/* KWin - the KDE window manager This file is part of the KDE project. SPDX-FileCopyrightText: 2006 Lubos Lunak SPDX-License-Identifier: GPL-2.0-or-later */ /* The base class for compositing, implementing shared functionality between the OpenGL and XRender backends. Design: When compositing is turned on, XComposite extension is used to redirect drawing of windows to pixmaps and XDamage extension is used to get informed about damage (changes) to window contents. This code is mostly in composite.cpp . Compositor::performCompositing() starts one painting pass. Painting is done by painting the screen, which in turn paints every window. Painting can be affected using effects, which are chained. E.g. painting a screen means that actually paintScreen() of the first effect is called, which possibly does modifications and calls next effect's paintScreen() and so on, until Scene::finalPaintScreen() is called. There are 3 phases of every paint (not necessarily done together): The pre-paint phase, the paint phase and the post-paint phase. The pre-paint phase is used to find out about how the painting will be actually done (i.e. what the effects will do). For example when only a part of the screen needs to be updated and no effect will do any transformation it is possible to use an optimized paint function. How the painting will be done is controlled by the mask argument, see PAINT_WINDOW_* and PAINT_SCREEN_* flags in scene.h . For example an effect that decides to paint a normal windows as translucent will need to modify the mask in its prePaintWindow() to include the PAINT_WINDOW_TRANSLUCENT flag. The paintWindow() function will then get the mask with this flag turned on and will also paint using transparency. The paint pass does the actual painting, based on the information collected using the pre-paint pass. After running through the effects' paintScreen() either paintGenericScreen() or optimized paintSimpleScreen() are called. Those call paintWindow() on windows (not necessarily all), possibly using clipping to optimize performance and calling paintWindow() first with only PAINT_WINDOW_OPAQUE to paint the opaque parts and then later with PAINT_WINDOW_TRANSLUCENT to paint the transparent parts. Function paintWindow() again goes through effects' paintWindow() until finalPaintWindow() is called, which calls the window's performPaint() to do the actual painting. The post-paint can be used for cleanups and is also used for scheduling repaints during the next painting pass for animations. Effects wanting to repaint certain parts can manually damage them during post-paint and repaint of these parts will be done during the next paint pass. */ #include "scene.h" #include #include #include "x11client.h" #include "deleted.h" #include "effects.h" #include "overlaywindow.h" #include "screens.h" #include "shadow.h" #include "subsurfacemonitor.h" #include "wayland_server.h" #include "thumbnailitem.h" #include "composite.h" #include #include #include namespace KWin { //**************************************** // Scene //**************************************** Scene::Scene(QObject *parent) : QObject(parent) { last_time.invalidate(); // Initialize the timer } Scene::~Scene() { Q_ASSERT(m_windows.isEmpty()); } bool Scene::isPerScreenRenderingEnabled() const { return m_isPerScreenRenderingEnabled; } void Scene::setPerScreenRenderingEnabled(bool enabled) { m_isPerScreenRenderingEnabled = enabled; } // returns mask and possibly modified region void Scene::paintScreen(int* mask, const QRegion &damage, const QRegion &repaint, QRegion *updateRegion, QRegion *validRegion, const QMatrix4x4 &projection, const QRect &outputGeometry, const qreal screenScale) { const QSize &screenSize = screens()->size(); const QRegion displayRegion(0, 0, screenSize.width(), screenSize.height()); *mask = (damage == displayRegion) ? 0 : PAINT_SCREEN_REGION; updateTimeDiff(); // preparation step static_cast(effects)->startPaint(); QRegion region = damage; ScreenPrePaintData pdata; pdata.mask = *mask; pdata.paint = region; effects->prePaintScreen(pdata, time_diff); *mask = pdata.mask; region = pdata.paint; if (*mask & (PAINT_SCREEN_TRANSFORMED | PAINT_SCREEN_WITH_TRANSFORMED_WINDOWS)) { // Region painting is not possible with transformations, // because screen damage doesn't match transformed positions. *mask &= ~PAINT_SCREEN_REGION; region = infiniteRegion(); } else if (*mask & PAINT_SCREEN_REGION) { // make sure not to go outside visible screen region &= displayRegion; } else { // whole screen, not transformed, force region to be full region = displayRegion; } painted_region = region; repaint_region = repaint; ScreenPaintData data(projection, outputGeometry, screenScale); effects->paintScreen(*mask, region, data); foreach (Window *w, stacking_order) { effects->postPaintWindow(effectWindow(w)); } effects->postPaintScreen(); // make sure not to go outside of the screen area *updateRegion = damaged_region; *validRegion = (region | painted_region) & displayRegion; repaint_region = QRegion(); damaged_region = QRegion(); m_paintScreenCount = 0; // make sure all clipping is