/******************************************************************** KWin - the KDE window manager This file is part of the KDE project. Copyright (C) 2006 Lubos Lunak Copyright (C) 2012 Martin Gräßlin Based on glcompmgr code by Felix Bellaby. Using code from Compiz and Beryl. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . *********************************************************************/ // TODO: cmake magic #ifndef KWIN_HAVE_OPENGLES // own #include "glxbackend.h" // kwin #include "options.h" #include "utils.h" #include "overlaywindow.h" // kwin libs #include // KDE #include #include namespace KWin { GlxBackend::GlxBackend() : OpenGLBackend() , window(None) , fbconfig(NULL) , glxWindow(None) , ctx(nullptr) , haveSwapInterval(false) { init(); } GlxBackend::~GlxBackend() { // TODO: cleanup in error case // do cleanup after initBuffer() cleanupGL(); glXMakeCurrent(display(), None, NULL); if (ctx) glXDestroyContext(display(), ctx); if (glxWindow) glXDestroyWindow(display(), glxWindow); if (window) XDestroyWindow(display(), window); overlayWindow()->destroy(); checkGLError("Cleanup"); } static bool gs_tripleBufferUndetected = true; static bool gs_tripleBufferNeedsDetection = false; void GlxBackend::init() { initGLX(); // require at least GLX 1.3 if (!hasGLXVersion(1, 3)) { setFailed(QStringLiteral("Requires at least GLX 1.3")); return; } if (!initDrawableConfigs()) { setFailed(QStringLiteral("Could not initialize the drawable configs")); return; } if (!initBuffer()) { setFailed(QStringLiteral("Could not initialize the buffer")); return; } if (!initRenderingContext()) { setFailed(QStringLiteral("Could not initialize rendering context")); return; } // Initialize OpenGL GLPlatform *glPlatform = GLPlatform::instance(); glPlatform->detect(GlxPlatformInterface); glPlatform->printResults(); initGL(GlxPlatformInterface); // Check whether certain features are supported haveSwapInterval = glXSwapIntervalMESA || glXSwapIntervalEXT || glXSwapIntervalSGI; setSyncsToVBlank(false); setBlocksForRetrace(false); haveWaitSync = false; gs_tripleBufferNeedsDetection = false; m_swapProfiler.init(); const bool wantSync = options->glPreferBufferSwap() != Options::NoSwapEncourage; if (wantSync && glXIsDirect(display(), ctx)) { if (haveSwapInterval) { // glXSwapInterval is preferred being more reliable setSwapInterval(1); setSyncsToVBlank(true); const QByteArray tripleBuffer = qgetenv("KWIN_TRIPLE_BUFFER"); if (!tripleBuffer.isEmpty()) { setBlocksForRetrace(qstrcmp(tripleBuffer, "0") == 0); gs_tripleBufferUndetected = false; } gs_tripleBufferNeedsDetection = gs_tripleBufferUndetected; } else if (glXGetVideoSync) { unsigned int sync; if (glXGetVideoSync(&sync) == 0 && glXWaitVideoSync(1, 0, &sync) == 0) { setSyncsToVBlank(true); setBlocksForRetrace(true); haveWaitSync = true; } else qWarning() << "NO VSYNC! glXSwapInterval is not supported, glXWaitVideoSync is supported but broken"; } else qWarning() << "NO VSYNC! neither glSwapInterval nor glXWaitVideoSync are supported"; } else { // disable v-sync (if possible) setSwapInterval(0); } if (glPlatform->isVirtualBox()) { // VirtualBox does not support glxQueryDrawable // this should actually be in kwinglutils_funcs, but QueryDrawable seems not to be provided by an extension // and the GLPlatform has not been initialized at the moment when initGLX() is called. glXQueryDrawable = NULL; } setIsDirectRendering(bool(glXIsDirect(display(), ctx))); kDebug(1212) << "Direct rendering:" << isDirectRendering() << endl; } bool GlxBackend::initRenderingContext() { bool direct = options->isGlDirect(); // Use glXCreateContextAttribsARB() when it's available if (glXCreateContextAttribsARB) { const int attribs_31_core_robustness[] = { GLX_CONTEXT_MAJOR_VERSION_ARB, 3, GLX_CONTEXT_MINOR_VERSION_ARB, 1, GLX_CONTEXT_FLAGS_ARB, GLX_CONTEXT_FORWARD_COMPATIBLE_BIT_ARB | GLX_CONTEXT_ROBUST_ACCESS_BIT_ARB, GLX_CONTEXT_RESET_NOTIFICATION_STRATEGY_ARB, GLX_LOSE_CONTEXT_ON_RESET_ARB, 0 }; const int attribs_31_core[] = { GLX_CONTEXT_MAJOR_VERSION_ARB, 3, GLX_CONTEXT_MINOR_VERSION_ARB, 1, GLX_CONTEXT_FLAGS_ARB, GLX_CONTEXT_FORWARD_COMPATIBLE_BIT_ARB, 0 }; const int attribs_legacy_robustness[] = { GLX_CONTEXT_FLAGS_ARB, GLX_CONTEXT_ROBUST_ACCESS_BIT_ARB, GLX_CONTEXT_RESET_NOTIFICATION_STRATEGY_ARB, GLX_LOSE_CONTEXT_ON_RESET_ARB, 0 }; const int attribs_legacy[] = { 0 }; const bool have_robustness = hasGLExtension(QStringLiteral("GLX_ARB_create_context_robustness")); // Try to create a 3.1 context first if (options->glCoreProfile()) { if (have_robustness) ctx = glXCreateContextAttribsARB(display(), fbconfig, 0, direct, attribs_31_core_robustness); if (!ctx) ctx = glXCreateContextAttribsARB(display(), fbconfig, 0, direct, attribs_31_core); } if (!ctx && have_robustness) ctx = glXCreateContextAttribsARB(display(), fbconfig, 0, direct, attribs_legacy_robustness); if (!ctx) ctx = glXCreateContextAttribsARB(display(), fbconfig, 0, direct, attribs_legacy); } if (!ctx) ctx = glXCreateNewContext(display(), fbconfig, GLX_RGBA_TYPE, NULL, direct); if (!ctx) { kDebug(1212) << "Failed to create an OpenGL context."; return false; } if (!glXMakeCurrent(display(), glxWindow, ctx)) { kDebug(1212) << "Failed to make the OpenGL context current."; glXDestroyContext(display(), ctx); ctx = 0; return false; } return true; } bool GlxBackend::initBuffer() { if (!initFbConfig()) return false; if (overlayWindow()->create()) { // Try to create double-buffered window in the overlay XVisualInfo* visual = glXGetVisualFromFBConfig(display(), fbconfig); XSetWindowAttributes attrs; attrs.colormap = XCreateColormap(display(), rootWindow(), visual->visual, AllocNone); window = XCreateWindow(display(), overlayWindow()->window(), 0, 0, displayWidth(), displayHeight(), 0, visual->depth, InputOutput, visual->visual, CWColormap, &attrs); glxWindow = glXCreateWindow(display(), fbconfig, window, NULL); overlayWindow()->setup(window); XFree(visual); } else { kError(1212) << "Failed to create overlay window"; return false; } int vis_buffer; glXGetFBConfigAttrib(display(), fbconfig, GLX_VISUAL_ID, &vis_buffer); XVisualInfo* visinfo_buffer = glXGetVisualFromFBConfig(display(), fbconfig); kDebug(1212) << "Buffer visual (depth " << visinfo_buffer->depth << "): 0x" << QString::number(vis_buffer, 16); XFree(visinfo_buffer); return true; } bool GlxBackend::initFbConfig() { const int attribs[] = { GLX_RENDER_TYPE, GLX_RGBA_BIT, GLX_RED_SIZE, 1, GLX_GREEN_SIZE, 1, GLX_BLUE_SIZE, 1, GLX_ALPHA_SIZE, 0, GLX_DEPTH_SIZE, 0, GLX_STENCIL_SIZE, 0, GLX_CONFIG_CAVEAT, GLX_NONE, GLX_DOUBLEBUFFER, true, 0 }; // Try to find a double buffered configuration int count = 0; GLXFBConfig *configs = glXChooseFBConfig(display(), DefaultScreen(display()), attribs, &count); if (count > 0) { fbconfig = configs[0]; XFree(configs); } if (fbconfig == NULL) { kError(1212) << "Failed to find a usable framebuffer configuration"; return false; } return true; } bool GlxBackend::initDrawableConfigs() { const int attribs[] = { GLX_RENDER_TYPE, GLX_RGBA_BIT, GLX_DRAWABLE_TYPE, GLX_WINDOW_BIT | GLX_PIXMAP_BIT, GLX_X_VISUAL_TYPE, GLX_TRUE_COLOR, GLX_X_RENDERABLE, True, GLX_CONFIG_CAVEAT, int(GLX_DONT_CARE), // The ARGB32 visual is marked non-conformant in Catalyst GLX_RED_SIZE, 5, GLX_GREEN_SIZE, 5, GLX_BLUE_SIZE, 5, GLX_ALPHA_SIZE, 0, GLX_STENCIL_SIZE, 0, GLX_DEPTH_SIZE, 0, 0 }; int count = 0; GLXFBConfig *configs = glXChooseFBConfig(display(), DefaultScreen(display()), attribs, &count); if (count < 1) { kError(1212) << "Could not find any usable framebuffer configurations."; return false; } for (int i = 0; i <= 32; i++) { fbcdrawableinfo[i].fbconfig = NULL; fbcdrawableinfo[i].bind_texture_format = 0; fbcdrawableinfo[i].texture_targets = 0; fbcdrawableinfo[i].y_inverted = 0; fbcdrawableinfo[i].mipmap = 0; } // Find the first usable framebuffer configuration for each depth. // Single-buffered ones will appear first in the list. const int depths[] = { 15, 16, 24, 30, 32 }; for (unsigned int i = 0; i < sizeof(depths) / sizeof(depths[0]); i++) { const int depth = depths[i]; for (int j = 0; j < count; j++) { int alpha_size, buffer_size; glXGetFBConfigAttrib(display(), configs[j], GLX_ALPHA_SIZE, &alpha_size); glXGetFBConfigAttrib(display(), configs[j], GLX_BUFFER_SIZE, &buffer_size); if (buffer_size != depth && (buffer_size - alpha_size) != depth) continue; if (depth == 32 && alpha_size != 8) continue; XVisualInfo *vi = glXGetVisualFromFBConfig(display(), configs[j]); if (vi == NULL) continue; int visual_depth = vi->depth; XFree(vi); if (visual_depth != depth) continue; int bind_rgb, bind_rgba; glXGetFBConfigAttrib(display(), configs[j], GLX_BIND_TO_TEXTURE_RGBA_EXT, &bind_rgba); glXGetFBConfigAttrib(display(), configs[j], GLX_BIND_TO_TEXTURE_RGB_EXT, &bind_rgb); // Skip this config if it cannot be bound to a texture if (!bind_rgb && !bind_rgba) continue; int texture_format; if (depth == 32) texture_format = bind_rgba ? GLX_TEXTURE_FORMAT_RGBA_EXT : GLX_TEXTURE_FORMAT_RGB_EXT; else texture_format = bind_rgb ? GLX_TEXTURE_FORMAT_RGB_EXT : GLX_TEXTURE_FORMAT_RGBA_EXT; int y_inverted, texture_targets; glXGetFBConfigAttrib(display(), configs[j], GLX_BIND_TO_TEXTURE_TARGETS_EXT, &texture_targets); glXGetFBConfigAttrib(display(), configs[j], GLX_Y_INVERTED_EXT, &y_inverted); fbcdrawableinfo[depth].fbconfig = configs[j]; fbcdrawableinfo[depth].bind_texture_format = texture_format; fbcdrawableinfo[depth].texture_targets = texture_targets; fbcdrawableinfo[depth].y_inverted = y_inverted; fbcdrawableinfo[depth].mipmap = 0; break; } } if (count) XFree(configs); if (fbcdrawableinfo[DefaultDepth(display(), DefaultScreen(display()))].fbconfig == NULL) { kError(1212) << "Could not find a framebuffer configuration for the default depth."; return false; } if (fbcdrawableinfo[32].fbconfig == NULL) { kError(1212) << "Could not find a framebuffer configuration for depth 32."; return false; } for (int i = 0; i <= 32; i++) { if (fbcdrawableinfo[i].fbconfig == NULL) continue; int vis_drawable = 0; glXGetFBConfigAttrib(display(), fbcdrawableinfo[i].fbconfig, GLX_VISUAL_ID, &vis_drawable); kDebug(1212) << "Drawable visual (depth " << i << "): 0x" << QString::number(vis_drawable, 16); } return true; } void GlxBackend::setSwapInterval(int