/******************************************************************** KWin - the KDE window manager This file is part of the KDE project. Copyright (C) 2006 Lubos Lunak Copyright (C) 2009, 2010, 2011 Martin Gräßlin Based on glcompmgr code by Felix Bellaby. Using code from Compiz and Beryl. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . *********************************************************************/ #include "scene_opengl.h" #ifdef KWIN_HAVE_EGL #include "eglonxbackend.h" // for Wayland #if HAVE_WAYLAND_EGL #include "egl_wayland_backend.h" #endif #endif #ifndef KWIN_HAVE_OPENGLES #include "glxbackend.h" #endif #include #include #include "utils.h" #include "client.h" #include "composite.h" #include "deleted.h" #include "effects.h" #include "lanczosfilter.h" #include "main.h" #include "overlaywindow.h" #include "paintredirector.h" #include "screens.h" #include "workspace.h" #include #include #include // turns on checks for opengl errors in various places (for easier finding of them) // normally only few of them are enabled //#define CHECK_GL_ERROR #include #include #include #include #include #include #include #include #include #include #include #include namespace KWin { extern int currentRefreshRate(); //**************************************** // SceneOpenGL //**************************************** OpenGLBackend::OpenGLBackend() : m_syncsToVBlank(false) , m_blocksForRetrace(false) , m_directRendering(false) , m_haveBufferAge(false) , m_failed(false) { } OpenGLBackend::~OpenGLBackend() { } void OpenGLBackend::setFailed(const QString &reason) { qWarning() << "Creating the OpenGL rendering failed: " << reason; m_failed = true; } void OpenGLBackend::idle() { if (hasPendingFlush()) { effects->makeOpenGLContextCurrent(); present(); } } void OpenGLBackend::addToDamageHistory(const QRegion ®ion) { if (m_damageHistory.count() > 10) m_damageHistory.removeLast(); m_damageHistory.prepend(region); } QRegion OpenGLBackend::accumulatedDamageHistory(int bufferAge) const { QRegion region; // Note: An age of zero means the buffer contents are undefined if (bufferAge > 0 && bufferAge <= m_damageHistory.count()) { for (int i = 0; i < bufferAge - 1; i++) region |= m_damageHistory[i]; } else { region = QRegion(0, 0, displayWidth(), displayHeight()); } return region; } bool OpenGLBackend::isLastFrameRendered() const { return true; } OverlayWindow* OpenGLBackend::overlayWindow() { return NULL; } /************************************************ * SceneOpenGL ***********************************************/ SceneOpenGL::SceneOpenGL(Workspace* ws, OpenGLBackend *backend) : Scene(ws) , init_ok(true) , m_backend(backend) { if (m_backend->isFailed()) { init_ok = false; return; } if (!viewportLimitsMatched(QSize(displayWidth(), displayHeight()))) return; // perform Scene specific checks GLPlatform *glPlatform = GLPlatform::instance(); #ifndef KWIN_HAVE_OPENGLES if (!hasGLExtension(QStringLiteral("GL_ARB_texture_non_power_of_two")) && !hasGLExtension(QStringLiteral("GL_ARB_texture_rectangle"))) { qCritical() << "GL_ARB_texture_non_power_of_two and GL_ARB_texture_rectangle missing"; init_ok = false; return; // error } #endif if (glPlatform->isMesaDriver() && glPlatform->mesaVersion() < kVersionNumber(8, 0)) { qCritical() << "KWin requires at least Mesa 8.0 for OpenGL compositing."; init_ok = false; return; } #ifndef KWIN_HAVE_OPENGLES glDrawBuffer(GL_BACK); #endif m_debug = qstrcmp(qgetenv("KWIN_GL_DEBUG"), "1") == 0; // set strict binding if (options->isGlStrictBindingFollowsDriver()) { options->setGlStrictBinding(!glPlatform->supports(LooseBinding)); } } SceneOpenGL::~SceneOpenGL() { // do cleanup after initBuffer() SceneOpenGL::EffectFrame::cleanup(); if (init_ok) { // backend might be still needed for a different scene delete m_backend; } } SceneOpenGL *SceneOpenGL::createScene() { OpenGLBackend *backend = NULL; OpenGLPlatformInterface platformInterface = options->glPlatformInterface(); switch (platformInterface) { case GlxPlatformInterface: #ifndef KWIN_HAVE_OPENGLES backend = new GlxBackend(); #endif break; case EglPlatformInterface: #ifdef KWIN_HAVE_EGL #if HAVE_WAYLAND_EGL if (kwinApp()->shouldUseWaylandForCompositing()) { backend = new EglWaylandBackend(); } else { backend = new EglOnXBackend(); } #else backend = new EglOnXBackend(); #endif #endif break; default: // no backend available return NULL; } if (!backend || backend->isFailed()) { delete backend; return NULL; } SceneOpenGL *scene = NULL; // first let's try an OpenGL 2 scene if (SceneOpenGL2::supported(backend)) { scene = new SceneOpenGL2(backend); if (scene->initFailed()) { delete scene; scene = NULL; } else { return scene; } } if (!scene) { if (GLPlatform::instance()->recommendedCompositor() == XRenderCompositing) { qCritical() << "OpenGL driver recommends XRender based compositing. Falling back to XRender."; qCritical() << "To overwrite the detection use the environment variable KWIN_COMPOSE"; qCritical() << "For more information see http://community.kde.org/KWin/Environment_Variables#KWIN_COMPOSE"; QTimer::singleShot(0, Compositor::self(), SLOT(fallbackToXRenderCompositing())); } delete backend; } return scene; } OverlayWindow *SceneOpenGL::overlayWindow() { return m_backend->overlayWindow(); } bool SceneOpenGL::syncsToVBlank() const { return m_backend->syncsToVBlank(); } bool SceneOpenGL::blocksForRetrace() const { return m_backend->blocksForRetrace(); } void SceneOpenGL::idle() { m_backend->idle(); Scene::idle(); } bool SceneOpenGL::initFailed() const { return !init_ok; } #ifndef KWIN_HAVE_OPENGLES void SceneOpenGL::copyPixels(const QRegion ®ion) { foreach (const QRect &r, region.rects()) { const int x0 = r.x(); const int y0 = displayHeight() - r.y() - r.height(); const int x1 = r.x() + r.width(); const int y1 = displayHeight() - r.y(); glBlitFramebuffer(x0, y0, x1, y1, x0, y0, x1, y1, GL_COLOR_BUFFER_BIT, GL_NEAREST); } } #endif #ifndef KWIN_HAVE_OPENGLES # define GL_GUILTY_CONTEXT_RESET_KWIN GL_GUILTY_CONTEXT_RESET_ARB # define GL_INNOCENT_CONTEXT_RESET_KWIN GL_INNOCENT_CONTEXT_RESET_ARB # define GL_UNKNOWN_CONTEXT_RESET_KWIN GL_UNKNOWN_CONTEXT_RESET_ARB #else # define GL_GUILTY_CONTEXT_RESET_KWIN GL_GUILTY_CONTEXT_RESET_EXT # define GL_INNOCENT_CONTEXT_RESET_KWIN GL_INNOCENT_CONTEXT_RESET_EXT # define GL_UNKNOWN_CONTEXT_RESET_KWIN GL_UNKNOWN_CONTEXT_RESET_EXT #endif void SceneOpenGL::handleGraphicsReset(GLenum status) { switch (status) { case GL_GUILTY_CONTEXT_RESET_KWIN: qDebug() << "A graphics reset attributable to the current GL context occurred."; break; case GL_INNOCENT_CONTEXT_RESET_KWIN: qDebug() << "A graphics reset not attributable to the current GL context occurred."; break; case GL_UNKNOWN_CONTEXT_RESET_KWIN: qDebug() << "A graphics reset of an unknown cause occurred."; break; default: break; } QElapsedTimer timer; timer.start(); // Wait until the reset is completed or max 10 seconds while (timer.elapsed() < 10000 && glGetGraphicsResetStatus() != GL_NO_ERROR) usleep(50); qDebug() << "Attempting to reset