restored Q_ASSERT(!PaintClipper::clip()); } // Compute time since the last painting pass. void Scene::updateTimeDiff() { if (!last_time.isValid()) { // Painting has been idle (optimized out) for some time, // which means time_diff would be huge and would break animations. // Simply set it to one (zero would mean no change at all and could // cause problems). time_diff = 1; last_time.start(); } else time_diff = last_time.restart(); if (time_diff < 0) // check time rollback time_diff = 1; } // Painting pass is optimized away. void Scene::idle() { // Don't break time since last paint for the next pass. last_time.invalidate(); } // the function that'll be eventually called by paintScreen() above void Scene::finalPaintScreen(int mask, const QRegion ®ion, ScreenPaintData& data) { m_paintScreenCount++; if (mask & (PAINT_SCREEN_TRANSFORMED | PAINT_SCREEN_WITH_TRANSFORMED_WINDOWS)) paintGenericScreen(mask, data); else paintSimpleScreen(mask, region); Q_EMIT frameRendered(); } // The generic painting code that can handle even transformations. // It simply paints bottom-to-top. void Scene::paintGenericScreen(int orig_mask, const ScreenPaintData &) { QVector phase2; phase2.reserve(stacking_order.size()); foreach (Window * w, stacking_order) { // bottom to top // Let the scene window update the window pixmap tree. w->preprocess(); // Reset the repaint_region. // This has to be done here because many effects schedule a repaint for // the next frame within Effects::prePaintWindow. w->resetRepaints(painted_screen); WindowPrePaintData data; data.mask = orig_mask | (w->isOpaque() ? PAINT_WINDOW_OPAQUE : PAINT_WINDOW_TRANSLUCENT); w->resetPaintingEnabled(); data.paint = infiniteRegion(); // no clipping, so doesn't really matter data.clip = QRegion(); data.quads = w->buildQuads(); // preparation step effects->prePaintWindow(effectWindow(w), data, time_diff); #if !defined(QT_NO_DEBUG) if (data.quads.isTransformed()) { qFatal("Pre-paint calls are not allowed to transform quads!"); } #endif if (!w->isPaintingEnabled()) { continue; } phase2.append({w, infiniteRegion(), data.clip, data.mask, data.quads}); } damaged_region = QRegion(QRect {{}, screens()->size()}); if (m_paintScreenCount == 1) { aboutToStartPainting(painted_screen, damaged_region); if (orig_mask & PAINT_SCREEN_BACKGROUND_FIRST) { paintBackground(infiniteRegion()); } } if (!(orig_mask & PAINT_SCREEN_BACKGROUND_FIRST)) { paintBackground(infiniteRegion()); } foreach (const Phase2Data & d, phase2) { paintWindow(d.window, d.mask, d.region, d.quads); } } // The optimized case without any transformations at all. // It can paint only the requested region and can use clipping // to reduce painting and improve performance. void Scene::paintSimpleScreen(int orig_mask, const QRegion ®ion) { Q_ASSERT((orig_mask & (PAINT_SCREEN_TRANSFORMED | PAINT_SCREEN_WITH_TRANSFORMED_WINDOWS)) == 0); QVector phase2data; phase2data.reserve(stacking_order.size()); QRegion dirtyArea = region; bool opaqueFullscreen = false; // Traverse the scene windows from bottom to top. for (int i = 0; i < stacking_order.count(); ++i) { Window *window = stacking_order[i]; Toplevel *toplevel = window->window(); WindowPrePaintData data; data.mask = orig_mask | (window->isOpaque() ? PAINT_WINDOW_OPAQUE : PAINT_WINDOW_TRANSLUCENT); window->resetPaintingEnabled(); data.paint = region; data.paint |= window->repaints(painted_screen); // Let the scene window update the window pixmap tree. window->preprocess(); // Reset the repaint_region. // This has to be done here because many effects schedule a repaint for // the next frame within Effects::prePaintWindow. window->resetRepaints(painted_screen); // Clip out the decoration for opaque windows; the decoration is drawn in the second pass opaqueFullscreen = false; // TODO: do we care about unmanged windows here (maybe input windows?) AbstractClient *client = dynamic_cast(toplevel); if (window->isOpaque()) { if (client) { opaqueFullscreen = client->isFullScreen(); } const WindowPixmap *windowPixmap = window->windowPixmap(); if (windowPixmap) { data.clip |= windowPixmap->mapToGlobal(windowPixmap->shape()); } } else if (toplevel->hasAlpha() && toplevel->opacity() == 1.0) { const WindowPixmap *windowPixmap = window->windowPixmap(); if (windowPixmap) { const QRegion shape = windowPixmap->shape(); const QRegion opaque = windowPixmap->opaque(); data.clip = windowPixmap->mapToGlobal(shape & opaque); if (opaque == shape) { data.mask = orig_mask | PAINT_WINDOW_OPAQUE; } } } else { data.clip = QRegion(); } if (client && !client->decorationHasAlpha() && toplevel->opacity() == 1.0) { data.clip |= window->decorationShape().translated(window->pos()); } data.quads = window->buildQuads(); // preparation step effects->prePaintWindow(effectWindow(window), data, time_diff); #if !defined(QT_NO_DEBUG) if (data.quads.isTransformed()) { qFatal("Pre-paint calls are not allowed to transform quads!"); } #endif if (!window->isPaintingEnabled()) { continue; } dirtyArea |= data.paint; // Schedule the window for painting phase2data.append({ window, data.paint, data.clip, data.mask, data.quads }); } // Save the