
are shown in present windows.
Reviewers: #kwin, #plasma_on_wayland
Subscribers: plasma-devel, kwin
Tags: #plasma_on_wayland, #kwin
Differential Revision: https://phabricator.kde.org/D2724
Summary:
A new method to tell the effects system whether the compositor scene
is able to drive animations. E.g. on software emulation (llvmpipe) it's
better to not do any animations at all.
This information can be used by effects to adjust their behavior, e.g.
PresentWindows could skip transitions or effects can use it in their
supported check to completely disable themselves.
As a first step all scripted effects are considered to be unsupported
if animations are not supported. They inherit AnimationEffect and are
all about driving animations.
The information whether animations are supported comes from the Scene.
It's implemented in the following way:
* XRender: animations are always supported
* QPainter: animations are never supported
* OpenGL: animations are supported, except for software emulation
In addition - for easier testing - there is a new env variable
KWIN_EFFECTS_FORCE_ANIMATIONS to overwrite the selection.
Reviewers: #kwin, #plasma
Subscribers: kwin
Tags: #kwin
Differential Revision: https://phabricator.kde.org/D2386
Summary:
The idea behind this autotest is inspired by bug 356328 which produced
incorrect rendering results. Also it's inspired by openQA which performs
image reference comparisons.
This test case tries to go further. It creates reference images which
must match the rendering result exactly. So far the test case verifies
the start condition - kwin started and one frame is rendered with default
cursor in the middle of the screen. And it verifies the moving of the
cursor without any windows shown. Whenever the cursor moves a repaint
should be triggered and the old and new area should be properly
repainted.
To support this the test needs some minor changes in KWin:
* Scene provides a frameRendered signal - needed for waiting on frame
* Scene and SceneQPainter are exported
* SceneQPainter provides access to it's Backend, so that we get to the
backbuffer
* ScriptedEffectLoader is exported for getting a list of all scripted
effects - (we don't want fade to manipulate the rendering)
Reviewers: #kwin, #plasma_on_wayland
Subscribers: plasma-devel, kwin
Tags: #plasma_on_wayland, #kwin
Differential Revision: https://phabricator.kde.org/D2046
Summary:
No need to delegate the painting of the software cursor into the backend.
The core has enough information to perform the rendering itself.
This change means less code duplication and all platforms which might use
a software cursor in QPainter compositor gain support for it without any
further adjustments.
Reviewers: #kwin, #plasma_on_wayland
Subscribers: plasma-devel, kwin
Tags: #plasma_on_wayland, #kwin
Differential Revision: https://phabricator.kde.org/D2028
The rendering is done in a recursive way. For updating the buffer an
important change is done: the buffer is copied into a new QImage on each
change and the differences are no longer painted. This is due to damage
region in a sub-surface tree being basically unknown.
Summary:
Before we were able to render Xwayland windows through the Wayland buffer
we used a xcb-shm to map the window data in the QPainter compositor.
As we don't use that any more and QPainter is not available for X11
anyway we can just drop the code.
Reviewers: #plasma
Subscribers: plasma-devel
Projects: #plasma
Differential Revision: https://phabricator.kde.org/D1193
Each of the backends becomes a plugin. This allows kwin_wayland to load
the requested plugin and kwin itself doesn't need to link all the
libraries needed. E.g. libdrm is no longer linked if running kwin_x11.
Also this allows to create backends for the non-standard EGL platforms
(examples could be raspberrypi or Android devices).
For each DrmOutput a set of buffers is created and presented. The
renderig is still in one go and not synced to the individual screens.
Dynamic changes are not yet supported.
The backend can indicate that the rendering needs to be split per screen.
In that case it has to provide a different rendering buffer per screen.
The painting in the scene is adjusted to either take a splitted path
or the existing path for all screens in one go.
Introduces a new (optional) dependency: libdrm.
The DrmBackend currently supports finding the first connected output.