compositing."; QMetaObject::invokeMethod(this, "resetCompositing", Qt::QueuedConnection); KNotification::event(QStringLiteral("graphicsreset"), i18n("Desktop effects were restarted due to a graphics reset")); } qint64 SceneOpenGL::paint(QRegion damage, ToplevelList toplevels) { // actually paint the frame, flushed with the NEXT frame createStackingOrder(toplevels); m_backend->makeCurrent(); QRegion repaint = m_backend->prepareRenderingFrame(); const GLenum status = glGetGraphicsResetStatus(); if (status != GL_NO_ERROR) { handleGraphicsReset(status); return 0; } int mask = 0; #ifdef CHECK_GL_ERROR checkGLError("Paint1"); #endif // After this call, updateRegion will contain the damaged region in the // back buffer. This is the region that needs to be posted to repair // the front buffer. It doesn't include the additional damage returned // by prepareRenderingFrame(). validRegion is the region that has been // repainted, and may be larger than updateRegion. QRegion updateRegion, validRegion; paintScreen(&mask, damage, repaint, &updateRegion, &validRegion); // call generic implementation #ifndef KWIN_HAVE_OPENGLES const QRegion displayRegion(0, 0, displayWidth(), displayHeight()); // copy dirty parts from front to backbuffer if (!m_backend->supportsBufferAge() && options->glPreferBufferSwap() == Options::CopyFrontBuffer && validRegion != displayRegion) { glReadBuffer(GL_FRONT); copyPixels(displayRegion - validRegion); glReadBuffer(GL_BACK); validRegion = displayRegion; } #endif #ifdef CHECK_GL_ERROR checkGLError("Paint2"); #endif m_backend->endRenderingFrame(validRegion, updateRegion); // do cleanup clearStackingOrder(); checkGLError("PostPaint"); return m_backend->renderTime(); } QMatrix4x4 SceneOpenGL::transformation(int mask, const ScreenPaintData &data) const { QMatrix4x4 matrix; if (!(mask & PAINT_SCREEN_TRANSFORMED)) return matrix; matrix.translate(data.translation()); data.scale().applyTo(&matrix); if (data.rotationAngle() == 0.0) return matrix; // Apply the rotation // cannot use data.rotation->applyTo(&matrix) as QGraphicsRotation uses projectedRotate to map back to 2D matrix.translate(data.rotationOrigin()); const QVector3D axis = data.rotationAxis(); matrix.rotate(data.rotationAngle(), axis.x(), axis.y(), axis.z()); matrix.translate(-data.rotationOrigin()); return matrix; } void SceneOpenGL::paintBackground(QRegion region) { PaintClipper pc(region); if (!PaintClipper::clip()) { glClearColor(0, 0, 0, 1); glClear(GL_COLOR_BUFFER_BIT); return; } if (pc.clip() && pc.paintArea().isEmpty()) return; // no background to paint QVector verts; for (PaintClipper::Iterator iterator; !iterator.isDone(); iterator.next()) { QRect r = iterator.boundingRect(); verts << r.x() + r.width() << r.y(); verts << r.x() << r.y(); verts << r.x() << r.y() + r.height(); verts << r.x() << r.y() + r.height(); verts << r.x() + r.width() << r.y() + r.height(); verts << r.x() + r.width() << r.y(); } doPaintBackground(verts); } void SceneOpenGL::extendPaintRegion(QRegion ®ion, bool opaqueFullscreen) { if (m_backend->supportsBufferAge()) return; if (options->glPreferBufferSwap() == Options::ExtendDamage) { // only Extend "large" repaints const QRegion displayRegion(0, 0, displayWidth(), displayHeight()); uint damagedPixels = 0; const uint fullRepaintLimit = (opaqueFullscreen?0.49f:0.748f)*displayWidth()*displayHeight(); // 16:9 is 75% of 4:3 and 2.55:1 is 49.01% of 5:4 // (5:4 is the most square format and 2.55:1 is Cinemascope55 - the widest ever shot // movie aspect - two times ;-) It's a Fox format, though, so maybe we want to restrict // to 2.20:1 - Panavision - which has actually been used for interesting movies ...) // would be 57% of 5/4 foreach (const QRect &r, region.rects()) { // damagedPixels += r.width() * r.height(); // combined window damage test damagedPixels = r.width() * r.height(); // experimental single window damage testing if (damagedPixels > fullRepaintLimit) { region = displayRegion; return; } } } else if (options->glPreferBufferSwap() == Options::PaintFullScreen) { // forced full rePaint region = QRegion(0, 0, displayWidth(), displayHeight()); } } SceneOpenGL::Texture *SceneOpenGL::createTexture() { return new Texture(m_backend); } SceneOpenGL::Texture *SceneOpenGL::createTexture(const QPixmap &pix, GLenum target) { return new Texture(m_backend, pix, target); } bool SceneOpenGL::viewportLimitsMatched(const QSize &size) const { GLint limit[2]; glGetIntegerv(GL_MAX_VIEWPORT_DIMS, limit); if (limit[0] < size.width() || limit[1] < size.height()) { QMetaObject::invokeMethod(Compositor::self(), "suspend", Qt::QueuedConnection, Q_ARG(Compositor::SuspendReason, Compositor::AllReasonSuspend)); const QString message = i18n("

OpenGL desktop effects not possible

" "Your system cannot perform OpenGL Desktop Effects at the " "current resolution

" "You can try to select the XRender backend, but it " "might be very slow for this resolution as well.
" "Alternatively, lower the combined resolution of all screens " "to %1x%2 ", limit[0], limit[1]); const QString details = i18n("The demanded resolution exceeds the GL_MAX_VIEWPORT_DIMS " "limitation of your GPU and is therefore not compatible " "with the OpenGL compositor.
" "XRender does not know such limitation, but the performance " "will usually be impacted by the hardware limitations that " "restrict the OpenGL viewport size."); const int oldTimeout = QDBusConnection::sessionBus().interface()->timeout(); QDBusConnection::sessionBus().interface()->setTimeout(500); if (QDBusConnection::sessionBus().interface()->isServiceRegistered(QStringLiteral("org.kde.kwinCompositingDialog")).value()) { QDBusInterface dialog( QStringLiteral("org.kde.kwinCompositingDialog"), QStringLiteral("/CompositorSettings"), QStringLiteral("org.kde.kwinCompositingDialog") ); dialog.asyncCall(QStringLiteral("warn"), message, details, QString()); } else { const QString args = QStringLiteral("warn ") + QString::fromUtf8(message.toLocal8Bit().toBase64()) + QStringLiteral(" details ") + QString::fromUtf8(details.toLocal8Bit().toBase64()); KProcess::startDetached(QStringLiteral("kcmshell5"), QStringList() << QStringLiteral("kwincompositing") << QStringLiteral("--args") << args); } QDBusConnection::sessionBus().interface()->setTimeout(oldTimeout); return false; } glGetIntegerv(GL_MAX_TEXTURE_SIZE, limit); if (limit[0] < size.width() || limit[0] < size.height()) { KConfig cfg(QStringLiteral("kwin_dialogsrc")); if (!KConfigGroup(&cfg, "Notification Messages").readEntry("max_tex_warning", true)) return true; const QString message = i18n("

OpenGL desktop effects might be unusable

" "OpenGL Desktop Effects at the current resolution are supported " "but might be exceptionally slow.
" "Also large windows will turn entirely black.

" "Consider to suspend compositing, switch to the XRender backend " "or lower the resolution to %1x%1." , limit[0]); const QString details = i18n("The demanded resolution exceeds the GL_MAX_TEXTURE_SIZE " "limitation of your GPU, thus windows of that size cannot be " "assigned to textures and will be entirely black.