part of the repaint region that's exclusively rendered to // bring a reused back buffer up to date. Then union the dirty region // with the repaint region. const QRegion repaintClip = repaint_region - dirtyArea; dirtyArea |= repaint_region; const QSize &screenSize = screens()->size(); const QRegion displayRegion(0, 0, screenSize.width(), screenSize.height()); bool fullRepaint(dirtyArea == displayRegion); // spare some expensive region operations if (!fullRepaint) { extendPaintRegion(dirtyArea, opaqueFullscreen); fullRepaint = (dirtyArea == displayRegion); } QRegion allclips, upperTranslucentDamage; upperTranslucentDamage = repaint_region; // This is the occlusion culling pass for (int i = phase2data.count() - 1; i >= 0; --i) { Phase2Data *data = &phase2data[i]; if (fullRepaint) { data->region = displayRegion; } else { data->region |= upperTranslucentDamage; } // subtract the parts which will possibly been drawn as part of // a higher opaque window data->region -= allclips; // Here we rely on WindowPrePaintData::setTranslucent() to remove // the clip if needed. if (!data->clip.isEmpty() && !(data->mask & PAINT_WINDOW_TRANSLUCENT)) { // clip away the opaque regions for all windows below this one allclips |= data->clip; // extend the translucent damage for windows below this by remaining (translucent) regions if (!fullRepaint) { upperTranslucentDamage |= data->region - data->clip; } } else if (!fullRepaint) { upperTranslucentDamage |= data->region; } } QRegion paintedArea; // Fill any areas of the root window not covered by opaque windows if (m_paintScreenCount == 1) { aboutToStartPainting(painted_screen, dirtyArea); if (orig_mask & PAINT_SCREEN_BACKGROUND_FIRST) { paintBackground(infiniteRegion()); } } if (!(orig_mask & PAINT_SCREEN_BACKGROUND_FIRST)) { paintedArea = dirtyArea - allclips; paintBackground(paintedArea); } // Now walk the list bottom to top and draw the windows. for (int i = 0; i < phase2data.count(); ++i) { Phase2Data *data = &phase2data[i]; // add all regions which have been drawn so far paintedArea |= data->region; data->region = paintedArea; paintWindow(data->window, data->mask, data->region, data->quads); } if (fullRepaint) { painted_region = displayRegion; damaged_region = displayRegion - repaintClip; } else { painted_region |= paintedArea; // Clip the repainted region from the damaged region. // It's important that we don't add the union of the damaged region // and the repainted region to the damage history. Otherwise the // repaint region will grow with every frame until it eventually // covers the whole back buffer, at which point we're always doing // full repaints. damaged_region = paintedArea - repaintClip; } } void Scene::addToplevel(Toplevel *c) { Q_ASSERT(!m_windows.contains(c)); Scene::Window *w = createWindow(c); m_windows[ c ] = w; connect(c, &Toplevel::windowClosed, this, &Scene::windowClosed); c->effectWindow()->setSceneWindow(w); c->updateShadow(); w->updateShadow(c->shadow()); } void Scene::removeToplevel(Toplevel *toplevel) { Q_ASSERT(m_windows.contains(toplevel)); delete m_windows.take(toplevel); toplevel->effectWindow()->setSceneWindow(nullptr); } void Scene::windowClosed(Toplevel *toplevel, Deleted *deleted) { if (!deleted) { removeToplevel(toplevel); return; } Q_ASSERT(m_windows.contains(toplevel)); Window *window = m_windows.take(toplevel); window->updateToplevel(deleted); if (window->shadow()) { window->shadow()->setToplevel(deleted); } m_windows[deleted] = window; } void Scene::createStackingOrder(const QList &toplevels) { // TODO: cache the stacking_order in case it has not changed foreach (Toplevel *c, toplevels) { Q_ASSERT(m_windows.contains(c)); stacking_order.append(m_windows[ c ]); } } void Scene::clearStackingOrder() { stacking_order.clear(); } static Scene::Window *s_recursionCheck = nullptr; void Scene::paintWindow(Window* w, int mask, const QRegion &_region, const WindowQuadList &quads) { // no painting outside visible screen (and no transformations) const QRegion region = _region & QRect({0, 0}, screens()->size()); if (region.isEmpty()) // completely clipped return; if (w->window()->isDeleted() && w->window()->skipsCloseAnimation()) { // should not get painted return; } if (s_recursionCheck == w) { return; } WindowPaintData data(w->window()->effectWindow(), screenProjectionMatrix()); data.quads = quads; effects->paintWindow(effectWindow(w), mask, region, data); // paint thumbnails on top of window paintWindowThumbnails(w, region, data.opacity(), data.brightness(), data.saturation()); // and desktop thumbnails paintDesktopThumbnails(w); } static void adjustClipRegion(AbstractThumbnailItem *item, QRegion &clippingRegion) { if (item->clip() && item->clipTo()) { // the x/y positions of the parent item are not correct. The margins are added, though the size seems fine // that's why we have to get the offset by inspecting the anchors properties QQuickItem *parentItem = item->clipTo(); QPointF offset; QVariant anchors = parentItem->property("anchors"); if (anchors.isValid()) { if (QObject *anchorsObject = anchors.value()) { offset.setX(anchorsObject->property("leftMargin").toReal()); offset.setY(anchorsObject->property("topMargin").toReal()); } } QRectF rect = QRectF(parentItem->position() - offset, QSizeF(parentItem->width(), parentItem->height())); if (QQuickItem *p = parentItem->parentItem()) { rect = p->mapRectToScene(rect); } clippingRegion &= rect.adjusted(0,0,-1,-1).translated(item->window()->position()).toRect(); } } void Scene::paintWindowThumbnails(Scene::Window *w, const QRegion ®ion, qreal opacity, qreal brightness, qreal saturation) { EffectWindowImpl *wImpl = static_cast(effectWindow(w)); for (QHash >::const_iterator it = wImpl->thumbnails().constBegin(); it != wImpl->thumbnails().constEnd(); ++it) { if (it.value().isNull()) { continue; } WindowThumbnailItem *item = it.key(); if (!item->isVisible()) { continue; } EffectWindowImpl *thumb = it.value().data(); WindowPaintData thumbData(thumb, screenProjectionMatrix()); thumbData.setOpacity(opacity); thumbData.setBrightness(brightness * item->brightness()); thumbData.setSaturation(saturation * item->saturation()); const QRect visualThumbRect(thumb->expandedGeometry()); QSizeF size = QSizeF(visualThumbRect.size()); size.scale(QSizeF(item->width(), item->height()), Qt::KeepAspectRatio); if (size.width() > visualThumbRect.width() || size.height() > visualThumbRect.height()) { size = QSizeF(visualThumbRect.size()); } thumbData.setXScale(size.width() / static_cast(visualThumbRect.width())); thumbData.setYScale(size.height() / static_cast(visualThumbRect.height())); if (!item->window()) { continue; } const QPointF point = item->mapToScene(QPointF(0,0)); qreal x = point.x() + w->x() + (item->width() - size.width())/2; qreal y = point.y() + w->y() + (item->height() - size.height()) / 2; x -= thumb->x(); y -= thumb->y(); // compensate shadow topleft padding x += (thumb->x()-visualThumbRect.x())*thumbData.xScale(); y += (thumb->y()-visualThumbRect.y())*thumbData.yScale(); thumbData.setXTranslation(x); thumbData.setYTranslation(y); int thumbMask = PAINT_WINDOW_TRANSFORMED | PAINT_WINDOW_LANCZOS; if (thumbData.opacity() == 1.0) { thumbMask |= PAINT_WINDOW_OPAQUE; } else { thumbMask |= PAINT_WINDOW_TRANSLUCENT; } QRegion clippingRegion = region; clippingRegion &= QRegion(wImpl->x(), wImpl->y(), wImpl->width(), wImpl->height()); adjustClipRegion(item, clippingRegion); effects->drawWindow(thumb, thumbMask, clippingRegion, thumbData); } } void Scene::paintDesktopThumbnails(Scene::Window *w) { EffectWindowImpl *wImpl = static_cast(effectWindow(w)); for (QList::const_iterator it = wImpl->desktopThumbnails().constBegin(); it != wImpl->desktopThumbnails().constEnd(); ++it) { DesktopThumbnailItem *item = *it; if (!item->isVisible()) { continue; } if (!item->window()) { continue; } s_recursionCheck = w; ScreenPaintData data; const QSize &screenSize = screens()->size(); QSize size = screenSize; size.scale(item->width(), item->height(), Qt::KeepAspectRatio); data *= QVector2D(size.width() / double(screenSize.width()), size.height() / double(screenSize.height())); const QPointF point = item->mapToScene(item->position()); const qreal x = point.x() + w->x() + (item->width() - size.width())/2; const qreal y = point.y() + w->y() + (item->height() - size.height()) / 2; const QRect region = QRect(x, y, item->width(), item->height()); QRegion clippingRegion = region; clippingRegion &= QRegion(wImpl->x(), wImpl->y(), wImpl->width(), wImpl->height()); adjustClipRegion(item, clippingRegion); data += QPointF(x, y); const int desktopMask = PAINT_SCREEN_TRANSFORMED | PAINT_WINDOW_TRANSFORMED | PAINT_SCREEN_BACKGROUND_FIRST; paintDesktop(item->desktop(), desktopMask, clippingRegion, data); s_recursionCheck = nullptr; } } void Scene::paintDesktop(int desktop, int mask, const QRegion ®ion, ScreenPaintData &data) { static_cast(effects)->paintDesktop(desktop, mask, region, data); } void Scene::aboutToStartPainting(int screenId, const QRegion &damage) { Q_UNUSED(screenId) Q_UNUSED(damage) } // the function that'll be eventually called by paintWindow() above void Scene::finalPaintWindow(EffectWindowImpl* w, int mask, const QRegion ®ion, WindowPaintData& data) { effects->drawWindow(w, mask, region, data); } // will be eventually called from drawWindow() void Scene::finalDrawWindow(EffectWindowImpl* w, int mask, const QRegion ®ion, WindowPaintData& data) { if (waylandServer() && waylandServer()->isScreenLocked() && !w->window()->isLockScreen() && !w->window()->isInputMethod()) { return; } w->sceneWindow()->performPaint(mask, region, data); } void Scene::extendPaintRegion(QRegion ®ion, bool opaqueFullscreen) { Q_UNUSED(region); Q_UNUSED(opaqueFullscreen); } bool Scene::blocksForRetrace() const { return false; } bool Scene::syncsToVBlank() const { return false; } void Scene::screenGeometryChanged(const QSize &size) { if (!overlayWindow()) { return; } overlayWindow()->resize(size); } bool Scene::makeOpenGLContextCurrent() { return false; } void Scene::doneOpenGLContextCurrent() { } bool Scene::supportsSurfacelessContext() const { return false; } bool Scene::supportsNativeFence() const { return false; } void Scene::triggerFence() { } QMatrix4x4 Scene::screenProjectionMatrix() const { return QMatrix4x4(); } xcb_render_picture_t Scene::xrenderBufferPicture() const { return XCB_RENDER_PICTURE_NONE; } QPainter *Scene::scenePainter() const { return nullptr; } QImage *Scene::qpainterRenderBuffer() const { return nullptr; } QVector Scene::openGLPlatformInterfaceExtensions() const { return QVector{}; } //**************************************** // Scene::Window //**************************************** Scene::Window::Window(Toplevel *client, QObject *parent) : QObject(parent) , toplevel(client) , filter(ImageFilterFast) , m_shadow(nullptr) , m_currentPixmap() , m_previousPixmap() , m_referencePixmapCounter(0) , disable_painting(0) , cached_quad_list(nullptr) { const Scene *scene = Compositor::self()->scene(); if (scene->isPerScreenRenderingEnabled()) { connect(screens(), &Screens::countChanged, this, &Window::reallocRepaints); } reallocRepaints(); KWaylandServer::SurfaceInterface *surface = toplevel->surface(); if (surface) { // We generate window quads for sub-surfaces so it's quite important to discard // the pixmap tree and cached window quads when the sub-surface tree is changed. m_subsurfaceMonitor = new SubSurfaceMonitor(surface, this); // TODO(vlad): Is there a more efficient way to manage window pixmap trees? connect(m_subsurfaceMonitor, &SubSurfaceMonitor::subSurfaceAdded, this, &Window::discardPixmap); connect(m_subsurfaceMonitor, &SubSurfaceMonitor::subSurfaceRemoved, this, &Window::discardPixmap); connect(m_subsurfaceMonitor, &SubSurfaceMonitor::subSurfaceMapped, this, &Window::discardPixmap); connect(m_subsurfaceMonitor, &SubSurfaceMonitor::subSurfaceUnmapped, this, &Window::discardPixmap); connect(m_subsurfaceMonitor, &SubSurfaceMonitor::subSurfaceBufferSizeChanged, this, &Window::discardPixmap); connect(m_subsurfaceMonitor, &SubSurfaceMonitor::subSurfaceAdded, this, &Window::discardQuads); connect(m_subsurfaceMonitor, &SubSurfaceMonitor::subSurfaceRemoved, this, &Window::discardQuads); connect(m_subsurfaceMonitor, &SubSurfaceMonitor::subSurfaceMoved, this, &Window::discardQuads); connect(m_subsurfaceMonitor, &SubSurfaceMonitor::subSurfaceResized, this, &Window::discardQuads); connect(m_subsurfaceMonitor, &SubSurfaceMonitor::subSurfaceMapped, this, &Window::discardQuads); connect(m_subsurfaceMonitor, &SubSurfaceMonitor::subSurfaceUnmapped, this, &Window::discardQuads); connect(m_subsurfaceMonitor, &SubSurfaceMonitor::subSurfaceSurfaceToBufferMatrixChanged, this, &Window::discardQuads); connect(surface, &KWaylandServer::SurfaceInterface::bufferSizeChanged, this, &Window::discardPixmap); connect(surface, &KWaylandServer::SurfaceInterface::surfaceToBufferMatrixChanged, this, &Window::discardQuads); } connect(toplevel, &Toplevel::screenScaleChanged, this, &Window::discardQuads); connect(toplevel, &Toplevel::shadowChanged, this, &Window::discardQuads); connect(toplevel, &Toplevel::geometryShapeChanged, this, &Window::discardShape); } Scene::Window::~Window() { for (int i = 0; i < m_repaints.count(); ++i) { const QRegion dirty = repaints(i); if (!dirty.isEmpty()) { Compositor::self()->addRepaint(dirty); } } delete m_shadow; } void Scene::Window::updateToplevel(Deleted *deleted) { delete m_subsurfaceMonitor; m_subsurfaceMonitor = nullptr; KWaylandServer::SurfaceInterface *surface = toplevel->surface(); if (surface) { disconnect(surface, nullptr, this, nullptr); } toplevel = deleted; } void Scene::Window::referencePreviousPixmap() { if (!m_previousPixmap.isNull() && m_previousPixmap->isDiscarded()) { m_referencePixmapCounter++; } } void Scene::Window::unreferencePreviousPixmap() { if (m_previousPixmap.isNull() || !m_previousPixmap->isDiscarded()) { return; } m_referencePixmapCounter--; if (m_referencePixmapCounter == 0) { m_previousPixmap.reset(); } } void Scene::Window::discardPixmap() { if (!m_currentPixmap.isNull()) { if (m_currentPixmap->isValid()) { m_previousPixmap.reset(m_currentPixmap.take()); m_previousPixmap->markAsDiscarded(); } else { m_currentPixmap.reset(); } } } void Scene::Window::updatePixmap() { if (m_currentPixmap.isNull()) { m_currentPixmap.reset(createWindowPixmap()); } if (m_currentPixmap->isValid()) { m_currentPixmap->update(); } else { m_currentPixmap->create(); } } void Scene::Window::discardShape() { // it is created on-demand and cached, simply // reset the flag m_bufferShapeIsValid = false; discardQuads(); } QRegion Scene::Window::bufferShape() const { if (m_bufferShapeIsValid) { return m_bufferShape; } const QRect bufferGeometry = toplevel->bufferGeometry(); if (toplevel->shape()) { auto cookie = xcb_shape_get_rectangles_unchecked(connection(), toplevel->frameId(), XCB_SHAPE_SK_BOUNDING); ScopedCPointer reply(xcb_shape_get_rectangles_reply(connection(), cookie, nullptr)); if (!reply.isNull()) { m_bufferShape = QRegion(); const xcb_rectangle_t *rects = xcb_shape_get_rectangles_rectangles(reply.data()); const int rectCount = xcb_shape_get_rectangles_rectangles_length(reply.data()); for (int i = 0; i < rectCount; ++i) { m_bufferShape += QRegion(rects[i].x, rects[i].y, rects[i].width, rects[i].height); } // make sure the shape is sane (X is async, maybe