/***************************************************************** KWin - the KDE window manager This file is part of the KDE project. Copyright (C) 2006-2007 Rivo Laks You can Freely distribute this program under the GNU General Public License. See the file "COPYING" for the exact licensing terms. ******************************************************************/ #include "kwinglutils.h" #ifdef HAVE_OPENGL #include "kwinglobals.h" #include "kwineffects.h" #include "kdebug.h" #include #include #include #include #include #define MAKE_GL_VERSION(major, minor, release) ( ((major) << 16) | ((minor) << 8) | (release) ) namespace KWin { // Variables // GL version, use MAKE_GL_VERSION() macro for comparing with a specific version static int glVersion; // GLX version, use MAKE_GL_VERSION() macro for comparing with a specific version static int glXVersion; // List of all supported GL and GLX extensions static QStringList glExtensions; static QStringList glxExtensions; int glTextureUnitsCount; // Functions void initGLX() { // Get GLX version int major, minor; glXQueryVersion( display(), &major, &minor ); glXVersion = MAKE_GL_VERSION( major, minor, 0 ); // Get list of supported GLX extensions glxExtensions = QString((const char*)glXQueryExtensionsString( display(), DefaultScreen( display()))).split(" "); glxResolveFunctions(); } void initGL() { // Get OpenGL version QString glversionstring = QString((const char*)glGetString(GL_VERSION)); QStringList glversioninfo = glversionstring.left(glversionstring.indexOf(' ')).split('.'); glVersion = MAKE_GL_VERSION(glversioninfo[0].toInt(), glversioninfo[1].toInt(), glversioninfo.count() > 2 ? glversioninfo[2].toInt() : 0); // Get list of supported OpenGL extensions glExtensions = QString((const char*)glGetString(GL_EXTENSIONS)).split(" "); // handle OpenGL extensions functions glResolveFunctions(); GLTexture::initStatic(); GLShader::initStatic(); GLRenderTarget::initStatic(); } bool hasGLVersion(int major, int minor, int release) { return glVersion >= MAKE_GL_VERSION(major, minor, release); } bool hasGLXVersion(int major, int minor, int release) { return glXVersion >= MAKE_GL_VERSION(major, minor, release); } bool hasGLExtension(const QString& extension) { return glExtensions.contains(extension) || glxExtensions.contains(extension); } void checkGLError( const char* txt ) { GLenum err = glGetError(); if( err != GL_NO_ERROR ) kWarning() << "GL error (" << txt << "): 0x" << QString::number( err, 16 ) << endl; } int nearestPowerOfTwo( int x ) { // This method had been copied from Qt's nearest_gl_texture_size() int n = 0, last = 0; for (int s = 0; s < 32; ++s) { if (((x>>s) & 1) == 1) { ++n; last = s; } } if (n > 1) return 1 << (last+1); return 1 << last; } void renderGLGeometry( int count, const float* vertices, const float* texture, const float* color, int dim, int stride ) { return renderGLGeometry( false, QRegion(), count, vertices, texture, color, dim, stride ); } void renderGLGeometry( int mask, const QRegion& region, int count, const float* vertices, const float* texture, const float* color, int dim, int stride ) { return renderGLGeometry( !( mask & ( Effect::PAINT_WINDOW_TRANSFORMED | Effect::PAINT_SCREEN_TRANSFORMED )), region, count, vertices, texture, color, dim, stride ); } void renderGLGeometry( bool clip, const QRegion& region, int count, const float* vertices, const float* texture, const float* color, int dim, int stride ) { // Using arrays only makes sense if we have larger number of vertices. // Otherwise overhead of enabling/disabling them is too big. bool use_arrays = (count > 5); if( use_arrays ) { glPushAttrib( GL_ENABLE_BIT ); glPushClientAttrib( GL_CLIENT_VERTEX_ARRAY_BIT ); // Enable