" "Also this limit will often be a performance level barrier despite " "below GL_MAX_VIEWPORT_DIMS, because the driver might fall back to " "software rendering in this case."); const int oldTimeout = QDBusConnection::sessionBus().interface()->timeout(); QDBusConnection::sessionBus().interface()->setTimeout(500); if (QDBusConnection::sessionBus().interface()->isServiceRegistered(QStringLiteral("org.kde.kwinCompositingDialog")).value()) { QDBusInterface dialog( QStringLiteral("org.kde.kwinCompositingDialog"), QStringLiteral("/CompositorSettings"), QStringLiteral("org.kde.kwinCompositingDialog") ); dialog.asyncCall(QStringLiteral("warn"), message, details, QStringLiteral("kwin_dialogsrc:max_tex_warning")); } else { const QString args = QStringLiteral("warn ") + QString::fromUtf8(message.toLocal8Bit().toBase64()) + QStringLiteral(" details ") + QString::fromUtf8(details.toLocal8Bit().toBase64()) + QStringLiteral(" dontagain kwin_dialogsrc:max_tex_warning"); KProcess::startDetached(QStringLiteral("kcmshell5"), QStringList() << QStringLiteral("kwincompositing") << QStringLiteral("--args") << args); } QDBusConnection::sessionBus().interface()->setTimeout(oldTimeout); } return true; } void SceneOpenGL::screenGeometryChanged(const QSize &size) { if (!viewportLimitsMatched(size)) return; Scene::screenGeometryChanged(size); glViewport(0,0, size.width(), size.height()); m_backend->screenGeometryChanged(size); ShaderManager::instance()->resetAllShaders(); } void SceneOpenGL::paintDesktop(int desktop, int mask, const QRegion ®ion, ScreenPaintData &data) { const QRect r = region.boundingRect(); glEnable(GL_SCISSOR_TEST); glScissor(r.x(), displayHeight() - r.y() - r.height(), r.width(), r.height()); KWin::Scene::paintDesktop(desktop, mask, region, data); glDisable(GL_SCISSOR_TEST); } bool SceneOpenGL::makeOpenGLContextCurrent() { return m_backend->makeCurrent(); } void SceneOpenGL::doneOpenGLContextCurrent() { m_backend->doneCurrent(); } Scene::EffectFrame *SceneOpenGL::createEffectFrame(EffectFrameImpl *frame) { return new SceneOpenGL::EffectFrame(frame, this); } Shadow *SceneOpenGL::createShadow(Toplevel *toplevel) { return new SceneOpenGLShadow(toplevel); } //**************************************** // SceneOpenGL2 //**************************************** bool SceneOpenGL2::supported(OpenGLBackend *backend) { const QByteArray forceEnv = qgetenv("KWIN_COMPOSE"); if (!forceEnv.isEmpty()) { if (qstrcmp(forceEnv, "O2") == 0) { qDebug() << "OpenGL 2 compositing enforced by environment variable"; return true; } else { // OpenGL 2 disabled by environment variable return false; } } if (!backend->isDirectRendering()) { return false; } if (GLPlatform::instance()->recommendedCompositor() < OpenGL2Compositing) { qDebug() << "Driver does not recommend OpenGL 2 compositing"; #ifndef KWIN_HAVE_OPENGLES return false; #endif } return true; } SceneOpenGL2::SceneOpenGL2(OpenGLBackend *backend) : SceneOpenGL(Workspace::self(), backend) , m_lanczosFilter(NULL) , m_colorCorrection() { if (!init_ok) { // base ctor already failed return; } // Initialize color correction before the shaders slotColorCorrectedChanged(false); connect(options, SIGNAL(colorCorrectedChanged()), this, SLOT(slotColorCorrectedChanged()), Qt::QueuedConnection); if (!ShaderManager::instance()->isValid()) { qDebug() << "No Scene Shaders available"; init_ok = false; return; } // push one shader on the stack so that one is always bound ShaderManager::instance()->pushShader(ShaderManager::SimpleShader); if (checkGLError("Init")) { qCritical() << "OpenGL 2 compositing setup failed"; init_ok = false; return; // error } qDebug() << "OpenGL 2 compositing successfully initialized"; #ifndef KWIN_HAVE_OPENGLES // It is not legal to not have a vertex array object bound in a core context if (hasGLExtension(QStringLiteral("GL_ARB_vertex_array_object"))) { glGenVertexArrays(1, &vao); glBindVertexArray(vao); } #endif init_ok = true; } SceneOpenGL2::~SceneOpenGL2() { } void SceneOpenGL2::paintGenericScreen(int mask, ScreenPaintData data) { ShaderBinder binder(ShaderManager::GenericShader); binder.shader()->setUniform(GLShader::ScreenTransformation, transformation(mask, data)); Scene::paintGenericScreen(mask, data); } void SceneOpenGL2::paintDesktop(int desktop, int mask, const QRegion ®ion, ScreenPaintData &data) { ShaderBinder binder(ShaderManager::GenericShader); GLShader *shader = binder.shader(); QMatrix4x4 screenTransformation = shader->getUniformMatrix4x4("screenTransformation"); KWin::SceneOpenGL::paintDesktop(desktop, mask, region, data); shader->setUniform(GLShader::ScreenTransformation, screenTransformation); } void SceneOpenGL2::doPaintBackground(const QVector< float >& vertices) { GLVertexBuffer *vbo = GLVertexBuffer::streamingBuffer(); vbo->reset(); vbo->setUseColor(true); vbo->setData(vertices.count() / 2, 2, vertices.data(), NULL); ShaderBinder binder(ShaderManager::ColorShader); binder.shader()->setUniform(GLShader::Offset, QVector2D(0, 0)); vbo->render(GL_TRIANGLES); } Scene::Window *SceneOpenGL2::createWindow(Toplevel *t) { SceneOpenGL2Window *w = new SceneOpenGL2Window(t); w->setScene(this); return w; } void SceneOpenGL2::finalDrawWindow(EffectWindowImpl* w, int mask, QRegion region, WindowPaintData& data) { if (!m_colorCorrection.isNull() && m_colorCorrection->isEnabled()) { // Split the painting for separate screens const int numScreens = screens()->count(); for (int screen = 0; screen < numScreens; ++ screen) { QRegion regionForScreen(region); if (numScreens > 1) regionForScreen = region.intersected(screens()->geometry(screen)); data.setScreen(screen); performPaintWindow(w, mask, regionForScreen, data); } } else { performPaintWindow(w, mask, region, data); } } void SceneOpenGL2::performPaintWindow(EffectWindowImpl* w, int mask, QRegion region, WindowPaintData& data) { if (mask & PAINT_WINDOW_LANCZOS) { if (!m_lanczosFilter) { m_lanczosFilter = new LanczosFilter(this); // recreate the lanczos filter when the screen gets resized connect(screens(), SIGNAL(changed()), SLOT(resetLanczosFilter())); } m_lanczosFilter->performPaint(w, mask, region, data); } else w->sceneWindow()->performPaint(mask, region, data); } void SceneOpenGL2::resetLanczosFilter() { // TODO: Qt5 - replace by a lambda slot delete m_lanczosFilter; m_lanczosFilter = NULL; } ColorCorrection *SceneOpenGL2::colorCorrection() { return m_colorCorrection.data(); } void SceneOpenGL2::slotColorCorrectedChanged(bool recreateShaders) { qDebug() << "Color correction:" << options->isColorCorrected(); if (options->isColorCorrected() && m_colorCorrection.isNull()) { m_colorCorrection.reset(new ColorCorrection(this)); if (!m_colorCorrection->setEnabled(true)) { m_colorCorrection.reset(); return; } connect(m_colorCorrection.data(), SIGNAL(changed()), Compositor::self(), SLOT(addRepaintFull())); connect(m_colorCorrection.data(), SIGNAL(errorOccured()), options, SLOT(setColorCorrected()), Qt::QueuedConnection); if (recreateShaders) { // Reload all shaders ShaderManager::cleanup(); ShaderManager::instance(); } } else { m_colorCorrection.reset(); } Compositor::self()->addRepaintFull(); } //**************************************** // SceneOpenGL::Texture //**************************************** SceneOpenGL::Texture::Texture(OpenGLBackend *backend) : GLTexture(*backend->createBackendTexture(this)) { } SceneOpenGL::Texture::Texture(OpenGLBackend *backend, const QPixmap &pix, GLenum target) : GLTexture(*backend->createBackendTexture(this)) { load(pix, target); } SceneOpenGL::Texture::~Texture() { } SceneOpenGL::Texture& SceneOpenGL::Texture::operator = (const SceneOpenGL::Texture& tex) { d_ptr = tex.d_ptr; return *this; } void SceneOpenGL::Texture::discard() { d_ptr = d_func()->backend()->createBackendTexture(this); } bool SceneOpenGL::Texture::load(const Pixmap& pix, const QSize& size, int depth) { if (pix == None) return false; return load(pix, size, depth, QRegion(0, 