/******************************************************************** KWin - the KDE window manager This file is part of the KDE project. Copyright (C) 2015 Martin Gräßlin This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . *********************************************************************/ #include "drm_output.h" #include "drm_backend.h" #include "drm_object_plane.h" #include "drm_object_crtc.h" #include "drm_object_connector.h" #include #include "composite.h" #include "logind.h" #include "logging.h" #include "main.h" #include "screens_drm.h" #include "wayland_server.h" // KWayland #include #include #include #include #include #include // KF5 #include #include #include // Qt #include #include #include // drm #include #include #include namespace KWin { DrmOutput::DrmOutput(DrmBackend *backend) : QObject() , m_backend(backend) { } DrmOutput::~DrmOutput() { hideCursor(); m_crtc->blank(); if (m_primaryPlane) { // TODO: when having multiple planes, also clean up these m_primaryPlane->setOutput(nullptr); if (m_backend->deleteBufferAfterPageFlip()) { delete m_primaryPlane->current(); } m_primaryPlane->setCurrent(nullptr); } m_crtc->setOutput(nullptr); m_conn->setOutput(nullptr); delete m_waylandOutput.data(); delete m_waylandOutputDevice.data(); delete m_cursor[0]; delete m_cursor[1]; } void DrmOutput::releaseGbm() { if (DrmBuffer *b = m_crtc->current()) { b->releaseGbm(); } if (m_primaryPlane && m_primaryPlane->current()) { m_primaryPlane->current()->releaseGbm(); } } void DrmOutput::hideCursor() { drmModeSetCursor(m_backend->fd(), m_crtc->id(), 0, 0, 0); } void DrmOutput::showCursor(DrmDumbBuffer *c) { const QSize &s = c->size(); drmModeSetCursor(m_backend->fd(), m_crtc->id(), c->handle(), s.width(), s.height()); } void DrmOutput::showCursor() { showCursor(m_cursor[m_cursorIndex]); if (m_hasNewCursor) { m_cursorIndex = (m_cursorIndex + 1) % 2; m_hasNewCursor = false; } } void DrmOutput::updateCursor() { QImage cursorImage = m_backend->softwareCursor(); if (cursorImage.isNull()) { return; } m_hasNewCursor = true; QImage *c = m_cursor[m_cursorIndex]->image(); c->fill(Qt::transparent); QPainter p; p.begin(c); if (m_orientation == Qt::InvertedLandscapeOrientation) { QMatrix4x4 matrix; matrix.translate(cursorImage.width() / 2.0, cursorImage.height() / 2.0); matrix.rotate(180.0f, 0.0f, 0.0f, 1.0f); matrix.translate(-cursorImage.width() / 2.0, -cursorImage.height() / 2.0); p.setWorldTransform(matrix.toTransform()); } p.drawImage(QPoint(0, 0), cursorImage); p.end(); } void DrmOutput::moveCursor(const QPoint &globalPos) { QMatrix4x4 matrix; QMatrix4x4 hotspotMatrix; if (m_orientation == Qt::InvertedLandscapeOrientation) { matrix.translate(pixelSize().width() /2.0, pixelSize().height() / 2.0); matrix.rotate(180.0f, 0.0f, 0.0f, 1.0f); matrix.translate(-pixelSize().width() /2.0, -pixelSize().height() / 2.0); const auto cursorSize = m_backend->softwareCursor().size(); hotspotMatrix.translate(cursorSize.width()/2.0, cursorSize.height()/2.0); hotspotMatrix.rotate(180.0f, 0.0f, 0.0f, 1.0f); hotspotMatrix.translate(-cursorSize.width()/2.0, -cursorSize.height()/2.0); } matrix.scale(m_scale); matrix.translate(-m_globalPos.x(), -m_globalPos.y()); const QPoint p = matrix.map(globalPos) - hotspotMatrix.map(m_backend->softwareCursorHotspot()); drmModeMoveCursor(m_backend->fd(), m_crtc->id(), p.x(), p.y()); } QSize DrmOutput::pixelSize() const { if (m_orientation == Qt::PortraitOrientation || m_orientation == Qt::InvertedPortraitOrientation) { return QSize(m_mode.vdisplay, m_mode.hdisplay); } return QSize(m_mode.hdisplay, m_mode.vdisplay); } QSize DrmOutput::physicalSize() const { if (m_orientation == Qt::PortraitOrientation || m_orientation == Qt::InvertedPortraitOrientation) { return QSize(m_physicalSize.height(), m_physicalSize.width()); } return m_physicalSize; } QRect DrmOutput::geometry() const { return QRect(m_globalPos, pixelSize() / scale()); } qreal DrmOutput::scale() const { return m_scale; } static KWayland::Server::OutputInterface::DpmsMode toWaylandDpmsMode(DrmOutput::DpmsMode mode) { using namespace KWayland::Server; switch (mode) { case DrmOutput::DpmsMode::On: return OutputInterface::DpmsMode::On; case