arrays glEnableClientState( GL_VERTEX_ARRAY ); glVertexPointer( dim, GL_FLOAT, stride, vertices ); if( texture != NULL ) { glEnableClientState( GL_TEXTURE_COORD_ARRAY ); glTexCoordPointer( 2, GL_FLOAT, stride, texture ); } if( color != NULL ) { glEnableClientState( GL_COLOR_ARRAY ); glColorPointer( 4, GL_FLOAT, stride, color ); } } // Render if( !clip ) { // Just draw the entire window, no clipping if( use_arrays ) glDrawArrays( GL_QUADS, 0, count ); else renderGLGeometryImmediate( count, vertices, texture, color, dim, stride ); } else { // Make sure there's only a single quad (no transformed vertices) // Clip using scissoring glEnable( GL_SCISSOR_TEST ); int dh = displayHeight(); if( use_arrays ) { foreach( QRect r, region.rects()) { // Scissor rect has to be given in OpenGL coords glScissor(r.x(), dh - r.y() - r.height(), r.width(), r.height()); glDrawArrays( GL_QUADS, 0, count ); } } else { foreach( QRect r, region.rects()) { // Scissor rect has to be given in OpenGL coords glScissor(r.x(), dh - r.y() - r.height(), r.width(), r.height()); renderGLGeometryImmediate( count, vertices, texture, color, dim, stride ); } } } if( use_arrays ) { glPopClientAttrib(); glPopAttrib(); } } void renderGLGeometryImmediate( int count, const float* vertices, const float* texture, const float* color, int dim, int stride ) { // Find out correct glVertex*fv function according to dim parameter. void ( *glVertexFunc )( const float* ) = glVertex2fv; if( dim == 3 ) glVertexFunc = glVertex3fv; else if( dim == 4 ) glVertexFunc = glVertex4fv; // These are number of _floats_ per item, not _bytes_ per item as opengl uses. int vsize, tsize, csize; vsize = tsize = csize = stride / sizeof(float); if( !stride ) { // 0 means that arrays are tightly packed. This gives us different // strides for different arrays vsize = dim; tsize = 2; csize = 4; } glBegin( GL_QUADS ); // This sucks. But makes it faster. if( texture && color ) { for( int i = 0; i < count; i++ ) { glTexCoord2fv( texture + i*tsize ); glColor4fv( color + i*csize ); glVertexFunc( vertices + i*vsize ); } } else if( texture ) { for( int i = 0; i < count; i++ ) { glTexCoord2fv( texture + i*tsize ); glVertexFunc( vertices + i*vsize ); } } else if( color ) { for( int i = 0; i < count; i++ ) { glColor4fv( color + i*csize ); glVertexFunc( vertices + i*vsize ); } } else { for( int i = 0; i < count; i++ ) glVertexFunc( vertices + i*vsize ); } glEnd(); } void addQuadVertices(QVector& verts, float x1, float y1, float x2, float y2) { verts << x1 << y1; verts << x1 << y2; verts << x2 << y2; verts << x2 << y1; } void renderRoundBox( const QRect& area, float roundness, GLTexture* texture ) { static GLTexture* circleTexture = 0; if( !texture && !circleTexture ) { QString texturefile = KGlobal::dirs()->findResource("data", "kwin/circle.png"); circleTexture = new GLTexture(texturefile); } if( !texture ) { texture = circleTexture; } glPushAttrib( GL_CURRENT_BIT | GL_ENABLE_BIT | GL_TEXTURE_BIT ); glEnable( GL_BLEND ); glBlendFunc( GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA ); glPushMatrix(); QVector verts, texcoords; // center addQuadVertices(verts, area.left() + roundness, area.top() + roundness, area.right() - roundness, area.bottom() - roundness); addQuadVertices(texcoords, 0.5, 0.5, 0.5, 0.5); // sides // left addQuadVertices(verts, area.left(), area.top() + roundness, area.left() + roundness, area.bottom() - roundness); addQuadVertices(texcoords, 0.0, 0.5, 0.5, 0.5); // top addQuadVertices(verts, area.left() + roundness, area.top(), area.right() - roundness, area.top() + roundness); addQuadVertices(texcoords, 0.5, 0.0, 0.5, 0.5); // right