0, size.width(), size.height())); } bool SceneOpenGL::Texture::load(const QImage& image, GLenum target) { if (image.isNull()) return false; return load(QPixmap::fromImage(image), target); } bool SceneOpenGL::Texture::load(const QPixmap& pixmap, GLenum target) { if (pixmap.isNull()) return false; return GLTexture::load(pixmap.toImage(), target); } void SceneOpenGL::Texture::findTarget() { Q_D(Texture); d->findTarget(); } bool SceneOpenGL::Texture::load(const Pixmap& pix, const QSize& size, int depth, QRegion region) { Q_UNUSED(region) // decrease the reference counter for the old texture d_ptr = d_func()->backend()->createBackendTexture(this); //new TexturePrivate(); Q_D(Texture); return d->loadTexture(pix, size, depth); } bool SceneOpenGL::Texture::update(const QRegion &damage) { Q_D(Texture); return d->update(damage); } //**************************************** // SceneOpenGL::Texture //**************************************** SceneOpenGL::TexturePrivate::TexturePrivate() { } SceneOpenGL::TexturePrivate::~TexturePrivate() { } bool SceneOpenGL::TexturePrivate::update(const QRegion &damage) { Q_UNUSED(damage) return true; } //**************************************** // SceneOpenGL::Window //**************************************** SceneOpenGL::Window::Window(Toplevel* c) : Scene::Window(c) , m_scene(NULL) { } SceneOpenGL::Window::~Window() { } static SceneOpenGL::Texture *s_frameTexture = NULL; // Bind the window pixmap to an OpenGL texture. bool SceneOpenGL::Window::bindTexture() { s_frameTexture = NULL; OpenGLWindowPixmap *pixmap = windowPixmap(); if (!pixmap) { return false; } s_frameTexture = pixmap->texture(); if (pixmap->isDiscarded()) { return !pixmap->texture()->isNull(); } return pixmap->bind(); } QMatrix4x4 SceneOpenGL::Window::transformation(int mask, const WindowPaintData &data) const { QMatrix4x4 matrix; matrix.translate(x(), y()); if (!(mask & PAINT_WINDOW_TRANSFORMED)) return matrix; matrix.translate(data.translation()); data.scale().applyTo(&matrix); if (data.rotationAngle() == 0.0) return matrix; // Apply the rotation // cannot use data.rotation.applyTo(&matrix) as QGraphicsRotation uses projectedRotate to map back to 2D matrix.translate(data.rotationOrigin()); const QVector3D axis = data.rotationAxis(); matrix.rotate(data.rotationAngle(), axis.x(), axis.y(), axis.z()); matrix.translate(-data.rotationOrigin()); return matrix; } bool SceneOpenGL::Window::beginRenderWindow(int mask, const QRegion ®ion, WindowPaintData &data) { if (region.isEmpty()) return false; m_hardwareClipping = region != infiniteRegion() && (mask & PAINT_WINDOW_TRANSFORMED) && !(mask & PAINT_SCREEN_TRANSFORMED); if (region != infiniteRegion() && !m_hardwareClipping) { WindowQuadList quads; quads.reserve(data.quads.count()); const QRegion filterRegion = region.translated(-x(), -y()); // split all quads in bounding rect with the actual rects in the region foreach (const WindowQuad &quad, data.quads) { foreach (const QRect &r, filterRegion.rects()) { const QRectF rf(r); const QRectF quadRect(QPointF(quad.left(), quad.top()), QPointF(quad.right(), quad.bottom())); const QRectF &intersected = rf.intersected(quadRect); if (intersected.isValid()) { if (quadRect == intersected) { // case 1: completely contains, include and do not check other rects quads << quad; break; } // case 2: intersection quads << quad.makeSubQuad(intersected.left(), intersected.top(), intersected.right(), intersected.bottom()); } } } data.quads = quads; } if (data.quads.isEmpty()) return false; if (!bindTexture() || !s_frameTexture) { return false; } if (m_hardwareClipping) { glEnable(GL_SCISSOR_TEST); } // Update the texture filter if (options->glSmoothScale() != 0 && (mask & (PAINT_WINDOW_TRANSFORMED | PAINT_SCREEN_TRANSFORMED))) filter = ImageFilterGood; else filter = ImageFilterFast; s_frameTexture->setFilter(filter == ImageFilterGood ? GL_LINEAR : GL_NEAREST); const GLVertexAttrib attribs[] = { { VA_Position, 2, GL_FLOAT, offsetof(GLVertex2D, position) }, { VA_TexCoord, 2, GL_FLOAT, offsetof(GLVertex2D, texcoord) }, }; GLVertexBuffer *vbo = GLVertexBuffer::streamingBuffer(); vbo->reset(); vbo->setAttribLayout(attribs, 2, sizeof(GLVertex2D)); return true; } void SceneOpenGL::Window::endRenderWindow() { if (m_hardwareClipping) { glDisable(GL_SCISSOR_TEST); } } OpenGLPaintRedirector *SceneOpenGL::Window::paintRedirector() const { if (toplevel->isClient()) { Client *client = static_cast(toplevel); if (client->noBorder()) return 0; return static_cast(client->decorationPaintRedirector()); } if (toplevel->isDeleted()) { Deleted *deleted = static_cast(toplevel); if (deleted->noBorder()) return 0; return static_cast(deleted->decorationPaintRedirector()); } return 0; } bool SceneOpenGL::Window::getDecorationTextures(GLTexture **textures) const { OpenGLPaintRedirector *redirector = paintRedirector(); if (!redirector) return false; redirector->ensurePixmapsPainted(); textures[0] = redirector->leftRightTexture(); textures[1] = redirector->topBottomTexture(); redirector->markAsRepainted(); return true; } void SceneOpenGL::Window::paintDecorations(const WindowPaintData &data, const QRegion ®ion) { GLTexture *textures[2]; if (!getDecorationTextures(textures)) return; WindowQuadList quads[2]; // left-right, top-bottom // Split the quads into two lists foreach (const WindowQuad &quad, data.quads) { switch (quad.type()) { case WindowQuadDecorationLeftRight: quads[0].append(quad); continue; case WindowQuadDecorationTopBottom: quads[1].append(quad); continue; default: continue; } } TextureType type[] = { DecorationLeftRight, DecorationTopBottom }; for (int i = 0; i < 2; i++) paintDecoration(textures[i], type[i], region, data, quads[i]); } void SceneOpenGL::Window::paintDecoration(GLTexture *texture, TextureType type, const QRegion ®ion, const WindowPaintData &data, const WindowQuadList &quads) { if (!texture || quads.isEmpty()) return; if (filter == ImageFilterGood) texture->setFilter(GL_LINEAR); else texture->setFilter(GL_NEAREST); texture->setWrapMode(GL_CLAMP_TO_EDGE); texture->bind(); prepareStates(type, data.opacity() * data.decorationOpacity(), data.brightness(), data.saturation(), data.screen()); renderQuads(0, region, quads, texture, false); restoreStates(type, data.opacity() * data.decorationOpacity(), data.brightness(), data.saturation()); texture->unbind(); #ifndef KWIN_HAVE_OPENGLES if (m_scene && m_scene->debug()) { glPolygonMode(GL_FRONT_AND_BACK, GL_LINE); GLVertexBuffer::streamingBuffer()->render(region, GL_TRIANGLES, m_hardwareClipping); glPolygonMode(GL_FRONT_AND_BACK, GL_FILL); } #endif } void SceneOpenGL::Window::paintShadow(const QRegion ®ion, const WindowPaintData &data) { WindowQuadList quads; foreach (const WindowQuad &quad, data.quads) { switch (quad.type()) { case WindowQuadShadowTopLeft: case WindowQuadShadowTop: case WindowQuadShadowTopRight: case WindowQuadShadowLeft: case WindowQuadShadowRight: case WindowQuadShadowBottomLeft: case WindowQuadShadowBottom: case WindowQuadShadowBottomRight: quads.append(quad); break; default: break; } } if (quads.isEmpty()) return; GLTexture *texture = static_cast(m_shadow)->shadowTexture(); if (!texture) { return; } if (filter == ImageFilterGood) texture->setFilter(GL_LINEAR); else texture->setFilter(GL_NEAREST); texture->setWrapMode(GL_CLAMP_TO_EDGE); texture->bind(); prepareStates(Shadow, data.opacity(), data.brightness(), data.saturation(), data.screen()); renderQuads(0, region, quads, texture, true); restoreStates(Shadow, data.opacity(), data.brightness(), data.saturation()); texture->unbind(); #ifndef KWIN_HAVE_OPENGLES if (m_scene && m_scene->debug()) { glPolygonMode(GL_FRONT_AND_BACK, GL_LINE); renderQuads(0, region, quads, texture, true); glPolygonMode(GL_FRONT_AND_BACK, GL_FILL); } #endif } void SceneOpenGL::Window::renderQuads(int, const QRegion& region, const WindowQuadList& quads, GLTexture *tex, bool normalized) { if (quads.isEmpty()) return; const QMatrix4x4 matrix = tex->matrix(normalized ? NormalizedCoordinates : UnnormalizedCoordinates); // Render geometry GLenum primitiveType; int primcount; if (GLVertexBuffer::supportsIndexedQuads()) { primitiveType = GL_QUADS_KWIN; primcount = quads.count() * 4; } else { primitiveType = GL_TRIANGLES; primcount = quads.count() * 6; } GLVertexBuffer *vbo = GLVertexBuffer::streamingBuffer(); vbo->setVertexCount(primcount); GLVertex2D *map = (GLVertex2D *) vbo->map(primcount * sizeof(GLVertex2D)); quads.makeInterleavedArrays(primitiveType, map, matrix); vbo->unmap(); vbo->render(region, primitiveType, m_hardwareClipping); } GLTexture *SceneOpenGL::Window::textureForType(SceneOpenGL::Window::TextureType type) { GLTexture *tex = NULL; OpenGLPaintRedirector *redirector = NULL; if (type != Content && type != Shadow) { if (toplevel->isClient()) { Client *client = static_cast(toplevel); redirector = static_cast(client->decorationPaintRedirector()); } else if (toplevel->isDeleted()) { Deleted *deleted = static_cast(toplevel); redirector = static_cast(deleted->decorationPaintRedirector()); } } switch(type) { case Content: tex = s_frameTexture; break; case DecorationLeftRight: tex = redirector ? redirector->leftRightTexture() : 0; break; case DecorationTopBottom: tex = redirector ? redirector->topBottomTexture() : 0; break; case Shadow: tex = static_cast(m_shadow)->shadowTexture(); } return tex; } WindowPixmap* SceneOpenGL::Window::createWindowPixmap() { return new OpenGLWindowPixmap(this, m_scene); } //*************************************** // SceneOpenGL2Window //*************************************** SceneOpenGL2Window::SceneOpenGL2Window(Toplevel *c) : SceneOpenGL::Window(c) , m_blendingEnabled(false) { } SceneOpenGL2Window::~SceneOpenGL2Window() { } QVector4D SceneOpenGL2Window::modulate(float opacity, float brightness) const { const float a = opacity; const float rgb = opacity * brightness; return QVector4D(rgb, rgb, rgb, a); } void SceneOpenGL2Window::setBlendEnabled(bool enabled) { if (enabled && !m_blendingEnabled) glEnable(GL_BLEND); else if (!enabled && m_blendingEnabled) glDisable(GL_BLEND); m_blendingEnabled = enabled; } void SceneOpenGL2Window::setupLeafNodes(LeafNode *nodes, const WindowQuadList *quads, const WindowPaintData &data) { if (!quads[ShadowLeaf].isEmpty()) { nodes[ShadowLeaf].texture = static_cast(m_shadow)->shadowTexture(); nodes[ShadowLeaf].opacity = data.opacity(); nodes[ShadowLeaf].hasAlpha = true; nodes[ShadowLeaf].coordinateType = NormalizedCoordinates; } if (!quads[LeftRightLeaf].isEmpty() || !quads[TopBottomLeaf].isEmpty()) { GLTexture *textures[2]; getDecorationTextures(textures); nodes[LeftRightLeaf].texture = textures[0]; nodes[LeftRightLeaf].opacity = data.opacity(); nodes[LeftRightLeaf].hasAlpha = true; nodes[LeftRightLeaf].coordinateType = UnnormalizedCoordinates; nodes[TopBottomLeaf].texture = textures[1]; nodes[TopBottomLeaf].opacity = data.opacity(); nodes[TopBottomLeaf].hasAlpha = true; nodes[TopBottomLeaf].coordinateType = UnnormalizedCoordinates; } nodes[ContentLeaf].texture = s_frameTexture; nodes[ContentLeaf].hasAlpha = !isOpaque(); // TODO: ARGB crsoofading is atm. a hack, playing on opacities for two dumb SrcOver operations // Should be a shader if (data.crossFadeProgress() != 1.0 && (data.opacity() < 0.95 || toplevel->hasAlpha())) { const float opacity = 1.0 - data.crossFadeProgress(); nodes[ContentLeaf].opacity = data.opacity() * (1 - pow(opacity, 1.0f + 2.0f * data.opacity())); } else { nodes[ContentLeaf].opacity = data.opacity(); } nodes[ContentLeaf].coordinateType = UnnormalizedCoordinates; if (data.crossFadeProgress() != 1.0) { OpenGLWindowPixmap *previous = previousWindowPixmap(); nodes[PreviousContentLeaf].texture = previous ? previous->texture() : NULL; nodes[PreviousContentLeaf].hasAlpha = !isOpaque(); nodes[PreviousContentLeaf].opacity = data.opacity() * (1.0 - data.crossFadeProgress()); nodes[PreviousContentLeaf].coordinateType = NormalizedCoordinates; } } void SceneOpenGL2Window::performPaint(int mask, QRegion region, WindowPaintData data) { if (!beginRenderWindow(mask, region, data)) return; GLShader *shader = data.shader; if (!shader) { if ((mask & Scene::PAINT_WINDOW_TRANSFORMED) || (mask & Scene::PAINT_SCREEN_TRANSFORMED)) { shader = ShaderManager::instance()->pushShader(ShaderManager::GenericShader); } else { shader = ShaderManager::instance()->pushShader(ShaderManager::SimpleShader); shader->setUniform(GLShader::Offset, QVector2D(x(), y())); } } if (ColorCorrection *cc = static_cast(m_scene)->colorCorrection()) { cc->setupForOutput(data.screen()); } shader->setUniform(GLShader::WindowTransformation, transformation(mask, data)); shader->setUniform(GLShader::Saturation, data.saturation()); const GLenum filter = (mask & (Effect::PAINT_WINDOW_TRANSFORMED | Effect::PAINT_SCREEN_TRANSFORMED)) && options->glSmoothScale() != 0 ? GL_LINEAR : GL_NEAREST; WindowQuadList quads[LeafCount]; // Split the quads into separate lists for each type foreach (const WindowQuad &quad, data.quads) { switch (quad.type()) { case WindowQuadDecorationLeftRight: quads[LeftRightLeaf].append(quad); continue; case WindowQuadDecorationTopBottom: quads[TopBottomLeaf].append(quad); continue; case WindowQuadContents: quads[ContentLeaf].append(quad); continue; case WindowQuadShadowTopLeft: case WindowQuadShadowTop: case WindowQuadShadowTopRight: case WindowQuadShadowLeft: case WindowQuadShadowRight: case WindowQuadShadowBottomLeft: case WindowQuadShadowBottom: case WindowQuadShadowBottomRight: quads[ShadowLeaf].append(quad); continue; default: continue; } } if (data.crossFadeProgress() != 1.0) { OpenGLWindowPixmap *previous = previousWindowPixmap(); if (previous) { const QRect &oldGeometry = previous->contentsRect(); for (const WindowQuad &quad : quads[ContentLeaf]) { // we need to create new window quads with normalize texture coordinates // normal quads divide the x/y position by width/height. This would not work as the texture // is larger than the visible content in case of a decorated Client resulting in garbage being shown. // So we calculate the normalized texture coordinate in the Client's new content space and map it to // the previous Client's content space. WindowQuad newQuad(WindowQuadContents); for (int i = 0; i < 4; ++i) { const qreal xFactor = qreal(quad[i].textureX() - toplevel->clientPos().x())/qreal(toplevel->clientSize().width()); const qreal yFactor = qreal(quad[i].textureY() - toplevel->clientPos().y())/qreal(toplevel->clientSize().height()); WindowVertex vertex(quad[i].x(), quad[i].y(), (xFactor * oldGeometry.width() + oldGeometry.x())/qreal(previous->size().width()), (yFactor * oldGeometry.height() + oldGeometry.y())/qreal(previous->size().height())); newQuad[i] = vertex; } quads[PreviousContentLeaf].append(newQuad); } } } const bool indexedQuads = GLVertexBuffer::supportsIndexedQuads(); const GLenum primitiveType = indexedQuads ? GL_QUADS_KWIN : GL_TRIANGLES; const int verticesPerQuad = indexedQuads ? 