DrmOutput::DpmsMode::Standby: return OutputInterface::DpmsMode::Standby; case DrmOutput::DpmsMode::Suspend: return OutputInterface::DpmsMode::Suspend; case DrmOutput::DpmsMode::Off: return OutputInterface::DpmsMode::Off; default: Q_UNREACHABLE(); } } static DrmOutput::DpmsMode fromWaylandDpmsMode(KWayland::Server::OutputInterface::DpmsMode wlMode) { using namespace KWayland::Server; switch (wlMode) { case OutputInterface::DpmsMode::On: return DrmOutput::DpmsMode::On; case OutputInterface::DpmsMode::Standby: return DrmOutput::DpmsMode::Standby; case OutputInterface::DpmsMode::Suspend: return DrmOutput::DpmsMode::Suspend; case OutputInterface::DpmsMode::Off: return DrmOutput::DpmsMode::Off; default: Q_UNREACHABLE(); } } static QHash s_connectorNames = { {DRM_MODE_CONNECTOR_Unknown, QByteArrayLiteral("Unknown")}, {DRM_MODE_CONNECTOR_VGA, QByteArrayLiteral("VGA")}, {DRM_MODE_CONNECTOR_DVII, QByteArrayLiteral("DVI-I")}, {DRM_MODE_CONNECTOR_DVID, QByteArrayLiteral("DVI-D")}, {DRM_MODE_CONNECTOR_DVIA, QByteArrayLiteral("DVI-A")}, {DRM_MODE_CONNECTOR_Composite, QByteArrayLiteral("Composite")}, {DRM_MODE_CONNECTOR_SVIDEO, QByteArrayLiteral("SVIDEO")}, {DRM_MODE_CONNECTOR_LVDS, QByteArrayLiteral("LVDS")}, {DRM_MODE_CONNECTOR_Component, QByteArrayLiteral("Component")}, {DRM_MODE_CONNECTOR_9PinDIN, QByteArrayLiteral("DIN")}, {DRM_MODE_CONNECTOR_DisplayPort, QByteArrayLiteral("DP")}, {DRM_MODE_CONNECTOR_HDMIA, QByteArrayLiteral("HDMI-A")}, {DRM_MODE_CONNECTOR_HDMIB, QByteArrayLiteral("HDMI-B")}, {DRM_MODE_CONNECTOR_TV, QByteArrayLiteral("TV")}, {DRM_MODE_CONNECTOR_eDP, QByteArrayLiteral("eDP")}, {DRM_MODE_CONNECTOR_VIRTUAL, QByteArrayLiteral("Virtual")}, {DRM_MODE_CONNECTOR_DSI, QByteArrayLiteral("DSI")} }; namespace { quint64 refreshRateForMode(_drmModeModeInfo *m) { // Calculate higher precision (mHz) refresh rate // logic based on Weston, see compositor-drm.c quint64 refreshRate = (m->clock * 1000000LL / m->htotal + m->vtotal / 2) / m->vtotal; if (m->flags & DRM_MODE_FLAG_INTERLACE) { refreshRate *= 2; } if (m->flags & DRM_MODE_FLAG_DBLSCAN) { refreshRate /= 2; } if (m->vscan > 1) { refreshRate /= m->vscan; } return refreshRate; } } bool DrmOutput::init(drmModeConnector *connector) { initEdid(connector); initDpms(connector); initUuid(); if (m_backend->atomicModeSetting()) { if (!initPrimaryPlane()) { return false; } } else if (!m_crtc->blank()) { return false; } setDpms(DpmsMode::On); if (!m_waylandOutput.isNull()) { delete m_waylandOutput.data(); m_waylandOutput.clear(); } m_waylandOutput = waylandServer()->display()->createOutput(); connect(this, &DrmOutput::modeChanged, this, [this] { if (m_waylandOutput.isNull()) { return; } m_waylandOutput->setCurrentMode(QSize(m_mode.hdisplay, m_mode.vdisplay), refreshRateForMode(&m_mode)); } ); if (!m_waylandOutputDevice.isNull()) { delete m_waylandOutputDevice.data(); m_waylandOutputDevice.clear(); } m_waylandOutputDevice = waylandServer()->display()->createOutputDevice(); m_waylandOutputDevice->setUuid(m_uuid); if (!m_edid.eisaId.isEmpty()) { m_waylandOutput->setManufacturer(QString::fromLatin1(m_edid.eisaId)); } else { m_waylandOutput->setManufacturer(i18n("unknown")); } m_waylandOutputDevice->setManufacturer(m_waylandOutput->manufacturer()); QString connectorName = s_connectorNames.value(connector->connector_type, QByteArrayLiteral("Unknown")); QString modelName; if (!m_edid.monitorName.isEmpty()) { QString model = QString::fromLatin1(m_edid.monitorName); if (!m_edid.serialNumber.isEmpty()) { model.append('/'); model.append(QString::fromLatin1(m_edid.serialNumber)); } modelName = model; } else if (!m_edid.serialNumber.isEmpty()) { modelName = QString::fromLatin1(m_edid.serialNumber); } else { modelName = i18n("unknown"); } m_waylandOutput->setModel(connectorName + QStringLiteral("-") + QString::number(connector->connector_type_id) + QStringLiteral("-") + modelName); m_waylandOutputDevice->setModel(m_waylandOutput->model()); QSize physicalSize = !m_edid.physicalSize.isEmpty() ? m_edid.physicalSize : QSize(connector->mmWidth, connector->mmHeight); // the size might be completely borked. E.g. Samsung SyncMaster 2494HS reports 160x90 while in