addQuadVertices(verts, area.right() - roundness, area.top() + roundness, area.right(), area.bottom() - roundness); addQuadVertices(texcoords, 0.5, 0.5, 1.0, 0.5); // bottom addQuadVertices(verts, area.left() + roundness, area.bottom() - roundness, area.right() - roundness, area.bottom()); addQuadVertices(texcoords, 0.5, 0.5, 0.5, 1.0); // corners // top-left addQuadVertices(verts, area.left(), area.top(), area.left() + roundness, area.top() + roundness); addQuadVertices(texcoords, 0.0, 0.0, 0.5, 0.5); // top-right addQuadVertices(verts, area.right() - roundness, area.top(), area.right(), area.top() + roundness); addQuadVertices(texcoords, 0.5, 0.0, 1.0, 0.5); // bottom-left addQuadVertices(verts, area.left(), area.bottom() - roundness, area.left() + roundness, area.bottom()); addQuadVertices(texcoords, 0.0, 0.5, 0.5, 1.0); // bottom-right addQuadVertices(verts, area.right() - roundness, area.bottom() - roundness, area.right(), area.bottom()); addQuadVertices(texcoords, 0.5, 0.5, 1.0, 1.0); texture->bind(); glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE); // We have two elements per vertex in the verts array int verticesCount = verts.count() / 2; renderGLGeometry( verticesCount, verts.data(), texcoords.data() ); texture->unbind(); glPopMatrix(); glPopAttrib(); } //**************************************** // GLTexture //**************************************** bool GLTexture::mNPOTTextureSupported = false; bool GLTexture::mFramebufferObjectSupported = false; bool GLTexture::mSaturationSupported = false; GLTexture::GLTexture() { init(); } GLTexture::GLTexture( const QImage& image, GLenum target ) { init(); load( image, target ); } GLTexture::GLTexture( const QPixmap& pixmap, GLenum target ) { init(); load( pixmap, target ); } GLTexture::GLTexture( const QString& fileName ) { init(); load( fileName ); } GLTexture::GLTexture( int width, int height ) { init(); if( NPOTTextureSupported() || ( isPowerOfTwo( width ) && isPowerOfTwo( height ))) { mTarget = GL_TEXTURE_2D; mScale.setWidth( 1.0 / width); mScale.setHeight( 1.0 / height); can_use_mipmaps = true; glGenTextures( 1, &mTexture ); bind(); glTexImage2D( mTarget, 0, GL_RGBA, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, 0); unbind(); } } GLTexture::~GLTexture() { discard(); } void GLTexture::init() { mTexture = None; mTarget = 0; mFilter = 0; y_inverted = false; can_use_mipmaps = false; has_valid_mipmaps = false; } void GLTexture::initStatic() { mNPOTTextureSupported = hasGLExtension( "GL_ARB_texture_non_power_of_two" ); mFramebufferObjectSupported = hasGLExtension( "GL_EXT_framebuffer_object" ); mSaturationSupported = ((hasGLExtension("GL_ARB_texture_env_crossbar") && hasGLExtension("GL_ARB_texture_env_dot3")) || hasGLVersion(1, 4)) && (glTextureUnitsCount >= 4) && glActiveTexture != NULL; } bool GLTexture::isNull() const { return mTexture == None; } bool GLTexture::load( const QImage& image, GLenum target ) { if( image.isNull()) return false; QImage img = image; mTarget = target; if( mTarget != GL_TEXTURE_RECTANGLE_ARB ) { if( !NPOTTextureSupported() && ( !isPowerOfTwo( image.width()) || !isPowerOfTwo( image.height()))) { // non-rectangular target requires POT texture img = img.scaled( nearestPowerOfTwo( image.width()), nearestPowerOfTwo( image.height())); } mScale.setWidth( 1.0 / img.width()); mScale.setHeight( 1.0 / img.height()); can_use_mipmaps = true; } else { mScale.setWidth( 1.0 ); mScale.setHeight( 1.0 ); can_use_mipmaps = false; } setFilter( GL_LINEAR ); mSize = img.size(); y_inverted = false; img = convertToGLFormat( img ); setDirty(); if( isNull()) glGenTextures( 1, &mTexture ); bind(); glTexImage2D( mTarget, 0, GL_RGBA, img.width(), img.height(), 0, GL_RGBA, GL_UNSIGNED_BYTE, img.bits()); unbind(); return true; } bool