4 : 6; const size_t size = verticesPerQuad * (quads[0].count() + quads[1].count() + quads[2].count() + quads[3].count() + quads[4].count()) * sizeof(GLVertex2D); GLVertexBuffer *vbo = GLVertexBuffer::streamingBuffer(); GLVertex2D *map = (GLVertex2D *) vbo->map(size); LeafNode nodes[LeafCount]; setupLeafNodes(nodes, quads, data); for (int i = 0, v = 0; i < LeafCount; i++) { if (quads[i].isEmpty() || !nodes[i].texture) continue; nodes[i].firstVertex = v; nodes[i].vertexCount = quads[i].count() * verticesPerQuad; const QMatrix4x4 matrix = nodes[i].texture->matrix(nodes[i].coordinateType); quads[i].makeInterleavedArrays(primitiveType, &map[v], matrix); v += quads[i].count() * verticesPerQuad; } vbo->unmap(); vbo->bindArrays(); // Make sure the blend function is set up correctly in case we will be doing blending glBlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA); float opacity = -1.0; for (int i = 0; i < LeafCount; i++) { if (nodes[i].vertexCount == 0) continue; setBlendEnabled(nodes[i].hasAlpha || nodes[i].opacity < 1.0); if (opacity != nodes[i].opacity) { shader->setUniform(GLShader::ModulationConstant, modulate(nodes[i].opacity, data.brightness())); opacity = nodes[i].opacity; } nodes[i].texture->setFilter(filter); nodes[i].texture->setWrapMode(GL_CLAMP_TO_EDGE); nodes[i].texture->bind(); vbo->draw(region, primitiveType, nodes[i].firstVertex, nodes[i].vertexCount, m_hardwareClipping); } vbo->unbindArrays(); setBlendEnabled(false); if (!data.shader) ShaderManager::instance()->popShader(); endRenderWindow(); } void SceneOpenGL2Window::prepareStates(TextureType type, qreal opacity, qreal brightness, qreal saturation, int screen) { // setup blending of transparent windows bool opaque = isOpaque() && opacity == 1.0; bool alpha = toplevel->hasAlpha() || type != Content; if (type != Content) { if (type == Shadow) { opaque = false; } else { if (opacity == 1.0 && toplevel->isClient()) { opaque = !(static_cast(toplevel)->decorationHasAlpha()); } else { // TODO: add support in Deleted opaque = false; } } } if (!opaque) { glEnable(GL_BLEND); if (alpha) { glBlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA); } else { glBlendColor((float)opacity, (float)opacity, (float)opacity, (float)opacity); glBlendFunc(GL_ONE, GL_ONE_MINUS_CONSTANT_ALPHA); } } m_blendingEnabled = !opaque; const qreal rgb = brightness * opacity; const qreal a = opacity; GLShader *shader = ShaderManager::instance()->getBoundShader(); shader->setUniform(GLShader::ModulationConstant, QVector4D(rgb, rgb, rgb, a)); shader->setUniform(GLShader::Saturation, saturation); if (ColorCorrection *cc = static_cast(m_scene)->colorCorrection()) { cc->setupForOutput(screen); } } void SceneOpenGL2Window::restoreStates(TextureType type, qreal opacity, qreal brightness, qreal saturation) { Q_UNUSED(type); Q_UNUSED(opacity); Q_UNUSED(brightness); Q_UNUSED(saturation); if (m_blendingEnabled) { glDisable(GL_BLEND); } if (ColorCorrection *cc = static_cast(m_scene)->colorCorrection()) { cc->setupForOutput(-1); } } //**************************************** // OpenGLWindowPixmap //**************************************** OpenGLWindowPixmap::OpenGLWindowPixmap(Scene::Window *window, SceneOpenGL* scene) : WindowPixmap(window) , m_texture(scene->createTexture()) { } OpenGLWindowPixmap::~OpenGLWindowPixmap() { } bool OpenGLWindowPixmap::bind() { if (!m_texture->isNull()) { if (!toplevel()->damage().isEmpty()) { const bool success = m_texture->update(toplevel()->damage()); // mipmaps need to be updated m_texture->setDirty(); toplevel()->resetDamage(); return success; } return true; } if (!isValid()) { return false; } bool success = m_texture->load(pixmap(), toplevel()->size(), toplevel()->depth(), toplevel()->damage()); if (success) toplevel()->resetDamage(); else qDebug() << "Failed to bind window"; return success; } //**************************************** // SceneOpenGL::EffectFrame //**************************************** GLTexture* SceneOpenGL::EffectFrame::m_unstyledTexture = NULL; QPixmap* SceneOpenGL::EffectFrame::m_unstyledPixmap = NULL; SceneOpenGL::EffectFrame::EffectFrame(EffectFrameImpl* frame, SceneOpenGL *scene) : Scene::EffectFrame(frame) , m_texture(NULL) , m_textTexture(NULL) , m_oldTextTexture(NULL) , m_textPixmap(NULL) , m_iconTexture(NULL) , m_oldIconTexture(NULL) , m_selectionTexture(NULL) , m_unstyledVBO(NULL) , m_scene(scene) { if (m_effectFrame->style() == EffectFrameUnstyled && !m_unstyledTexture) { updateUnstyledTexture(); } } SceneOpenGL::EffectFrame::~EffectFrame() { delete m_texture; delete m_textTexture; delete m_textPixmap; delete m_oldTextTexture; delete m_iconTexture; delete m_oldIconTexture; delete m_selectionTexture; delete m_unstyledVBO; } void SceneOpenGL::EffectFrame::free() { glFlush(); delete m_texture; m_texture = NULL; delete m_textTexture; m_textTexture = NULL; delete m_textPixmap; m_textPixmap = NULL; delete m_iconTexture; m_iconTexture = NULL; delete m_selectionTexture; m_selectionTexture = NULL; delete m_unstyledVBO; m_unstyledVBO = NULL; delete m_oldIconTexture; m_oldIconTexture = NULL; delete m_oldTextTexture; m_oldTextTexture = NULL; } void SceneOpenGL::EffectFrame::freeIconFrame() { delete m_iconTexture; m_iconTexture = NULL; } void SceneOpenGL::EffectFrame::freeTextFrame() { delete m_textTexture; m_textTexture = NULL; delete m_textPixmap; m_textPixmap = NULL; } void SceneOpenGL::EffectFrame::freeSelection() { delete m_selectionTexture; m_selectionTexture = NULL; } void SceneOpenGL::EffectFrame::crossFadeIcon() { delete m_oldIconTexture; m_oldIconTexture = m_iconTexture; m_iconTexture = NULL; } void SceneOpenGL::EffectFrame::crossFadeText() { delete m_oldTextTexture; m_oldTextTexture = m_textTexture; m_textTexture = NULL; } void SceneOpenGL::EffectFrame::render(QRegion region, double opacity, double frameOpacity) { if (m_effectFrame->geometry().isEmpty()) return; // Nothing to display region = infiniteRegion(); // TODO: Old region doesn't seem to work with OpenGL GLShader* shader = m_effectFrame->shader(); bool sceneShader = false; if (!shader) { shader = ShaderManager::instance()->pushShader(ShaderManager::SimpleShader); sceneShader = true; } else if (shader) { ShaderManager::instance()->pushShader(shader); } if (shader) { if (sceneShader) shader->setUniform(GLShader::Offset, QVector2D(0, 0)); shader->setUniform(GLShader::ModulationConstant, QVector4D(1.0, 1.0, 1.0, 1.0)); shader->setUniform(GLShader::Saturation, 1.0f); } glEnable(GL_BLEND); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); // Render the actual frame if (m_effectFrame->style() == EffectFrameUnstyled) { if (!m_unstyledVBO) { m_unstyledVBO = new GLVertexBuffer(GLVertexBuffer::Static); QRect area = m_effectFrame->geometry(); area.moveTo(0, 0); area.adjust(-5, -5, 5, 5); const int roundness = 5; QVector verts, texCoords; verts.reserve(84); texCoords.reserve(84); // top left verts << area.left() << area.top(); texCoords << 0.0f << 0.0f; verts << area.left() << area.top() + roundness; texCoords << 0.0f << 0.5f; verts << area.left() + roundness << area.top(); texCoords << 0.5f << 0.0f; verts << area.left() + roundness << area.top() + roundness; texCoords << 0.5f << 0.5f; verts << area.left() << area.top() + roundness; texCoords << 0.0f << 0.5f; verts << area.left() + roundness << area.top(); texCoords << 0.5f << 0.0f; // top verts << area.left() + roundness << area.top(); texCoords << 0.5f << 0.0f; verts << area.left() + roundness << area.top() + roundness; texCoords << 0.5f << 0.5f; verts << area.right() - roundness << area.top(); texCoords << 0.5f << 0.0f; verts << area.left() + roundness << area.top() + roundness; texCoords << 0.5f << 0.5f; verts << area.right() - roundness << area.top() + roundness; texCoords << 0.5f << 0.5f; verts << area.right() - roundness << area.top(); texCoords << 0.5f << 0.0f; // top right verts << area.right() - roundness << area.top(); texCoords << 0.5f << 0.0f; verts << area.right() - roundness << area.top() + roundness; texCoords << 0.5f << 0.5f; verts << area.right() << area.top(); texCoords << 1.0f << 0.0f; verts << area.right() - roundness << area.top() + roundness; texCoords << 0.5f << 0.5f; verts << area.right() << area.top() + roundness; texCoords << 1.0f << 0.5f; verts << area.right() << area.top(); texCoords << 1.0f << 0.0f; // bottom left verts << area.left() << area.bottom() - roundness; texCoords << 0.0f << 0.5f; verts << area.left() << area.bottom(); texCoords << 0.0f << 1.0f; verts << area.left() + roundness << area.bottom() - roundness; texCoords << 0.5f << 0.5f; verts << area.left() + roundness << area.bottom(); texCoords << 0.5f << 1.0f; verts << area.left() << area.bottom(); texCoords << 0.0f << 1.0f; verts << area.left() + roundness << area.bottom() - roundness; texCoords << 0.5f << 