It can create shared memory buffers which are used by SceneQPainter to
do double buffered rendering.
There is still lots to do, the following things are not yet working:
* multiple outputs
* page flip
* OpenGL (through gbm)
* restoring mode setting to start value
At least the framebuffer backend does not have support for an overlay
cursor. Thus the cursor needs to be rendered by the scene. This change
allows a backend to set that it needs a software cursor which triggers
tracking in the AbstractBackend. A repaint for the old cursor region is
triggered whenever the cursor pos changes.
So far only the QPainter/framebuffer scene is adjusted to render the
software cursor. This is done after rendering a frame with the up to
date cursor position.
There is one problem, though: the KWin internal cursors don't work
as we need to get it from the theme. Using wayland-cursor doesn't help
as it gives us a (client) wl_buffer* and we cannot read the memory back.
This new backend allows to start a kwin_wayland server nested on an
X-Server by using a normal X11 window as output. This allows testing
kwin_wayland without needing to start another Wayland server first.
The behavior is triggered by using new command line arguments:
--windowed
--x11-display=<:0>
With optional --width and --height arguments.
In this mode the WaylandBackend is not created at all.
So far the backend is not fully integrated yet and only the QPainter
backend supports this mode.
Move the buffer-swap-pending state from the compositing backends to
the Compositor class. The Compositor is the only class that needs to
access the state, and this way it to do it without calling through
a chain of virtual functions. This commit adds two new functions to
Compositor; aboutToSwapBuffers() and bufferSwapComplete(). The
backends call these functions to set and reset the buffer-swap-pending
state.
This commit also renames a number of functions and variables to make
their meaning clear.
The act of promoting the contents of the back buffer to become the
contents of the front buffer is referred to as posting the buffer,
presenting the buffer, or swapping the buffers; rendering the buffer
is what paintScreen() does.
The Renderer gets reparented to the Deleted. While passing it to
the Deleted the Scene's implementation can ensure that the buffers
are up to date. After passing to Deleted it's no longer allowed to
call the render method.
NOTE: this is not working completely yet, lots of code is still ifdefed
other parts are still broken.
The main difference for the new decoration API is that it is neither
QWidget nor QWindow based. It's just a QObject which processes input
events and has a paint method to render the decoration. This means all
the workarounds for the QWidget interception are removed. Also the paint
redirector is removed. Instead each compositor has now its own renderer
which can be optimized for the specific case. E.g. the OpenGL compositor
renders to a scratch image which gets copied into the combined texture,
the XRender compositor copies into the XPixmaps.
Input events are also changed. The events are composed into QMouseEvents
and passed through the decoration, which might accept them. If they are
not accpted we assume that it's a press on the decoration area allowing
us to resize/move the window. Input events are not completely working
yet, e.g. wheel events are not yet processed and double click on deco
is not yet working.
Overall KDecoration2 is way more stateful and KWin core needs more
adjustments for it. E.g. borders are allowed to be disabled at any time.
This compositor uses only the QPainter API to perform rendering. The
window's X Pixmap is mapped to a QImage using XShm. As rendering backend
a QImage is used.
The new compositing type "QPainterCompositing" is introduced. Effects
need to be adjusted to explicitly check the compositing type and no
longer assume the compositing type is XRender if it's not OpenGL.
This compositor can be selected with using "Q" as the value for
KWIN_COMPOSE env variable or setting the config value to "QPainter".
The GUI is not yet adjusted to select this compositor.
The QPainter scene provides currently the following features:
* 2D transformations (translation and scalation)
* opacity modifications
* rendering of decorations (new PaintRedirector sub class)
* rendering of shadows
* rendering of effect frames
* rendering to a Wayland surface
The following features are currently not provided:
* saturation changes
* brightness changes
* 3D transformations
* rendering to X Overlay window
* offscreen rendering (e.g. needed for screen shot effect)
* custom rendering in the effects to the current back buffer