GLTexture::load( const QPixmap& pixmap, GLenum target ) { if( pixmap.isNull()) return false; return load( pixmap.toImage(), target ); } bool GLTexture::load( const QString& fileName ) { if( fileName.isEmpty()) return false; return load( QImage( fileName )); } void GLTexture::discard() { setDirty(); if( mTexture != None ) glDeleteTextures( 1, &mTexture ); mTexture = None; } void GLTexture::bind() { glEnable( mTarget ); glBindTexture( mTarget, mTexture ); enableFilter(); } void GLTexture::unbind() { glBindTexture( mTarget, 0 ); glDisable( mTarget ); } void GLTexture::render( int mask, QRegion region, const QRect& rect ) { return render( !( mask & ( Effect::PAINT_WINDOW_TRANSFORMED | Effect::PAINT_SCREEN_TRANSFORMED )), region, rect ); } void GLTexture::render( bool clip, QRegion region, const QRect& rect ) { const float verts[ 4 * 2 ] = { rect.x(), rect.y(), rect.x(), rect.y() + rect.height(), rect.x() + rect.width(), rect.y() + rect.height(), rect.x() + rect.width(), rect.y() }; const float texcoords[ 4 * 2 ] = { 0, 1, 0, 0, 1, 0, 1, 1 }; renderGLGeometry( clip, region, 4, verts, texcoords ); } void GLTexture::enableUnnormalizedTexCoords() { // update texture matrix to handle GL_TEXTURE_2D and GL_TEXTURE_RECTANGLE glMatrixMode( GL_TEXTURE ); glPushMatrix(); glLoadIdentity(); glScalef( mScale.width(), mScale.height(), 1 ); if( !y_inverted ) { // Modify texture matrix so that we could always use non-opengl // coordinates for textures glScalef( 1, -1, 1 ); glTranslatef( 0, -mSize.height(), 0 ); } glMatrixMode( GL_MODELVIEW ); } void GLTexture::disableUnnormalizedTexCoords() { // Restore texture matrix glMatrixMode( GL_TEXTURE ); glPopMatrix(); glMatrixMode( GL_MODELVIEW ); } GLuint GLTexture::texture() const { return mTexture; } GLenum GLTexture::target() const { return mTarget; } GLenum GLTexture::filter() const { return mFilter; } bool GLTexture::isDirty() const { return has_valid_mipmaps; } void GLTexture::setTexture( GLuint texture ) { discard(); mTexture = texture; } void GLTexture::setTarget( GLenum target ) { mTarget = target; } void GLTexture::setFilter( GLenum filter ) { mFilter = filter; } void GLTexture::setWrapMode( GLenum mode ) { bind(); glTexParameteri( mTarget, GL_TEXTURE_WRAP_S, mode ); glTexParameteri( mTarget, GL_TEXTURE_WRAP_T, mode ); unbind(); } void GLTexture::setDirty() { has_valid_mipmaps = false; } void GLTexture::enableFilter() { if( mFilter == GL_LINEAR_MIPMAP_LINEAR ) { // trilinear filtering requested, but is it possible? if( NPOTTextureSupported() && framebufferObjectSupported() && can_use_mipmaps ) { glTexParameteri( mTarget, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR ); glTexParameteri( mTarget, GL_TEXTURE_MAG_FILTER, GL_LINEAR ); if( !has_valid_mipmaps ) { glGenerateMipmap( mTarget ); has_valid_mipmaps = true; } } else { // can't use trilinear, so use bilinear setFilter( GL_LINEAR ); glTexParameteri( mTarget, GL_TEXTURE_MIN_FILTER, GL_LINEAR ); glTexParameteri( mTarget, GL_TEXTURE_MAG_FILTER, GL_LINEAR ); } } else if( mFilter == GL_LINEAR ) { glTexParameteri( mTarget, GL_TEXTURE_MIN_FILTER, GL_LINEAR ); glTexParameteri( mTarget, GL_TEXTURE_MAG_FILTER, GL_LINEAR ); } else { // if neither trilinear nor bilinear, default to fast filtering setFilter( GL_NEAREST ); glTexParameteri( mTarget, GL_TEXTURE_MIN_FILTER, GL_NEAREST ); glTexParameteri( mTarget, GL_TEXTURE_MAG_FILTER, GL_NEAREST ); } } QImage GLTexture::convertToGLFormat( const QImage& img ) const { // This method has been copied from Qt's QGLWidget::convertToGLFormat() QImage res = img.convertToFormat(QImage::Format_ARGB32); res = res.mirrored(); if (QSysInfo::ByteOrder == QSysInfo::BigEndian) { // Qt has ARGB; OpenGL wants RGBA for (int i=0; i < res.height(); i++) { uint *p = (uint*)res.scanLine(i); uint *end = p + res.width(); while (p < end) { *p = (*p << 8) | ((*p >> 24) & 0xFF); p++; } } } else { // Qt has ARGB; OpenGL wants ABGR (i.e. RGBA backwards) res = res.rgbSwapped(); } return res; } //**************************************** // GLShader //**************************************** bool GLShader::mFragmentShaderSupported = false; bool GLShader::mVertexShaderSupported = false; void GLShader::initStatic() { mFragmentShaderSupported = mVertexShaderSupported = hasGLExtension("GL_ARB_shader_objects") && hasGLExtension("GL_ARB_shading_language_100"); mVertexShaderSupported &= hasGLExtension("GL_ARB_vertex_shader"); mFragmentShaderSupported &= hasGLExtension("GL_ARB_fragment_shader"); } GLShader::GLShader(const QString& vertexfile, const QString& fragmentfile) { mValid = false; mVariableLocations = 0; mProgram = 0; loadFromFiles(vertexfile, fragmentfile); } GLShader::~GLShader() { if(mVariableLocations) { mVariableLocations->clear(); delete mVariableLocations; } if(mProgram) { glDeleteProgram(mProgram); } } bool GLShader::loadFromFiles(const QString& vertexfile, const QString& fragmentfile) { QFile vf(vertexfile); if(!vf.open(QIODevice::ReadOnly)) { kError(1212) << k_funcinfo << "Couldn't open '" << vertexfile << "' for reading!" << endl; return false; } QString vertexsource(vf.readAll()); QFile ff(fragmentfile); if(!ff.open(QIODevice::ReadOnly)) { kError(1212) << k_funcinfo << "Couldn't open '" << fragmentfile << "' for reading!" << endl; return false; } QString fragsource(ff.readAll()); return load(vertexsource, fragsource); } bool GLShader::load(const QString& vertexsource, const QString& fragmentsource) { // Make sure shaders are actually supported if(( !vertexsource.isEmpty() && !vertexShaderSupported() ) || ( !fragmentsource.isEmpty() && !fragmentShaderSupported() )) { kDebug(1212) << k_funcinfo << "Shaders not supported" << endl; return false; } GLuint vertexshader; GLuint fragmentshader; GLsizei logsize, logarraysize; char* log = 0; // Create program object mProgram = glCreateProgram(); if(!vertexsource.isEmpty()) { // Create shader object vertexshader = glCreateShader(GL_VERTEX_SHADER); // Load it const QByteArray& srcba = vertexsource.toLatin1(); const char* src = srcba.data(); glShaderSource(vertexshader, 1, &src, NULL); // Compile the shader glCompileShader(vertexshader); // Make sure it compiled correctly int compiled; glGetShaderiv(vertexshader, GL_COMPILE_STATUS, &compiled); // Get info log glGetShaderiv(vertexshader, GL_INFO_LOG_LENGTH, &logarraysize); log = new char[logarraysize]; glGetShaderInfoLog(vertexshader, logarraysize, &logsize, log); if(!compiled) { kError(1212) << k_funcinfo << "Couldn't compile vertex shader! Log:" << endl << log << endl; delete[] log; return false; } else if(logsize > 0) kDebug(1212) << "Vertex shader compilation log:" << endl << log << endl; // Attach the shader to the program glAttachShader(mProgram, vertexshader); // Delete shader glDeleteShader(vertexshader); delete[] log; } if(!fragmentsource.isEmpty()) { fragmentshader = glCreateShader(GL_FRAGMENT_SHADER); // Load it const QByteArray& srcba = fragmentsource.toLatin1(); const char* src = srcba.data(); glShaderSource(fragmentshader, 1, &src, NULL); //glShaderSource(fragmentshader, 1, &fragmentsrc.latin1(), NULL); // Compile the shader glCompileShader(fragmentshader); // Make sure it compiled correctly int compiled; glGetShaderiv(fragmentshader, GL_COMPILE_STATUS, &compiled); // Get info log glGetShaderiv(fragmentshader, GL_INFO_LOG_LENGTH, &logarraysize); log = new char[logarraysize]; glGetShaderInfoLog(fragmentshader, logarraysize, &logsize, log); if(!compiled) { kError(1212) << k_funcinfo << "Couldn't compile fragment shader! Log:" << endl << log << endl; delete[] log; return false; } else if(logsize > 0) kDebug(1212) << "Fragment shader compilation log:" << endl << log << endl; // Attach the shader to the program glAttachShader(mProgram, fragmentshader); // Delete shader glDeleteShader(fragmentshader); delete[] log; } // Link the program glLinkProgram(mProgram); // Make sure it linked correctly int linked; glGetProgramiv(mProgram, GL_LINK_STATUS, &linked); // Get info log glGetProgramiv(mProgram, GL_INFO_LOG_LENGTH, &logarraysize); log = new char[logarraysize]; glGetProgramInfoLog(mProgram, logarraysize, &logsize, log); if(!linked) { kError(1212) << k_funcinfo << "Couldn't link the program! Log" << endl << log << endl; delete[] log; return false; } else if(logsize > 0) kDebug(1212) << "Shader linking log:" << endl << log << endl; delete[] log; mVariableLocations = new QHash; mValid = true; return true; } void GLShader::bind() { glUseProgram(mProgram); } void GLShader::unbind() { glUseProgram(0); } int GLShader::uniformLocation(const QString& name) { if(!mVariableLocations) { return -1; } if(!mVariableLocations->contains(name)) { int location = glGetUniformLocation(mProgram, name.toLatin1().data()); mVariableLocations->insert(name, location); } return mVariableLocations->value(name); } bool GLShader::setUniform(const QString& name, float value) { int location = uniformLocation(name); if(location >= 0) { glUniform1f(location, value); } return (location >= 0); } bool GLShader::setUniform(const QString& name, int value) { int location = uniformLocation(name); if(location >= 0) { glUniform1i(location, value); } return (location >= 0); } int GLShader::attributeLocation(const QString& name) { if(!mVariableLocations) { return -1; } if(!mVariableLocations->contains(name)) { int location = glGetAttribLocation(mProgram, name.toLatin1().data()); mVariableLocations->insert(name, location); } return mVariableLocations->value(name); } bool GLShader::setAttribute(const QString& name, float value) { int location = attributeLocation(name); if(location >= 0) { glVertexAttrib1f(location, value); } return (location >= 0); } /*** GLRenderTarget ***/ bool GLRenderTarget::mSupported = false; void GLRenderTarget::initStatic() { mSupported = hasGLExtension("GL_EXT_framebuffer_object") && glFramebufferTexture2D; } GLRenderTarget::GLRenderTarget(GLTexture* color) { // Reset variables mValid = false; mTexture = color; // Make sure FBO is supported if(mSupported && mTexture && !mTexture->isNull()) { initFBO(); } else kError(1212) << k_funcinfo << "Render targets aren't supported!" << endl; } GLRenderTarget::~GLRenderTarget() { if(mValid) { glDeleteFramebuffers(1, &mFramebuffer); } } bool GLRenderTarget::enable() { if(!valid()) { kError(1212) << k_funcinfo << "Can't enable invalid render target!" << endl; return false; } glBindFramebuffer(GL_FRAMEBUFFER_EXT, mFramebuffer); mTexture->setDirty(); return true; } bool GLRenderTarget::disable() { if(!valid()) { kError(1212) << k_funcinfo << "Can't disable invalid render target!" << endl; return false; } glBindFramebuffer(GL_FRAMEBUFFER_EXT, 0); mTexture->setDirty(); return true; } void GLRenderTarget::initFBO() { glGenFramebuffers(1, &mFramebuffer); glBindFramebuffer(GL_FRAMEBUFFER_EXT, mFramebuffer); glFramebufferTexture2D(GL_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENT0_EXT, mTexture->target(), mTexture->texture(), 0); GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER_EXT); if(status != GL_FRAMEBUFFER_COMPLETE_EXT) { kError(1212) << k_funcinfo << "Invalid fb status: " << status << endl; } glBindFramebuffer(GL_FRAMEBUFFER_EXT, 0); mValid = true; } } // namespace #endif