0.5f; // bottom verts << area.left() + roundness << area.bottom() - roundness; texCoords << 0.5f << 0.5f; verts << area.left() + roundness << area.bottom(); texCoords << 0.5f << 1.0f; verts << area.right() - roundness << area.bottom() - roundness; texCoords << 0.5f << 0.5f; verts << area.left() + roundness << area.bottom(); texCoords << 0.5f << 1.0f; verts << area.right() - roundness << area.bottom(); texCoords << 0.5f << 1.0f; verts << area.right() - roundness << area.bottom() - roundness; texCoords << 0.5f << 0.5f; // bottom right verts << area.right() - roundness << area.bottom() - roundness; texCoords << 0.5f << 0.5f; verts << area.right() - roundness << area.bottom(); texCoords << 0.5f << 1.0f; verts << area.right() << area.bottom() - roundness; texCoords << 1.0f << 0.5f; verts << area.right() - roundness << area.bottom(); texCoords << 0.5f << 1.0f; verts << area.right() << area.bottom(); texCoords << 1.0f << 1.0f; verts << area.right() << area.bottom() - roundness; texCoords << 1.0f << 0.5f; // center verts << area.left() << area.top() + roundness; texCoords << 0.0f << 0.5f; verts << area.left() << area.bottom() - roundness; texCoords << 0.0f << 0.5f; verts << area.right() << area.top() + roundness; texCoords << 1.0f << 0.5f; verts << area.left() << area.bottom() - roundness; texCoords << 0.0f << 0.5f; verts << area.right() << area.bottom() - roundness; texCoords << 1.0f << 0.5f; verts << area.right() << area.top() + roundness; texCoords << 1.0f << 0.5f; m_unstyledVBO->setData(verts.count() / 2, 2, verts.data(), texCoords.data()); } if (shader) { const float a = opacity * frameOpacity; shader->setUniform(GLShader::ModulationConstant, QVector4D(a, a, a, a)); } m_unstyledTexture->bind(); const QPoint pt = m_effectFrame->geometry().topLeft(); if (sceneShader) { shader->setUniform(GLShader::Offset, QVector2D(pt.x(), pt.y())); } else { QMatrix4x4 translation; translation.translate(pt.x(), pt.y()); if (shader) { shader->setUniform(GLShader::WindowTransformation, translation); } } m_unstyledVBO->render(region, GL_TRIANGLES); if (!sceneShader) { if (shader) { shader->setUniform(GLShader::WindowTransformation, QMatrix4x4()); } } m_unstyledTexture->unbind(); } else if (m_effectFrame->style() == EffectFrameStyled) { if (!m_texture) // Lazy creation updateTexture(); if (shader) { const float a = opacity * frameOpacity; shader->setUniform(GLShader::ModulationConstant, QVector4D(a, a, a, a)); } m_texture->bind(); qreal left, top, right, bottom; m_effectFrame->frame().getMargins(left, top, right, bottom); // m_geometry is the inner geometry m_texture->render(region, m_effectFrame->geometry().adjusted(-left, -top, right, bottom)); m_texture->unbind(); } if (!m_effectFrame->selection().isNull()) { if (!m_selectionTexture) { // Lazy creation QPixmap pixmap = m_effectFrame->selectionFrame().framePixmap(); if (!pixmap.isNull()) m_selectionTexture = m_scene->createTexture(pixmap); } if (m_selectionTexture) { if (shader) { const float a = opacity * frameOpacity; shader->setUniform(GLShader::ModulationConstant, QVector4D(a, a, a, a)); } glBlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA); m_selectionTexture->bind(); m_selectionTexture->render(region, m_effectFrame->selection()); m_selectionTexture->unbind(); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); } } // Render icon if (!m_effectFrame->icon().isNull() && !m_effectFrame->iconSize().isEmpty()) { QPoint topLeft(m_effectFrame->geometry().x(), m_effectFrame->geometry().center().y() - m_effectFrame->iconSize().height() / 2); if (m_effectFrame->isCrossFade() && m_oldIconTexture) { if (shader) { const float a = opacity * (1.0 - m_effectFrame->crossFadeProgress()); shader->setUniform(GLShader::ModulationConstant, QVector4D(a, a, a, a)); } m_oldIconTexture->bind(); m_oldIconTexture->render(region, QRect(topLeft, m_effectFrame->iconSize())); m_oldIconTexture->unbind(); if (shader) { const float a = opacity * m_effectFrame->crossFadeProgress(); shader->setUniform(GLShader::ModulationConstant, QVector4D(a, a, a, a)); } } else { if (shader) { const QVector4D constant(opacity, opacity, opacity, opacity); shader->setUniform(GLShader::ModulationConstant, constant); } } if (!m_iconTexture) { // lazy creation m_iconTexture = m_scene->createTexture(m_effectFrame->icon().pixmap(m_effectFrame->iconSize())); } m_iconTexture->bind(); m_iconTexture->render(region, QRect(topLeft, m_effectFrame->iconSize())); m_iconTexture->unbind(); } // Render text if (!m_effectFrame->text().isEmpty()) { if (m_effectFrame->isCrossFade() && m_oldTextTexture) { if (shader) { const float a = opacity * (1.0 - m_effectFrame->crossFadeProgress()); shader->setUniform(GLShader::ModulationConstant, QVector4D(a, a, a, a)); } m_oldTextTexture->bind(); m_oldTextTexture->render(region, m_effectFrame->geometry()); m_oldTextTexture->unbind(); if (shader) { const float a = opacity * m_effectFrame->crossFadeProgress(); shader->setUniform(GLShader::ModulationConstant, QVector4D(a, a, a, a)); } } else { if (shader) { const QVector4D constant(opacity, opacity, opacity, opacity); shader->setUniform(GLShader::ModulationConstant, constant); } } if (!m_textTexture) // Lazy creation updateTextTexture(); m_textTexture->bind(); m_textTexture->render(region, m_effectFrame->geometry()); m_textTexture->unbind(); } if (shader) { ShaderManager::instance()->popShader(); } glDisable(GL_BLEND); } void SceneOpenGL::EffectFrame::updateTexture() { delete m_texture; m_texture = 0L; if (m_effectFrame->style() == EffectFrameStyled) { QPixmap pixmap = m_effectFrame->frame().framePixmap(); m_texture = m_scene->createTexture(pixmap); } } void SceneOpenGL::EffectFrame::updateTextTexture() { delete m_textTexture; m_textTexture = 0L; delete m_textPixmap; m_textPixmap = 0L; if (m_effectFrame->text().isEmpty()) return; // Determine position on texture to paint text QRect rect(QPoint(0, 0), m_effectFrame->geometry().size()); if (!m_effectFrame->icon().isNull() && !m_effectFrame->iconSize().isEmpty()) rect.setLeft(m_effectFrame->iconSize().width()); // If static size elide text as required QString text = m_effectFrame->text(); if (m_effectFrame->isStatic()) { QFontMetrics metrics(m_effectFrame->font()); text = metrics.elidedText(text, Qt::ElideRight, rect.width()); } m_textPixmap = new QPixmap(m_effectFrame->geometry().size()); m_textPixmap->fill(Qt::transparent); QPainter p(m_textPixmap); p.setFont(m_effectFrame->font()); if (m_effectFrame->style() == EffectFrameStyled) p.setPen(m_effectFrame->styledTextColor()); else // TODO: What about no frame? Custom color setting required p.setPen(Qt::white); p.drawText(rect, m_effectFrame->alignment(), text); p.end(); m_textTexture = m_scene->createTexture(*m_textPixmap); } void SceneOpenGL::EffectFrame::updateUnstyledTexture() { delete m_unstyledTexture; m_unstyledTexture = 0L; delete m_unstyledPixmap; m_unstyledPixmap = 0L; // Based off circle() from kwinxrenderutils.cpp #define CS 8 m_unstyledPixmap = new QPixmap(2 * CS, 2 * CS); m_unstyledPixmap->fill(Qt::transparent); QPainter p(m_unstyledPixmap); p.setRenderHint(QPainter::Antialiasing); p.setPen(Qt::NoPen); p.setBrush(Qt::black); p.drawEllipse(m_unstyledPixmap->rect()); p.end(); #undef CS m_unstyledTexture = new GLTexture(*m_unstyledPixmap); } void SceneOpenGL::EffectFrame::cleanup() { delete m_unstyledTexture; m_unstyledTexture = NULL; delete m_unstyledPixmap; m_unstyledPixmap = NULL; } //**************************************** // SceneOpenGL::Shadow //**************************************** SceneOpenGLShadow::SceneOpenGLShadow(Toplevel *toplevel) : Shadow(toplevel) , m_texture(NULL) { } SceneOpenGLShadow::~SceneOpenGLShadow() { effects->makeOpenGLContextCurrent(); delete m_texture; } void SceneOpenGLShadow::buildQuads() { // prepare window quads m_shadowQuads.clear(); const QSizeF top(shadowPixmap(ShadowElementTop).size()); const QSizeF topRight(shadowPixmap(ShadowElementTopRight).size()); const