truth it's 520x292 // as this information is used to calculate DPI info, it's going to result in everything being huge const QByteArray unknown = QByteArrayLiteral("unkown"); KConfigGroup group = kwinApp()->config()->group("EdidOverwrite").group(m_edid.eisaId.isEmpty() ? unknown : m_edid.eisaId) .group(m_edid.monitorName.isEmpty() ? unknown : m_edid.monitorName) .group(m_edid.serialNumber.isEmpty() ? unknown : m_edid.serialNumber); if (group.hasKey("PhysicalSize")) { const QSize overwriteSize = group.readEntry("PhysicalSize", physicalSize); qCWarning(KWIN_DRM) << "Overwriting monitor physical size for" << m_edid.eisaId << "/" << m_edid.monitorName << "/" << m_edid.serialNumber << " from " << physicalSize << "to " << overwriteSize; physicalSize = overwriteSize; } m_physicalSize = physicalSize; m_waylandOutput->setPhysicalSize(physicalSize); m_waylandOutputDevice->setPhysicalSize(physicalSize); // read in mode information for (int i = 0; i < connector->count_modes; ++i) { // TODO: in AMS here we could read and store for later every mode's blob_id // would simplify isCurrentMode(..) and presentAtomically(..) in case of mode set auto *m = &connector->modes[i]; KWayland::Server::OutputInterface::ModeFlags flags; KWayland::Server::OutputDeviceInterface::ModeFlags deviceflags; if (isCurrentMode(m)) { flags |= KWayland::Server::OutputInterface::ModeFlag::Current; deviceflags |= KWayland::Server::OutputDeviceInterface::ModeFlag::Current; } if (m->type & DRM_MODE_TYPE_PREFERRED) { flags |= KWayland::Server::OutputInterface::ModeFlag::Preferred; deviceflags |= KWayland::Server::OutputDeviceInterface::ModeFlag::Preferred; } const auto refreshRate = refreshRateForMode(m); m_waylandOutput->addMode(QSize(m->hdisplay, m->vdisplay), flags, refreshRate); KWayland::Server::OutputDeviceInterface::Mode mode; mode.id = i; mode.size = QSize(m->hdisplay, m->vdisplay); mode.flags = deviceflags; mode.refreshRate = refreshRate; qCDebug(KWIN_DRM) << "Adding mode: " << i << mode.size; m_waylandOutputDevice->addMode(mode); } // set dpms if (!m_dpms.isNull()) { m_waylandOutput->setDpmsSupported(true); m_waylandOutput->setDpmsMode(toWaylandDpmsMode(m_dpmsMode)); connect(m_waylandOutput.data(), &KWayland::Server::OutputInterface::dpmsModeRequested, this, [this] (KWayland::Server::OutputInterface::DpmsMode mode) { setDpms(fromWaylandDpmsMode(mode)); }, Qt::QueuedConnection ); } m_waylandOutput->create(); qCDebug(KWIN_DRM) << "Created OutputDevice"; m_waylandOutputDevice->create(); return true; } void DrmOutput::initUuid() { QCryptographicHash hash(QCryptographicHash::Md5); hash.addData(QByteArray::number(m_conn->id())); hash.addData(m_edid.eisaId); hash.addData(m_edid.monitorName); hash.addData(m_edid.serialNumber); m_uuid = hash.result().toHex().left(10); } bool DrmOutput::isCurrentMode(const drmModeModeInfo *mode) const { return mode->clock == m_mode.clock && mode->hdisplay == m_mode.hdisplay && mode->hsync_start == m_mode.hsync_start && mode->hsync_end == m_mode.hsync_end && mode->htotal == m_mode.htotal && mode->hskew == m_mode.hskew && mode->vdisplay == m_mode.vdisplay && mode->vsync_start == m_mode.vsync_start && mode->vsync_end == m_mode.vsync_end && mode->vtotal == m_mode.vtotal && mode->vscan == m_mode.vscan && mode->vrefresh == m_mode.vrefresh && mode->flags == m_mode.flags && mode->type == m_mode.type && qstrcmp(mode->name, m_mode.name) == 0; } static bool verifyEdidHeader(drmModePropertyBlobPtr edid) { const uint8_t *data = reinterpret_cast(edid->data); if (data[0] != 0x00) { return false; } for (int i = 1; i < 7; ++i) { if (data[i] != 0xFF) { return false; } } if (data[7] != 0x00) { return false; } return true; } static QByteArray extractEisaId(drmModePropertyBlobPtr edid) { /* * From EDID standard section 3.4: * The ID Manufacturer Name field, shown in Table 3.5, contains a 2-byte representation of the monitor's * manufacturer. This is the same as the EISA ID. It is based on compressed ASCII, “0001=A” ... “11010=Z”. * * The table: * | Byte | Bit | * | | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | * ---------------------------------------- * | 1 | 0)| (4| 3 | 2 | 1 | 0)| (4| 3 | * | | * | Character 