even XShape is broken) m_bufferShape &= QRegion(0, 0, bufferGeometry.width(), bufferGeometry.height()); } else { m_bufferShape = QRegion(); } } else { m_bufferShape = QRegion(0, 0, bufferGeometry.width(), bufferGeometry.height()); } m_bufferShapeIsValid = true; return m_bufferShape; } QRegion Scene::Window::clientShape() const { if (isShaded()) return QRegion(); const QRegion shape = bufferShape(); const QMargins bufferMargins = toplevel->bufferMargins(); if (bufferMargins.isNull()) { return shape; } const QRect clippingRect = QRect(QPoint(0, 0), toplevel->bufferGeometry().size()) - toplevel->bufferMargins(); return shape & clippingRect; } QRegion Scene::Window::decorationShape() const { return QRegion(toplevel->rect()) - toplevel->transparentRect(); } QPoint Scene::Window::bufferOffset() const { const QRect bufferGeometry = toplevel->bufferGeometry(); const QRect frameGeometry = toplevel->frameGeometry(); return bufferGeometry.topLeft() - frameGeometry.topLeft(); } bool Scene::Window::isVisible() const { if (toplevel->isDeleted()) return false; if (!toplevel->isOnCurrentDesktop()) return false; if (!toplevel->isOnCurrentActivity()) return false; if (AbstractClient *c = dynamic_cast(toplevel)) return c->isShown(true); return true; // Unmanaged is always visible } bool Scene::Window::isOpaque() const { return toplevel->opacity() == 1.0 && !toplevel->hasAlpha(); } bool Scene::Window::isShaded() const { if (AbstractClient *client = qobject_cast(toplevel)) return client->isShade(); return false; } bool Scene::Window::isPaintingEnabled() const { return !disable_painting; } void Scene::Window::resetPaintingEnabled() { disable_painting = 0; if (toplevel->isDeleted()) disable_painting |= PAINT_DISABLED_BY_DELETE; if (static_cast(effects)->isDesktopRendering()) { if (!toplevel->isOnDesktop(static_cast(effects)->currentRenderedDesktop())) { disable_painting |= PAINT_DISABLED_BY_DESKTOP; } } else { if (!toplevel->isOnCurrentDesktop()) disable_painting |= PAINT_DISABLED_BY_DESKTOP; } if (!toplevel->isOnCurrentActivity()) disable_painting |= PAINT_DISABLED_BY_ACTIVITY; if (AbstractClient *c = dynamic_cast(toplevel)) { if (c->isMinimized()) disable_painting |= PAINT_DISABLED_BY_MINIMIZE; if (c->isHiddenInternal()) { disable_painting |= PAINT_DISABLED; } } } void Scene::Window::enablePainting(int reason) { disable_painting &= ~reason; } void Scene::Window::disablePainting(int reason) { disable_painting |= reason; } WindowQuadList Scene::Window::buildQuads(bool force) const { if (cached_quad_list != nullptr && !force) return *cached_quad_list; WindowQuadList *ret = new WindowQuadList; if (!isShaded()) { *ret += makeContentsQuads(); } if (!toplevel->frameMargins().isNull()) { QRect rects[4]; if (AbstractClient *client = qobject_cast(toplevel)) { client->layoutDecorationRects(rects[0], rects[1], rects[2], rects[3]); } else if (Deleted *deleted = qobject_cast(toplevel)) { deleted->layoutDecorationRects(rects[0], rects[1], rects[2], rects[3]); } *ret += makeDecorationQuads(rects, decorationShape()); } if (m_shadow && toplevel->wantsShadowToBeRendered()) { *ret << m_shadow->shadowQuads(); } effects->buildQuads(toplevel->effectWindow(), *ret); cached_quad_list.reset(ret); return *ret; } WindowQuadList Scene::Window::makeDecorationQuads(const QRect *rects, const QRegion ®ion) const { WindowQuadList list; const qreal textureScale = toplevel->screenScale(); const int padding = 1; const QPoint topSpritePosition(padding, padding); const QPoint bottomSpritePosition(padding, topSpritePosition.y() + rects[1].height() + 2 * padding); const QPoint leftSpritePosition(bottomSpritePosition.y() + rects[3].height() + 2 * padding, padding); const QPoint rightSpritePosition(leftSpritePosition.x() + rects[0].width() + 2 * padding, padding); const QPoint offsets[4] = { QPoint(-rects[0].x(), -rects[0].y()) + leftSpritePosition, QPoint(-rects[1].x(), -rects[1].y()) + topSpritePosition, QPoint(-rects[2].x(), -rects[2].y()) + rightSpritePosition, QPoint(-rects[3].x(), -rects[3].y()) + bottomSpritePosition, }; const Qt::Orientation orientations[4] = { Qt::Vertical, // Left Qt::Horizontal, // Top Qt::Vertical, // Right Qt::Horizontal, // Bottom }; for (int i = 0; i < 4; i++) { const QRegion intersectedRegion = (region & rects[i]); for (const QRect &r : intersectedRegion) { if (!r.isValid()) continue; const bool swap = orientations[i] == Qt::Vertical; const int x0 = r.x(); const int y0 = r.y(); const int x1 = r.x() + r.width(); const int y1 = r.y() + r.height(); const int u0 = (x0 + offsets[i].x()) * textureScale; const int v0 = (y0 + offsets[i].y()) * textureScale; const int u1 = (x1 + offsets[i].x()) * textureScale; const int v1 = (y1 + offsets[i].y()) * textureScale; WindowQuad quad(WindowQuadDecoration); quad.setUVAxisSwapped(swap); if (swap) { quad[0] = WindowVertex(x0, y0, v0, u0); // Top-left quad[1] = WindowVertex(x1, y0, v0, u1); // Top-right quad[2] = WindowVertex(x1, y1, v1, u1); // Bottom-right quad[3] = WindowVertex(x0, y1, v1, u0); // Bottom-left } else { quad[0] = WindowVertex(x0, y0, u0, v0); // Top-left quad[1] = WindowVertex(x1, y0, u1, v0); // Top-right