QSizeF right(shadowPixmap(ShadowElementRight).size()); const QSizeF bottomRight(shadowPixmap(ShadowElementBottomRight).size()); const QSizeF bottom(shadowPixmap(ShadowElementBottom).size()); const QSizeF bottomLeft(shadowPixmap(ShadowElementBottomLeft).size()); const QSizeF left(shadowPixmap(ShadowElementLeft).size()); const QSizeF topLeft(shadowPixmap(ShadowElementTopLeft).size()); if ((left.width() - leftOffset() > topLevel()->width()) || (right.width() - rightOffset() > topLevel()->width()) || (top.height() - topOffset() > topLevel()->height()) || (bottom.height() - bottomOffset() > topLevel()->height())) { // if our shadow is bigger than the window, we don't render the shadow setShadowRegion(QRegion()); return; } const QRectF outerRect(QPointF(-leftOffset(), -topOffset()), QPointF(topLevel()->width() + rightOffset(), topLevel()->height() + bottomOffset())); const qreal width = topLeft.width() + top.width() + topRight.width(); const qreal height = topLeft.height() + left.height() + bottomLeft.height(); qreal tx1(0.0), tx2(0.0), ty1(0.0), ty2(0.0); tx2 = topLeft.width()/width; ty2 = topLeft.height()/height; WindowQuad topLeftQuad(WindowQuadShadowTopLeft); topLeftQuad[ 0 ] = WindowVertex(outerRect.x(), outerRect.y(), tx1, ty1); topLeftQuad[ 1 ] = WindowVertex(outerRect.x() + topLeft.width(), outerRect.y(), tx2, ty1); topLeftQuad[ 2 ] = WindowVertex(outerRect.x() + topLeft.width(), outerRect.y() + topLeft.height(), tx2, ty2); topLeftQuad[ 3 ] = WindowVertex(outerRect.x(), outerRect.y() + topLeft.height(), tx1, ty2); m_shadowQuads.append(topLeftQuad); tx1 = tx2; tx2 = (topLeft.width() + top.width())/width; ty2 = top.height()/height; WindowQuad topQuad(WindowQuadShadowTop); topQuad[ 0 ] = WindowVertex(outerRect.x() + topLeft.width(), outerRect.y(), tx1, ty1); topQuad[ 1 ] = WindowVertex(outerRect.right() - topRight.width(), outerRect.y(), tx2, ty1); topQuad[ 2 ] = WindowVertex(outerRect.right() - topRight.width(), outerRect.y() + top.height(),tx2, ty2); topQuad[ 3 ] = WindowVertex(outerRect.x() + topLeft.width(), outerRect.y() + top.height(), tx1, ty2); m_shadowQuads.append(topQuad); tx1 = tx2; tx2 = 1.0; ty2 = topRight.height()/height; WindowQuad topRightQuad(WindowQuadShadowTopRight); topRightQuad[ 0 ] = WindowVertex(outerRect.right() - topRight.width(), outerRect.y(), tx1, ty1); topRightQuad[ 1 ] = WindowVertex(outerRect.right(), outerRect.y(), tx2, ty1); topRightQuad[ 2 ] = WindowVertex(outerRect.right(), outerRect.y() + topRight.height(), tx2, ty2); topRightQuad[ 3 ] = WindowVertex(outerRect.right() - topRight.width(), outerRect.y() + topRight.height(), tx1, ty2); m_shadowQuads.append(topRightQuad); tx1 = (width - right.width())/width; ty1 = topRight.height()/height; ty2 = (topRight.height() + right.height())/height; WindowQuad rightQuad(WindowQuadShadowRight); rightQuad[ 0 ] = WindowVertex(outerRect.right() - right.width(), outerRect.y() + topRight.height(), tx1, ty1); rightQuad[ 1 ] = WindowVertex(outerRect.right(), outerRect.y() + topRight.height(), tx2, ty1); rightQuad[ 2 ] = WindowVertex(outerRect.right(), outerRect.bottom() - bottomRight.height(), tx2, ty2); rightQuad[ 3 ] = WindowVertex(outerRect.right() - right.width(), outerRect.bottom() - bottomRight.height(), tx1, ty2); m_shadowQuads.append(rightQuad); tx1 = (width - bottomRight.width())/width; ty1 = ty2; ty2 = 1.0; WindowQuad bottomRightQuad(WindowQuadShadowBottomRight); bottomRightQuad[ 0 ] = WindowVertex(outerRect.right() - bottomRight.width(), outerRect.bottom() - bottomRight.height(), tx1, ty1); bottomRightQuad[ 1 ] = WindowVertex(outerRect.right(), outerRect.bottom() - bottomRight.height(), tx2, ty1); bottomRightQuad[ 2 ] = WindowVertex(outerRect.right(), outerRect.bottom(), tx2, ty2); bottomRightQuad[ 3 ] = WindowVertex(outerRect.right() - bottomRight.width(), outerRect.bottom(), tx1, ty2); m_shadowQuads.append(bottomRightQuad); tx2 = tx1; tx1 = bottomLeft.width()/width; ty1 = (height - bottom.height())/height; WindowQuad bottomQuad(WindowQuadShadowBottom); bottomQuad[ 0 ] = WindowVertex(outerRect.x() + bottomLeft.width(), outerRect.bottom() - bottom.height(), tx1, ty1); bottomQuad[ 1 ] = WindowVertex(outerRect.right() - bottomRight.width(), outerRect.bottom() - bottom.height(), tx2, ty1); bottomQuad[ 2 ] = WindowVertex(outerRect.right() - bottomRight.width(), outerRect.bottom(), tx2, ty2); bottomQuad[ 3 ] = WindowVertex(outerRect.x() + bottomLeft.width(), outerRect.bottom(), tx1, ty2); m_shadowQuads.append(bottomQuad); tx1 = 0.0; tx2 = bottomLeft.width()/width; ty1 = (height - bottomLeft.height())/height; WindowQuad bottomLeftQuad(WindowQuadShadowBottomLeft); bottomLeftQuad[ 0 ] = WindowVertex(outerRect.x(), outerRect.bottom() - bottomLeft.height(), tx1, ty1); bottomLeftQuad[ 1 ] = WindowVertex(outerRect.x() + bottomLeft.width(), outerRect.bottom() - bottomLeft.height(), tx2, ty1); bottomLeftQuad[ 2 ] = WindowVertex(outerRect.x() + bottomLeft.width(), outerRect.bottom(), tx2, ty2); bottomLeftQuad[ 3 ] = WindowVertex(outerRect.x(), outerRect.bottom(), tx1, ty2); m_shadowQuads.append(bottomLeftQuad); tx2 = left.width()/width; ty2 = ty1; ty1 = topLeft.height()/height; WindowQuad leftQuad(WindowQuadShadowLeft); leftQuad[ 0 ] = WindowVertex(outerRect.x(), outerRect.y() + topLeft.height(), tx1, ty1); leftQuad[ 1 ] = WindowVertex(outerRect.x() + left.width(), outerRect.y() + topLeft.height(), tx2, ty1); leftQuad[ 2 ] = WindowVertex(outerRect.x() + left.width(), outerRect.bottom() - bottomLeft.height(), tx2, ty2); leftQuad[ 3 ] = WindowVertex(outerRect.x(), outerRect.bottom() - bottomLeft.height(), tx1, ty2); m_shadowQuads.append(leftQuad); } bool SceneOpenGLShadow::prepareBackend() { const QSize top(shadowPixmap(ShadowElementTop).size()); const QSize topRight(shadowPixmap(ShadowElementTopRight).size()); const QSize right(shadowPixmap(ShadowElementRight).size()); const QSize bottom(shadowPixmap(ShadowElementBottom).size()); const QSize bottomLeft(shadowPixmap(ShadowElementBottomLeft).size()); const QSize left(shadowPixmap(ShadowElementLeft).size()); const QSize topLeft(shadowPixmap(ShadowElementTopLeft).size()); const int width = topLeft.width() + top.width() + topRight.width(); const int height = topLeft.height() + left.height() + bottomLeft.height(); QImage image(width, height, QImage::Format_ARGB32); image.fill(Qt::transparent); QPainter p; p.begin(&image); p.drawPixmap(0, 0, shadowPixmap(ShadowElementTopLeft)); p.drawPixmap(topLeft.width(), 0, shadowPixmap(ShadowElementTop)); p.drawPixmap(topLeft.width() + top.width(), 0, shadowPixmap(ShadowElementTopRight)); p.drawPixmap(0, topLeft.height(), shadowPixmap(ShadowElementLeft)); p.drawPixmap(width - right.width(), topRight.height(), shadowPixmap(ShadowElementRight)); p.drawPixmap(0, topLeft.height() + left.height(), shadowPixmap(ShadowElementBottomLeft)); p.drawPixmap(bottomLeft.width(), height - bottom.height(), shadowPixmap(ShadowElementBottom)); p.drawPixmap(bottomLeft.width() + bottom.width(), topRight.height() + right.height(), shadowPixmap(ShadowElementBottomRight)); p.end(); effects->makeOpenGLContextCurrent(); delete m_texture; m_texture = new GLTexture(image); return true; } SwapProfiler::SwapProfiler() { init(); } void SwapProfiler::init() { m_time = 2 * 1000*1000; // we start with a long time mean of 2ms ... m_counter = 0; } void SwapProfiler::begin() { m_timer.start(); } char SwapProfiler::end() { // .. and blend in actual values. // this way we prevent extremes from killing our long time mean m_time = (10*m_time + m_timer.nsecsElapsed())/11; if (++m_counter > 500) { const bool blocks = m_time > 1000 * 1000; // 1ms, i get ~250µs and ~7ms w/o triple buffering... qDebug() << "Triple buffering detection:" << QString(blocks ? QStringLiteral("NOT available") : QStringLiteral("Available")) << " - Mean block time:" << m_time/(1000.0*1000.0) << "ms"; return blocks ? 'd' : 't'; } return 0; } } // namespace