1 | Char 2| * ---------------------------------------- * | 2 | 2 | 1 | 0)| (4| 3 | 2 | 1 | 0)| * | | Character2| Character 3 | * ---------------------------------------- **/ const uint8_t *data = reinterpret_cast(edid->data); static const uint offset = 0x8; char id[4]; if (data[offset] >> 7) { // bit at position 7 is not a 0 return QByteArray(); } // shift two bits to right, and with 7 right most bits id[0] = 'A' + ((data[offset] >> 2) & 0x1f) -1; // for first byte: take last two bits and shift them 3 to left (000xx000) // for second byte: shift 5 bits to right and take 3 right most bits (00000xxx) // or both together id[1] = 'A' + (((data[offset] & 0x3) << 3) | ((data[offset + 1] >> 5) & 0x7)) - 1; // take five right most bits id[2] = 'A' + (data[offset + 1] & 0x1f) - 1; id[3] = '\0'; return QByteArray(id); } static void extractMonitorDescriptorDescription(drmModePropertyBlobPtr blob, DrmOutput::Edid &edid) { // see section 3.10.3 const uint8_t *data = reinterpret_cast(blob->data); static const uint offset = 0x36; static const uint blockLength = 18; for (int i = 0; i < 5; ++i) { const uint co = offset + i * blockLength; // Flag = 0000h when block used as descriptor if (data[co] != 0) { continue; } if (data[co + 1] != 0) { continue; } // Reserved = 00h when block used as descriptor if (data[co + 2] != 0) { continue; } /* * FFh: Monitor Serial Number - Stored as ASCII, code page # 437, ≤ 13 bytes. * FEh: ASCII String - Stored as ASCII, code page # 437, ≤ 13 bytes. * FDh: Monitor range limits, binary coded * FCh: Monitor name, stored as ASCII, code page # 437 * FBh: Descriptor contains additional color point data * FAh: Descriptor contains additional Standard Timing Identifications * F9h - 11h: Currently undefined * 10h: Dummy descriptor, used to indicate that the descriptor space is unused * 0Fh - 00h: Descriptor defined by manufacturer. */ if (data[co + 3] == 0xfc && edid.monitorName.isEmpty()) { edid.monitorName = QByteArray((const char *)(&data[co + 5]), 12).trimmed(); } if (data[co + 3] == 0xfe) { const QByteArray id = QByteArray((const char *)(&data[co + 5]), 12).trimmed(); if (!id.isEmpty()) { edid.eisaId = id; } } if (data[co + 3] == 0xff) { edid.serialNumber = QByteArray((const char *)(&data[co + 5]), 12).trimmed(); } } } static QByteArray extractSerialNumber(drmModePropertyBlobPtr edid) { // see section 3.4 const uint8_t *data = reinterpret_cast(edid->data); static const uint offset = 0x0C; /* * The ID serial number is a 32-bit serial number used to differentiate between individual instances of the same model * of monitor. Its use is optional. When used, the bit order for this field follows that shown in Table 3.6. The EDID * structure Version 1 Revision 1 and later offer a way to represent the serial number of the monitor as an ASCII string * in a separate descriptor block. */ uint32_t serialNumber = 0; serialNumber = (uint32_t) data[offset + 0]; serialNumber |= (uint32_t) data[offset + 1] << 8; serialNumber |= (uint32_t) data[offset + 2] << 16; serialNumber |= (uint32_t) data[offset + 3] << 24; if (serialNumber == 0) { return QByteArray(); } return QByteArray::number(serialNumber); } static QSize extractPhysicalSize(drmModePropertyBlobPtr edid) { const uint8_t *data = reinterpret_cast(edid->data); return QSize(data[0x15], data[0x16]) * 10; } void DrmOutput::initEdid(drmModeConnector *connector) { ScopedDrmPointer<_drmModePropertyBlob, &drmModeFreePropertyBlob> edid; for (int i = 0; i < connector->count_props; ++i) { ScopedDrmPointer<_drmModeProperty, &drmModeFreeProperty> property(drmModeGetProperty(m_backend->fd(), connector->props[i])); if (!property) { continue; } if ((property->flags & DRM_MODE_PROP_BLOB) && qstrcmp(property->name, "EDID") == 0) { edid.reset(drmModeGetPropertyBlob(m_backend->fd(), connector->prop_values[i])); } } if (!edid) { return; } // for documentation see: http://read.pudn.com/downloads110/ebook/456020/E-EDID%20Standard.pdf if (edid->length < 128) { return; } if (!verifyEdidHeader(edid.data())) { return; } m_edid.eisaId = extractEisaId(edid.data()); m_edid.serialNumber = extractSerialNumber(edid.data()); // parse monitor descriptor description