interval) { if (glXSwapIntervalEXT) glXSwapIntervalEXT(display(), glxWindow, interval); else if (glXSwapIntervalMESA) glXSwapIntervalMESA(interval); else if (glXSwapIntervalSGI) glXSwapIntervalSGI(interval); } void GlxBackend::waitSync() { // NOTE that vsync has no effect with indirect rendering if (haveWaitSync) { uint sync; #if 0 // TODO: why precisely is this important? // the sync counter /can/ perform multiple steps during glXGetVideoSync & glXWaitVideoSync // but this only leads to waiting for two frames??!? glXGetVideoSync(&sync); glXWaitVideoSync(2, (sync + 1) % 2, &sync); #else glXWaitVideoSync(1, 0, &sync); #endif } } void GlxBackend::present() { if (lastDamage().isEmpty()) return; const QRegion displayRegion(0, 0, displayWidth(), displayHeight()); const bool fullRepaint = (lastDamage() == displayRegion); if (fullRepaint) { if (haveSwapInterval) { if (gs_tripleBufferNeedsDetection) { glXWaitGL(); m_swapProfiler.begin(); } glXSwapBuffers(display(), glxWindow); if (gs_tripleBufferNeedsDetection) { glXWaitGL(); if (char result = m_swapProfiler.end()) { gs_tripleBufferUndetected = gs_tripleBufferNeedsDetection = false; setBlocksForRetrace(result == 'd'); } } } else { waitSync(); glXSwapBuffers(display(), glxWindow); } } else if (glXCopySubBuffer) { foreach (const QRect & r, lastDamage().rects()) { // convert to OpenGL coordinates int y = displayHeight() - r.y() - r.height(); glXCopySubBuffer(display(), glxWindow, r.x(), y, r.width(), r.height()); } } else { // Copy Pixels (horribly slow on Mesa) glDrawBuffer(GL_FRONT); SceneOpenGL::copyPixels(lastDamage()); glDrawBuffer(GL_BACK); } glXWaitGL(); setLastDamage(QRegion()); XFlush(display()); } void GlxBackend::screenGeometryChanged(const QSize &size) { glXMakeCurrent(display(), None, NULL); XMoveResizeWindow(display(), window, 0, 0, size.width(), size.height()); overlayWindow()->setup(window); XSync(display(), false); glXMakeCurrent(display(), glxWindow, ctx); glViewport(0, 0, size.width(), size.height()); } SceneOpenGL::TexturePrivate *GlxBackend::createBackendTexture(SceneOpenGL::Texture *texture) { return new GlxTexture(texture, this); } void GlxBackend::prepareRenderingFrame() { present(); startRenderTimer(); glXWaitX(); } void GlxBackend::endRenderingFrame(const QRegion &damage) { setLastDamage(damage); glFlush(); if (!blocksForRetrace()) { present(); // this sets lastDamage emtpy and prevents execution from prepareRenderingFrame() } if (overlayWindow()->window()) // show the window only after the first pass, overlayWindow()->show(); // since that pass may take long } /******************************************************** * GlxTexture *******************************************************/ GlxTexture::GlxTexture(SceneOpenGL::Texture *texture, GlxBackend *backend) : SceneOpenGL::TexturePrivate() , q(texture) , m_backend(backend) , m_glxpixmap(None) { } GlxTexture::~GlxTexture() { if (m_glxpixmap != None) { if (!options->isGlStrictBinding()) { glXReleaseTexImageEXT(display(), m_glxpixmap, GLX_FRONT_LEFT_EXT); } glXDestroyPixmap(display(), m_glxpixmap); m_glxpixmap = None; } } void GlxTexture::onDamage() { if (options->isGlStrictBinding() && m_glxpixmap) { glXReleaseTexImageEXT(display(), m_glxpixmap, GLX_FRONT_LEFT_EXT); glXBindTexImageEXT(display(), m_glxpixmap, GLX_FRONT_LEFT_EXT, NULL); } GLTexturePrivate::onDamage(); } void GlxTexture::findTarget() { unsigned int