quad[2] = WindowVertex(x1, y1, u1, v1); // Bottom-right quad[3] = WindowVertex(x0, y1, u0, v1); // Bottom-left } list.append(quad); } } return list; } WindowQuadList Scene::Window::makeContentsQuads() const { // TODO(vlad): What about the case where we need to build window quads for a deleted // window? Presumably, the current window will be invalid so no window quads will be // generated. Is it okay? WindowPixmap *currentPixmap = windowPixmap(); if (!currentPixmap) return WindowQuadList(); WindowQuadList quads; int id = 0; // We need to assign an id to each generated window quad in order to be able to match // a list of window quads against a particular window pixmap. We traverse the window // pixmap tree in the depth-first search manner and assign an id to each window quad. // The id is the time when we visited the window pixmap. QStack stack; stack.push(currentPixmap); while (!stack.isEmpty()) { WindowPixmap *windowPixmap = stack.pop(); // If it's an unmapped sub-surface, don't generate window quads for it. if (!windowPixmap->isValid()) continue; const QRegion region = windowPixmap->shape(); const int quadId = id++; for (const QRectF rect : region) { // Note that the window quad id is not unique if the window is shaped, i.e. the // region contains more than just one rectangle. We assume that the "source" quad // had been subdivided. WindowQuad quad(WindowQuadContents, quadId); const QPointF windowTopLeft = windowPixmap->mapToWindow(rect.topLeft()); const QPointF windowTopRight = windowPixmap->mapToWindow(rect.topRight()); const QPointF windowBottomRight = windowPixmap->mapToWindow(rect.bottomRight()); const QPointF windowBottomLeft = windowPixmap->mapToWindow(rect.bottomLeft()); const QPointF bufferTopLeft = windowPixmap->mapToBuffer(rect.topLeft()); const QPointF bufferTopRight = windowPixmap->mapToBuffer(rect.topRight()); const QPointF bufferBottomRight = windowPixmap->mapToBuffer(rect.bottomRight()); const QPointF bufferBottomLeft = windowPixmap->mapToBuffer(rect.bottomLeft()); quad[0] = WindowVertex(windowTopLeft, bufferTopLeft); quad[1] = WindowVertex(windowTopRight, bufferTopRight); quad[2] = WindowVertex(windowBottomRight, bufferBottomRight); quad[3] = WindowVertex(windowBottomLeft, bufferBottomLeft); quads << quad; } // Push the child window pixmaps onto the stack, remember we're visiting the pixmaps // in the depth-first search manner. stack += windowPixmap->children(); } return quads; } void Scene::Window::discardQuads() { cached_quad_list.reset(); } void Scene::Window::updateShadow(Shadow* shadow) { if (m_shadow == shadow) { return; } delete m_shadow; m_shadow = shadow; } void Scene::Window::preprocess() { // The tracked damage will be reset after the scene is done with copying buffer's data. // Note that we have to be prepared for the case where no damage has occurred since kwin // core may discard the current window pixmap at any moment. if (!m_currentPixmap || !window()->damage().isEmpty()) { updatePixmap(); } } void Scene::Window::addRepaint(const QRegion ®ion) { for (int screen = 0; screen < m_repaints.count(); ++screen) { m_repaints[screen] += region; } } void Scene::Window::addLayerRepaint(const QRegion ®ion) { for (int screen = 0; screen < m_layerRepaints.count(); ++screen) { m_layerRepaints[screen] += region; } } QRegion Scene::Window::repaints(int screen) const { Q_ASSERT(!m_repaints.isEmpty() && !m_layerRepaints.isEmpty()); const int index = screen != -1 ? screen : 0; if (m_repaints[index] == infiniteRegion() || m_layerRepaints[index] == infiniteRegion()) { return QRect(QPoint(0, 0), screens()->size()); } return m_repaints[index].translated(pos()) + m_layerRepaints[index]; } void Scene::Window::resetRepaints(int screen) { Q_ASSERT(!m_repaints.isEmpty() && !m_layerRepaints.isEmpty()); const int index = screen != -1 ? screen : 0; m_repaints[index] = QRegion(); m_layerRepaints[index] = QRegion(); } void Scene::Window::reallocRepaints() { const Scene *scene = Compositor::self()->scene(); if (scene->isPerScreenRenderingEnabled()) { m_repaints.resize(screens()->count()); m_layerRepaints.resize(screens()->count()); } else { m_repaints.resize(1); m_layerRepaints.resize(1); } m_repaints.fill(infiniteRegion()); m_layerRepaints.fill(infiniteRegion()); } static bool wantsRepaint_test(const QRegion ®ion) { return !region.isEmpty(); } bool Scene::Window::wantsRepaint() const { return std::any_of(m_repaints.begin(), m_repaints.end(), wantsRepaint_test) || std::any_of(m_layerRepaints.begin(), m_layerRepaints.end(), wantsRepaint_test); } //**************************************** // WindowPixmap //**************************************** WindowPixmap::WindowPixmap(Scene::Window *window) : m_window(window) , m_pixmap(XCB_PIXMAP_NONE) , m_discarded(false) { } WindowPixmap::WindowPixmap(KWaylandServer::SubSurfaceInterface *subSurface, WindowPixmap *parent) : m_window(parent->m_window) , m_pixmap(XCB_PIXMAP_NONE) , m_discarded(false) , m_parent(parent) , m_subSurface(subSurface) { } WindowPixmap::~WindowPixmap() { qDeleteAll(m_children); if (m_pixmap != XCB_WINDOW_NONE) { xcb_free_pixmap(connection(), m_pixmap); } clear(); } void