extractMonitorDescriptorDescription(edid.data(), m_edid); m_edid.physicalSize = extractPhysicalSize(edid.data()); } bool DrmOutput::initPrimaryPlane() { for (int i = 0; i < m_backend->planes().size(); ++i) { DrmPlane* p = m_backend->planes()[i]; if (!p) { continue; } if (p->type() != DrmPlane::TypeIndex::Primary) { continue; } if (p->output()) { // Plane already has an output continue; } if (m_primaryPlane) { // Output already has a primary plane continue; } if (!p->isCrtcSupported(m_crtc->resIndex())) { continue; } p->setOutput(this); m_primaryPlane = p; qCDebug(KWIN_DRM) << "Initialized primary plane" << p->id() << "on CRTC" << m_crtc->id(); return true; } qCCritical(KWIN_DRM) << "Failed to initialize primary plane."; return false; } bool DrmOutput::initCursorPlane() // TODO: Add call in init (but needs layer support in general first) { for (int i = 0; i < m_backend->planes().size(); ++i) { DrmPlane* p = m_backend->planes()[i]; if (!p) { continue; } if (p->type() != DrmPlane::TypeIndex::Cursor) { continue; } if (p->output()) { // Plane already has an output continue; } if (m_cursorPlane) { // Output already has a cursor plane continue; } if (!p->isCrtcSupported(m_crtc->resIndex())) { continue; } p->setOutput(this); m_cursorPlane = p; qCDebug(KWIN_DRM) << "Initialized cursor plane" << p->id() << "on CRTC" << m_crtc->id(); return true; } return false; } void DrmOutput::initDpms(drmModeConnector *connector) { for (int i = 0; i < connector->count_props; ++i) { ScopedDrmPointer<_drmModeProperty, &drmModeFreeProperty> property(drmModeGetProperty(m_backend->fd(), connector->props[i])); if (!property) { continue; } if (qstrcmp(property->name, "DPMS") == 0) { m_dpms.swap(property); break; } } } void DrmOutput::setDpms(DrmOutput::DpmsMode mode) { if (m_dpms.isNull()) { return; } if (mode == m_dpmsModePending) { qCDebug(KWIN_DRM) << "New DPMS mode equals old mode. DPMS unchanged."; return; } m_dpmsModePending = mode; if (m_backend->atomicModeSetting()) { m_modesetRequested = true; if (mode == DpmsMode::On) { if (m_pageFlipPending) { m_pageFlipPending = false; Compositor::self()->bufferSwapComplete(); } dpmsOnHandler(); } else { m_dpmsAtomicOffPending = true; if (!m_pageFlipPending) { dpmsAtomicOff(); } } } else { if (drmModeConnectorSetProperty(m_backend->fd(), m_conn->id(), m_dpms->prop_id, uint64_t(mode)) < 0) { m_dpmsModePending = m_dpmsMode; qCWarning(KWIN_DRM) << "Setting DPMS failed"; return; } if (mode == DpmsMode::On) { dpmsOnHandler(); } else { dpmsOffHandler(); } m_dpmsMode = m_dpmsModePending; } } void DrmOutput::dpmsOnHandler() { qCDebug(KWIN_DRM) << "DPMS mode set for output" << m_crtc->id() << "to On."; if (m_waylandOutput) { m_waylandOutput->setDpmsMode(toWaylandDpmsMode(m_dpmsModePending)); } emit dpmsChanged(); m_backend->checkOutputsAreOn(); if (!m_backend->atomicModeSetting()) { m_crtc->blank(); } if (Compositor *compositor = Compositor::self()) { compositor->addRepaintFull(); } } void DrmOutput::dpmsOffHandler() { qCDebug(KWIN_DRM) << "DPMS mode set for output" << m_crtc->id() << "to Off."; if (m_waylandOutput) { m_waylandOutput->setDpmsMode(toWaylandDpmsMode(m_dpmsModePending)); } emit dpmsChanged(); m_backend->outputWentOff(); } QString DrmOutput::name() const { if (!m_waylandOutput) { return i18n("unknown"); } return QStringLiteral("%1 %2").arg(m_waylandOutput->manufacturer()).arg(m_waylandOutput->model()); } int DrmOutput::currentRefreshRate() const { if (!m_waylandOutput) { return 60000; } return m_waylandOutput->refreshRate(); } void DrmOutput::setGlobalPos(const QPoint &pos) { m_globalPos = pos; if (m_waylandOutput) { m_waylandOutput->setGlobalPosition(pos); } if (m_waylandOutputDevice) { m_waylandOutputDevice->setGlobalPosition(pos); } } void DrmOutput::setScale(qreal scale) { m_scale = scale; if (m_waylandOutput) { m_waylandOutput->setScale(scale); } if (m_waylandOutputDevice) { m_waylandOutputDevice->setScale(scale); } } void DrmOutput::setChanges(KWayland::Server::OutputChangeSet *changes) { m_changeset = changes; qCDebug(KWIN_DRM) << "set changes in DrmOutput"; commitChanges(); } bool DrmOutput::commitChanges() { Q_ASSERT(!m_waylandOutputDevice.isNull()); Q_ASSERT(!m_waylandOutput.isNull()); if (m_changeset.isNull()) { qCDebug(KWIN_DRM) << "no changes"; // No changes to an output is an entirely valid thing return true; } if (m_changeset->enabledChanged()) { qCDebug(KWIN_DRM) << "Setting enabled:"; m_waylandOutputDevice->setEnabled(m_changeset->enabled()); } if (m_changeset->modeChanged()) { qCDebug(KWIN_DRM) << "Setting new mode:" << m_changeset->mode(); m_waylandOutputDevice->setCurrentMode(m_changeset->mode()); updateMode(m_changeset->mode()); } if (m_changeset->transformChanged()) { qCDebug(KWIN_DRM) << "Server setting transform: " << (int)(m_changeset->transform()); m_waylandOutputDevice->setTransform(m_changeset->transform()); using KWayland::Server::OutputDeviceInterface; using KWayland::Server::OutputInterface; switch (m_changeset->transform()) { case OutputDeviceInterface::Transform::Normal: if (m_primaryPlane) { m_primaryPlane->setTransformation(DrmPlane::Transformation::Rotate0); } if (m_waylandOutput) { m_waylandOutput->setTransform(OutputInterface::Transform::Normal); } m_orientation = Qt::PrimaryOrientation; break; case OutputDeviceInterface::Transform::Rotated90: if (m_primaryPlane) { m_primaryPlane->setTransformation(DrmPlane::Transformation::Rotate90); } if (m_waylandOutput) { m_waylandOutput->setTransform(OutputInterface::Transform::Rotated90); } m_orientation = Qt::PortraitOrientation; break; case OutputDeviceInterface::Transform::Rotated180: if (m_primaryPlane) { m_primaryPlane->setTransformation(DrmPlane::Transformation::Rotate180); } if (m_waylandOutput) { m_waylandOutput->setTransform(OutputInterface::Transform::Rotated180); } m_orientation = Qt::InvertedLandscapeOrientation; break; case OutputDeviceInterface::Transform::Rotated270: if (m_primaryPlane) { m_primaryPlane->setTransformation(DrmPlane::Transformation::Rotate270); } if (m_waylandOutput) { m_waylandOutput->setTransform(OutputInterface::Transform::Rotated270); } m_orientation = Qt::InvertedPortraitOrientation; break; case OutputDeviceInterface::Transform::Flipped: // TODO: what is this exactly? if (m_waylandOutput) { m_waylandOutput->setTransform(OutputInterface::Transform::Flipped); } break; case OutputDeviceInterface::Transform::Flipped90: // TODO: what is this exactly? if (m_waylandOutput) { m_waylandOutput->setTransform(OutputInterface::Transform::Flipped90); } break; case OutputDeviceInterface::Transform::Flipped180: // TODO: what is this exactly? if (m_waylandOutput) { m_waylandOutput->setTransform(OutputInterface::Transform::Flipped180); } break; case OutputDeviceInterface::Transform::Flipped270: // TODO: what is this exactly? if (m_waylandOutput) { m_waylandOutput->setTransform(OutputInterface::Transform::Flipped270); } break; } m_modesetRequested = true; // the cursor might need to get rotated updateCursor(); showCursor(); emit modeChanged(); } if (m_changeset->positionChanged()) { qCDebug(KWIN_DRM) << "Server setting position: " << m_changeset->position(); setGlobalPos(m_changeset->position()); // may just work already! } if (m_changeset->scaleChanged()) { qCDebug(KWIN_DRM) << "Setting scale:" << m_changeset->scale(); setScale(m_changeset->scale()); } return true; } void DrmOutput::updateMode(int modeIndex) { // get all modes on the connector ScopedDrmPointer<_drmModeConnector, &drmModeFreeConnector> connector(drmModeGetConnector(m_backend->fd(), m_conn->id())); if (connector->count_modes <= modeIndex) { // TODO: error? return; } if (isCurrentMode(&connector->modes[modeIndex])) { // nothing to do return; } m_mode = connector->modes[modeIndex]; m_modesetRequested = true; emit modeChanged(); } void DrmOutput::pageFlipped() { m_pageFlipPending = false; if (!m_crtc) { return; } // Egl based surface buffers get destroyed, QPainter based dumb buffers not // TODO: split up DrmOutput in two for dumb and egl/gbm surface buffer compatible subclasses completely? if (m_backend->deleteBufferAfterPageFlip()) { if (m_backend->atomicModeSetting()) { if (!m_primaryPlane->next()) { // on manual vt switch // TODO: when we later use overlay planes it might happen, that we have a page flip with only // damage on one of these, and therefore the primary plane has no next buffer // -> Then