new_target = 0; if (glXQueryDrawable && m_glxpixmap != None) glXQueryDrawable(display(), m_glxpixmap, GLX_TEXTURE_TARGET_EXT, &new_target); // HACK: this used to be a hack for Xgl. // without this hack the NVIDIA blob aborts when trying to bind a texture from // a pixmap icon if (new_target == 0) { if (GLTexture::NPOTTextureSupported() || (isPowerOfTwo(m_size.width()) && isPowerOfTwo(m_size.height()))) { new_target = GLX_TEXTURE_2D_EXT; } else { new_target = GLX_TEXTURE_RECTANGLE_EXT; } } switch(new_target) { case GLX_TEXTURE_2D_EXT: m_target = GL_TEXTURE_2D; m_scale.setWidth(1.0f / m_size.width()); m_scale.setHeight(1.0f / m_size.height()); break; case GLX_TEXTURE_RECTANGLE_EXT: m_target = GL_TEXTURE_RECTANGLE_ARB; m_scale.setWidth(1.0f); m_scale.setHeight(1.0f); break; default: abort(); } } bool GlxTexture::loadTexture(const Pixmap& pix, const QSize& size, int depth) { #ifdef CHECK_GL_ERROR checkGLError("TextureLoad1"); #endif if (pix == None || size.isEmpty() || depth < 1) return false; if (m_backend->fbcdrawableinfo[ depth ].fbconfig == NULL) { kDebug(1212) << "No framebuffer configuration for depth " << depth << "; not binding pixmap" << endl; return false; } m_size = size; // new texture, or texture contents changed; mipmaps now invalid q->setDirty(); #ifdef CHECK_GL_ERROR checkGLError("TextureLoad2"); #endif // tfp mode, simply bind the pixmap to texture glGenTextures(1, &m_texture); // The GLX pixmap references the contents of the original pixmap, so it doesn't // need to be recreated when the contents change. // The texture may or may not use the same storage depending on the EXT_tfp // implementation. When options->glStrictBinding is true, the texture uses // a different storage and needs to be updated with a call to // glXBindTexImageEXT() when the contents of the pixmap has changed. int attrs[] = { GLX_TEXTURE_FORMAT_EXT, m_backend->fbcdrawableinfo[ depth ].bind_texture_format, GLX_MIPMAP_TEXTURE_EXT, m_backend->fbcdrawableinfo[ depth ].mipmap > 0, None, None, None }; // Specifying the texture target explicitly is reported to cause a performance // regression with R300G (see bug #256654). if (GLPlatform::instance()->driver() != Driver_R300G) { if ((m_backend->fbcdrawableinfo[ depth ].texture_targets & GLX_TEXTURE_2D_BIT_EXT) && (GLTexture::NPOTTextureSupported() || (isPowerOfTwo(size.width()) && isPowerOfTwo(size.height())))) { attrs[ 4 ] = GLX_TEXTURE_TARGET_EXT; attrs[ 5 ] = GLX_TEXTURE_2D_EXT; } else if (m_backend->fbcdrawableinfo[ depth ].texture_targets & GLX_TEXTURE_RECTANGLE_BIT_EXT) { attrs[ 4 ] = GLX_TEXTURE_TARGET_EXT; attrs[ 5 ] = GLX_TEXTURE_RECTANGLE_EXT; } } m_glxpixmap = glXCreatePixmap(display(), m_backend->fbcdrawableinfo[ depth ].fbconfig, pix, attrs); #ifdef CHECK_GL_ERROR checkGLError("TextureLoadTFP1"); #endif findTarget(); m_yInverted = m_backend->fbcdrawableinfo[ depth ].y_inverted ? true : false; m_canUseMipmaps = m_backend->fbcdrawableinfo[ depth ].mipmap > 0; q->setFilter(m_backend->fbcdrawableinfo[ depth ].mipmap > 0 ? GL_NEAREST_MIPMAP_LINEAR : GL_NEAREST); glBindTexture(m_target, m_texture); #ifdef CHECK_GL_ERROR checkGLError("TextureLoadTFP2"); #endif glXBindTexImageEXT(display(), m_glxpixmap, GLX_FRONT_LEFT_EXT, NULL); #ifdef CHECK_GL_ERROR checkGLError("TextureLoad0"); #endif updateMatrix(); unbind(); return true; } OpenGLBackend *GlxTexture::backend() { return m_backend; } } // namespace #endif