WindowPixmap::create() { if (isValid() || toplevel()->isDeleted()) { return; } // always update from Buffer on Wayland, don't try using XPixmap if (kwinApp()->shouldUseWaylandForCompositing()) { // use Buffer update(); if (isRoot() && isValid()) { m_window->unreferencePreviousPixmap(); m_window->discardQuads(); } return; } XServerGrabber grabber; xcb_pixmap_t pix = xcb_generate_id(connection()); xcb_void_cookie_t namePixmapCookie = xcb_composite_name_window_pixmap_checked(connection(), toplevel()->frameId(), pix); Xcb::WindowAttributes windowAttributes(toplevel()->frameId()); Xcb::WindowGeometry windowGeometry(toplevel()->frameId()); if (xcb_generic_error_t *error = xcb_request_check(connection(), namePixmapCookie)) { qCDebug(KWIN_CORE) << "Creating window pixmap failed: " << error->error_code; free(error); return; } // check that the received pixmap is valid and actually matches what we // know about the window (i.e. size) if (!windowAttributes || windowAttributes->map_state != XCB_MAP_STATE_VIEWABLE) { qCDebug(KWIN_CORE) << "Creating window pixmap failed: " << this; xcb_free_pixmap(connection(), pix); return; } const QRect bufferGeometry = toplevel()->bufferGeometry(); if (windowGeometry.size() != bufferGeometry.size()) { qCDebug(KWIN_CORE) << "Creating window pixmap failed: " << this; xcb_free_pixmap(connection(), pix); return; } m_pixmap = pix; m_pixmapSize = bufferGeometry.size(); m_contentsRect = QRect(toplevel()->clientPos(), toplevel()->clientSize()); m_window->unreferencePreviousPixmap(); m_window->discardQuads(); } void WindowPixmap::clear() { setBuffer(nullptr); } void WindowPixmap::setBuffer(KWaylandServer::BufferInterface *buffer) { if (buffer == m_buffer) { return; } if (m_buffer) { disconnect(m_buffer, &KWaylandServer::BufferInterface::aboutToBeDestroyed, this, &WindowPixmap::clear); m_buffer->unref(); } m_buffer = buffer; if (m_buffer) { m_buffer->ref(); connect(m_buffer, &KWaylandServer::BufferInterface::aboutToBeDestroyed, this, &WindowPixmap::clear); } } void WindowPixmap::update() { using namespace KWaylandServer; if (SurfaceInterface *s = surface()) { QVector oldTree = m_children; QVector children; const auto subSurfaces = s->childSubSurfaces(); for (const auto &subSurface : subSurfaces) { if (!subSurface) { continue; } auto it = std::find_if(oldTree.begin(), oldTree.end(), [subSurface] (WindowPixmap *p) { return p->m_subSurface == subSurface; }); if (it != oldTree.end()) { children << *it; (*it)->update(); oldTree.erase(it); } else { WindowPixmap *p = createChild(subSurface); if (p) { p->create(); children << p; } } } setChildren(children); qDeleteAll(oldTree); if (auto b = s->buffer()) { setBuffer(b); } else if (m_subSurface) { clear(); } } else if (toplevel()->internalFramebufferObject()) { m_fbo = toplevel()->internalFramebufferObject(); } else if (!toplevel()->internalImageObject().isNull()) { m_internalImage = toplevel()->internalImageObject(); } else { clear(); } } WindowPixmap *WindowPixmap::createChild(KWaylandServer::SubSurfaceInterface *subSurface) { Q_UNUSED(subSurface) return nullptr; } bool WindowPixmap::isValid() const { if (m_buffer || !m_fbo.isNull() || !m_internalImage.isNull()) { return true; } return m_pixmap != XCB_PIXMAP_NONE; } bool WindowPixmap::isRoot() const { return !m_parent; } KWaylandServer::SubSurfaceInterface *WindowPixmap::subSurface() const { return m_subSurface; } KWaylandServer::SurfaceInterface *WindowPixmap::surface() const { if (!m_subSurface.isNull()) { return m_subSurface->surface(); } else { return toplevel()->surface(); } } QPoint WindowPixmap::position() const { if (subSurface()) return subSurface()->position(); return m_window->bufferOffset(); } QPoint WindowPixmap::framePosition() const { return position() + (m_parent ? m_parent->framePosition() : QPoint()); } qreal WindowPixmap::scale() const { if (surface()) return surface()->bufferScale(); return toplevel()->bufferScale(); } QRegion WindowPixmap::shape() const { if (subSurface()) return surface() ? QRect(QPoint(), surface()->size()) : QRegion(); return m_window->clientShape(); } QRegion WindowPixmap::opaque() const { if (surface()) { return surface()->opaque(); } return toplevel()->opaqueRegion().translated(toplevel()->clientPos()); } bool WindowPixmap::hasAlphaChannel() const { if (buffer()) return buffer()->hasAlphaChannel(); return toplevel()->hasAlpha(); } QPointF WindowPixmap::mapToWindow(const QPointF &point) const { return point + framePosition(); } QPointF WindowPixmap::mapToBuffer(const QPointF &point) const { if (surface()) return surface()->mapToBuffer(point); return point * scale(); } QRegion WindowPixmap::mapToGlobal(const QRegion ®ion) const { return region.translated(m_window->pos() + framePosition()); } //**************************************** // Scene::EffectFrame //**************************************** Scene::EffectFrame::EffectFrame(EffectFrameImpl* frame) : m_effectFrame(frame) { } Scene::EffectFrame::~EffectFrame() { } SceneFactory::SceneFactory(QObject *parent) : QObject(parent) { } SceneFactory::~SceneFactory() { } } // namespace