we don't want to return here! if (m_primaryPlane->current()) { m_primaryPlane->current()->releaseGbm(); } return; } for (DrmPlane *p : m_nextPlanesFlipList) { p->flipBufferWithDelete(); } m_nextPlanesFlipList.clear(); } else { if (!m_crtc->next()) { // on manual vt switch if (DrmBuffer *b = m_crtc->current()) { b->releaseGbm(); } } m_crtc->flipBuffer(); } } else { if (m_backend->atomicModeSetting()){ for (DrmPlane *p : m_nextPlanesFlipList) { p->flipBuffer(); } m_nextPlanesFlipList.clear(); } else { m_crtc->flipBuffer(); } m_crtc->flipBuffer(); } } bool DrmOutput::present(DrmBuffer *buffer) { if (m_backend->atomicModeSetting()) { return presentAtomically(buffer); } else { return presentLegacy(buffer); } } bool DrmOutput::dpmsAtomicOff() { m_dpmsAtomicOffPending = false; // TODO: With multiple planes: deactivate all of them here delete m_primaryPlane->next(); m_primaryPlane->setNext(nullptr); m_nextPlanesFlipList << m_primaryPlane; if (!doAtomicCommit(AtomicCommitMode::Test)) { qCDebug(KWIN_DRM) << "Atomic test commit to Dpms Off failed. Aborting."; return false; } if (!doAtomicCommit(AtomicCommitMode::Real)) { qCDebug(KWIN_DRM) << "Atomic commit to Dpms Off failed. This should have never happened! Aborting."; return false; } m_nextPlanesFlipList.clear(); dpmsOffHandler(); return true; } bool DrmOutput::presentAtomically(DrmBuffer *buffer) { if (!LogindIntegration::self()->isActiveSession()) { qCWarning(KWIN_DRM) << "Logind session not active."; return false; } if (m_pageFlipPending) { qCWarning(KWIN_DRM) << "Page not yet flipped."; return false; } m_primaryPlane->setNext(buffer); m_nextPlanesFlipList << m_primaryPlane; if (!doAtomicCommit(AtomicCommitMode::Test)) { //TODO: When we use planes for layered rendering, fallback to renderer instead. Also for direct scanout? //TODO: Probably should undo setNext and reset the flip list qCDebug(KWIN_DRM) << "Atomic test commit failed. Aborting present."; // go back to previous state if (m_lastWorkingState.valid) { m_mode = m_lastWorkingState.mode; m_orientation = m_lastWorkingState.orientation; setGlobalPos(m_lastWorkingState.globalPos); if (m_primaryPlane) { m_primaryPlane->setTransformation(m_lastWorkingState.planeTransformations); } m_modesetRequested = true; // the cursor might need to get rotated updateCursor(); showCursor(); // TODO: forward to OutputInterface and OutputDeviceInterface emit modeChanged(); emit screens()->changed(); } return false; } const bool wasModeset = m_modesetRequested; if (!doAtomicCommit(AtomicCommitMode::Real)) { qCDebug(KWIN_DRM) << "Atomic commit failed. This should have never happened! Aborting present."; //TODO: Probably should undo setNext and reset the flip list return false; } if (wasModeset) { // store current mode set as new good state m_lastWorkingState.mode = m_mode; m_lastWorkingState.orientation = m_orientation; m_lastWorkingState.globalPos = m_globalPos; if (m_primaryPlane) { m_lastWorkingState.planeTransformations = m_primaryPlane->transformation(); } m_lastWorkingState.valid = true; } m_pageFlipPending = true; return true; } bool DrmOutput::presentLegacy(DrmBuffer *buffer) { if (m_crtc->next()) { return false; } if (!LogindIntegration::self()->isActiveSession()) { m_crtc->setNext(buffer); return false; } if (m_dpmsMode != DpmsMode::On) { return false; } // Do we need to set a new mode first? if (!m_crtc->current() || m_crtc->current()->needsModeChange(buffer)) { if (!setModeLegacy(buffer)) { return false; } } const bool ok = drmModePageFlip(m_backend->fd(), m_crtc->id(), buffer->bufferId(), DRM_MODE_PAGE_FLIP_EVENT, this) == 0; if (ok) { m_crtc->setNext(buffer); } else { qCWarning(KWIN_DRM) << "Page flip failed:" << strerror(errno); } return ok; } bool DrmOutput::setModeLegacy(DrmBuffer *buffer) { uint32_t connId = m_conn->id(); if (drmModeSetCrtc(m_backend->fd(), m_crtc->id(), buffer->bufferId(), 0, 0, &connId, 1, &m_mode) == 0) { return true; } else { qCWarning(KWIN_DRM) << "Mode setting failed"; return false; } } bool DrmOutput::doAtomicCommit(AtomicCommitMode mode) { drmModeAtomicReq *req = drmModeAtomicAlloc(); auto errorHandler = [this, mode, req] () { if (mode == AtomicCommitMode::Test) { // TODO: when we later test overlay planes, make sure we change only the right stuff back } if (req) { drmModeAtomicFree(req); } if (m_dpmsMode != m_dpmsModePending) { qCWarning(KWIN_DRM) << "Setting DPMS failed"; m_dpmsModePending = m_dpmsMode; if (m_dpmsMode != DpmsMode::On) { dpmsOffHandler(); } } // TODO: see above, rework later for overlay planes! for (DrmPlane *p : m_nextPlanesFlipList) { p->setNext(nullptr); } m_nextPlanesFlipList.clear(); }; if (!req) { qCWarning(KWIN_DRM) << "DRM: couldn't allocate atomic request"; errorHandler(); return false; } uint32_t flags = 0; // Do we need to set a new mode? if (m_modesetRequested) { if (m_dpmsModePending == DpmsMode::On) { if (drmModeCreatePropertyBlob(m_backend->fd(), &m_mode, sizeof(m_mode), &m_blobId) != 0) { qCWarning(KWIN_DRM) << "Failed to create property blob"; errorHandler(); return false; } } if (!atomicReqModesetPopulate(req, m_dpmsModePending == DpmsMode::On)){ qCWarning(KWIN_DRM) << "Failed to populate Atomic Modeset"; errorHandler(); return false; } flags |= DRM_MODE_ATOMIC_ALLOW_MODESET; } if (mode == AtomicCommitMode::Real) { if (m_dpmsModePending == DpmsMode::On) { if (!(flags & DRM_MODE_ATOMIC_ALLOW_MODESET)) { // TODO: Evaluating this condition should only be necessary, as long as we expect older kernels than 4.10. flags |= DRM_MODE_ATOMIC_NONBLOCK; } flags |= DRM_MODE_PAGE_FLIP_EVENT; } } else { flags |= DRM_MODE_ATOMIC_TEST_ONLY; } bool ret = true; // TODO: Make sure when we use more than one plane at a time, that we go through this list in the right order. for (int i = m_nextPlanesFlipList.size() - 1; 0 <= i; i-- ) { DrmPlane *p = m_nextPlanesFlipList[i]; ret &= p->atomicPopulate(req); } if (!ret) { qCWarning(KWIN_DRM) << "Failed to populate atomic planes. Abort atomic commit!"; errorHandler(); return false; } if (drmModeAtomicCommit(m_backend->fd(), req, flags, this)) { qCWarning(KWIN_DRM) << "Atomic request failed to commit:" << strerror(errno); errorHandler(); return false; } if (mode == AtomicCommitMode::Real && (flags & DRM_MODE_ATOMIC_ALLOW_MODESET)) { qCDebug(KWIN_DRM) << "Atomic Modeset successful."; m_modesetRequested = false; m_dpmsMode = m_dpmsModePending; } drmModeAtomicFree(req); return true; } bool DrmOutput::atomicReqModesetPopulate(drmModeAtomicReq *req, bool enable) { if (enable) { m_primaryPlane->setValue(int(DrmPlane::PropertyIndex::SrcX), 0); m_primaryPlane->setValue(int(DrmPlane::PropertyIndex::SrcY), 0); m_primaryPlane->setValue(int(DrmPlane::PropertyIndex::SrcW), m_mode.hdisplay << 16); m_primaryPlane->setValue(int(DrmPlane::PropertyIndex::SrcH), m_mode.vdisplay << 16); m_primaryPlane->setValue(int(DrmPlane::PropertyIndex::CrtcW), m_mode.hdisplay); m_primaryPlane->setValue(int(DrmPlane::PropertyIndex::CrtcH), m_mode.vdisplay); m_primaryPlane->setValue(int(DrmPlane::PropertyIndex::CrtcId), m_crtc->id()); } else { if (m_backend->deleteBufferAfterPageFlip()) { delete m_primaryPlane->current(); delete m_primaryPlane->next(); } m_primaryPlane->setCurrent(nullptr); m_primaryPlane->setNext(nullptr); m_primaryPlane->setValue(int(DrmPlane::PropertyIndex::SrcX), 0); m_primaryPlane->setValue(int(DrmPlane::PropertyIndex::SrcY), 0); m_primaryPlane->setValue(int(DrmPlane::PropertyIndex::SrcW), 0); m_primaryPlane->setValue(int(DrmPlane::PropertyIndex::SrcH), 0); m_primaryPlane->setValue(int(DrmPlane::PropertyIndex::CrtcW), 0); m_primaryPlane->setValue(int(DrmPlane::PropertyIndex::CrtcH), 0); m_primaryPlane->setValue(int(DrmPlane::PropertyIndex::CrtcId), 0); } m_conn->setValue(int(DrmConnector::PropertyIndex::CrtcId), enable ? m_crtc->id() : 0); m_crtc->setValue(int(DrmCrtc::PropertyIndex::ModeId), enable ? m_blobId : 0); m_crtc->setValue(int(DrmCrtc::PropertyIndex::Active), enable); bool ret = true; ret &= m_conn->atomicPopulate(req); ret &= m_crtc->atomicPopulate(req); return ret; } bool DrmOutput::initCursor(const QSize &cursorSize) { auto createCursor = [this, cursorSize] (int index) { m_cursor[index] = m_backend->createBuffer(cursorSize); if (!m_cursor[index]->map(QImage::Format_ARGB32_Premultiplied)) { return false; } return true; }; if (!createCursor(0) || !createCursor(1)) { return false; } return true; } }