/******************************************************************** KWin - the KDE window manager This file is part of the KDE project. Copyright (C) 2006-2007 Rivo Laks Copyright (C) 2010, 2011 Martin Gräßlin This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . *********************************************************************/ #include "kwinglutils.h" // need to call GLTexturePrivate::initStatic() #include "kwingltexture_p.h" #include "kwinglcolorcorrection.h" #include "kwinglobals.h" #include "kwineffects.h" #include "kwinglplatform.h" #include "kdebug.h" #include #include #include #include #include #include #include #include #include #include #include #include #define DEBUG_GLRENDERTARGET 0 #define MAKE_GL_VERSION(major, minor, release) ( ((major) << 16) | ((minor) << 8) | (release) ) namespace KWin { // Variables // GL version, use MAKE_GL_VERSION() macro for comparing with a specific version static int glVersion; // GLX version, use MAKE_GL_VERSION() macro for comparing with a specific version static int glXVersion; // EGL version, use MAKE_GL_VERSION() macro for comparing with a specific version static int eglVersion; // List of all supported GL, EGL and GLX extensions static QStringList glExtensions; static QStringList glxExtensions; static QStringList eglExtension; int glTextureUnitsCount; // Functions void initGLX() { #ifndef KWIN_HAVE_OPENGLES // Get GLX version int major, minor; glXQueryVersion(display(), &major, &minor); glXVersion = MAKE_GL_VERSION(major, minor, 0); // Get list of supported GLX extensions glxExtensions = QString((const char*)glXQueryExtensionsString( display(), DefaultScreen(display()))).split(' '); glxResolveFunctions(); #endif } void initEGL() { #ifdef KWIN_HAVE_EGL EGLDisplay dpy = eglGetCurrentDisplay(); int major, minor; eglInitialize(dpy, &major, &minor); eglVersion = MAKE_GL_VERSION(major, minor, 0); eglExtension = QString((const char*)eglQueryString(dpy, EGL_EXTENSIONS)).split(' '); eglResolveFunctions(); #endif } void initGL(OpenGLPlatformInterface platformInterface) { // Get OpenGL version QString glversionstring = QString((const char*)glGetString(GL_VERSION)); QStringList glversioninfo = glversionstring.left(glversionstring.indexOf(' ')).split('.'); while (glversioninfo.count() < 3) glversioninfo << "0"; #ifndef KWIN_HAVE_OPENGLES glVersion = MAKE_GL_VERSION(glversioninfo[0].toInt(), glversioninfo[1].toInt(), glversioninfo[2].toInt()); #endif // Get list of supported OpenGL extensions glExtensions = QString((const char*)glGetString(GL_EXTENSIONS)).split(' '); // handle OpenGL extensions functions glResolveFunctions(platformInterface); GLTexturePrivate::initStatic(); GLRenderTarget::initStatic(); GLVertexBuffer::initStatic(); } void cleanupGL() { ShaderManager::cleanup(); } bool hasGLVersion(int major, int minor, int release) { return glVersion >= MAKE_GL_VERSION(major, minor, release); } bool hasGLXVersion(int major, int minor, int release) { return glXVersion >= MAKE_GL_VERSION(major, minor, release); } bool hasEGLVersion(int major, int minor, int release) { return eglVersion >= MAKE_GL_VERSION(major, minor, release); } bool hasGLExtension(const QString& extension) { return glExtensions.contains(extension) || glxExtensions.contains(extension) || eglExtension.contains(extension); } static QString formatGLError(GLenum err) { switch(err) { case GL_NO_ERROR: return "GL_NO_ERROR"; case GL_INVALID_ENUM: return "GL_INVALID_ENUM"; case GL_INVALID_VALUE: return "GL_INVALID_VALUE"; case GL_INVALID_OPERATION: return "GL_INVALID_OPERATION"; #ifndef KWIN_HAVE_OPENGLES case GL_STACK_OVERFLOW: return "GL_STACK_OVERFLOW"; case GL_STACK_UNDERFLOW: return "GL_STACK_UNDERFLOW"; #endif case GL_OUT_OF_MEMORY: return "GL_OUT_OF_MEMORY"; default: return QString("0x") + QString::number(err, 16); } } bool checkGLError(const char* txt) { GLenum err = glGetError(); bool hasError = false; while (err != GL_NO_ERROR) { kWarning(1212) << "GL error (" << txt << "): " << formatGLError(err); hasError = true; err = glGetError(); } return hasError; } int nearestPowerOfTwo(int x) { // This method had been copied from Qt's nearest_gl_texture_size() int n = 0, last = 0; for (int s = 0; s < 32; ++s) { if (((x >> s) & 1) == 1) { ++n; last = s; } } if (n > 1) return 1 << (last + 1); return 1 << last; } void pushMatrix() { #ifdef KWIN_HAVE_OPENGL_1 if (ShaderManager::instance()->isValid()) { return; } glPushMatrix(); #endif } void pushMatrix(const QMatrix4x4 &matrix) { #ifndef KWIN_HAVE_OPENGL_1 Q_UNUSED(matrix) #else if (ShaderManager::instance()->isValid()) { return; } glPushMatrix(); multiplyMatrix(matrix); #endif } void multiplyMatrix(const QMatrix4x4 &matrix) { #ifndef KWIN_HAVE_OPENGL_1 Q_UNUSED(matrix) #else if (ShaderManager::instance()->isValid()) { return; } GLfloat m[16]; const qreal *data = matrix.constData(); for (int i = 0; i < 4; ++i) { for (int j = 0; j < 4; ++j) { m[i*4+j] = data[i*4+j]; } } glMultMatrixf(m); #endif } void loadMatrix(const QMatrix4x4 &matrix) { #ifndef KWIN_HAVE_OPENGL_1 Q_UNUSED(matrix) #else if (ShaderManager::instance()->isValid()) { return; } GLfloat m[16]; const qreal *data = matrix.constData(); for (int i = 0; i < 4; ++i) { for (int j = 0; j < 4; ++j) { m[i*4+j] = data[i*4+j]; } } glLoadMatrixf(m); #endif } void popMatrix() { #ifdef KWIN_HAVE_OPENGL_1 if (ShaderManager::instance()->isValid()) { return; } glPopMatrix(); #endif } //**************************************** // GLShader //**************************************** bool GLShader::sColorCorrect = false; GLShader::GLShader() : mProgram(0) , mValid(false) , mLocationsResolved(false) { } GLShader::GLShader(const QString& vertexfile, const QString& fragmentfile) : mProgram(0) , mValid(false) , mLocationsResolved(false) { loadFromFiles(vertexfile, fragmentfile); } GLShader::~GLShader() { if (mProgram) { glDeleteProgram(mProgram); } } bool GLShader::loadFromFiles(const QString &vertexFile, const QString &fragmentFile) { QFile vf(vertexFile); if (!vf.open(QIODevice::ReadOnly)) { kError(1212) << "Couldn't open" << vertexFile << "for reading!" << endl; return false; } const QByteArray vertexSource = vf.readAll(); QFile ff(fragmentFile); if (!ff.open(QIODevice::ReadOnly)) { kError(1212) << "Couldn't open" << fragmentFile << "for reading!" << endl; return false; } const QByteArray fragmentSource = ff.readAll(); return load(vertexSource, fragmentSource); } const QByteArray GLShader::prepareSource(GLenum shaderType, const QByteArray &source) const { // Prepare the source code QByteArray ba; #ifdef KWIN_HAVE_OPENGLES ba.append("#ifdef GL_ES\nprecision highp float;\n#endif\n"); #endif if (ShaderManager::instance()->isShaderDebug()) { ba.append("#define KWIN_SHADER_DEBUG 1\n"); } ba.append(source); // Inject color correction code for fragment shaders, if possible if (shaderType == GL_FRAGMENT_SHADER && sColorCorrect) ba = ColorCorrection::prepareFragmentShader(ba); return ba; } bool GLShader::compile(GLuint program, GLenum shaderType, const QByteArray &source) const { GLuint shader = glCreateShader(shaderType); QByteArray preparedSource = prepareSource(shaderType, source); const char* src = preparedSource.constData(); glShaderSource(shader, 1, &src, NULL); // Compile the shader glCompileShader(shader); // Get the shader info log int maxLength, length; glGetShaderiv(shader, GL_INFO_LOG_LENGTH, &maxLength); QByteArray log(maxLength, 0); glGetShaderInfoLog(shader, maxLength, &length, log.data()); // Check the status int status; glGetShaderiv(shader, GL_COMPILE_STATUS, &status); if (status == 0) { const char *typeName = (shaderType == GL_VERTEX_SHADER ? "vertex" : "fragment"); kError(1212) << "Failed to compile" << typeName << "shader:" << endl << log << endl; } else if (length > 0) kDebug(1212) << "Shader compile log:" << log; if (status != 0) glAttachShader(program, shader); glDeleteShader(shader); return status != 0; } bool GLShader::load(const QByteArray &vertexSource, const QByteArray &fragmentSource) { #ifndef KWIN_HAVE_OPENGLES // Make sure shaders are actually supported if (!GLPlatform::instance()->supports(GLSL) || GLPlatform::instance()->supports(LimitedNPOT)) { kError(1212) << "Shaders are not supported"; return false; } #endif // Create the shader program mProgram = glCreateProgram(); // Compile the vertex shader if (!vertexSource.isEmpty()) { bool success = compile(mProgram, GL_VERTEX_SHADER, vertexSource); if (!success) { glDeleteProgram(mProgram); mProgram = 0; return false; } } // Compile the fragment shader if (!fragmentSource.isEmpty()) { bool success = compile(mProgram, GL_FRAGMENT_SHADER, fragmentSource); if (!success) { glDeleteProgram(mProgram); mProgram = 0; return false; } } glLinkProgram(mProgram); // Get the program info log int maxLength, length; glGetProgramiv(mProgram, GL_INFO_LOG_LENGTH, &maxLength); QByteArray log(maxLength, 0); glGetProgramInfoLog(mProgram, maxLength, &length, log.data()); // Make sure the program linked successfully int status; glGetProgramiv(mProgram, GL_LINK_STATUS, &status); if (status == 0) { kError(1212) << "Failed to link shader:" << endl << log << endl; glDeleteProgram(mProgram); mProgram = 0; return false; } else if (length > 0) kDebug(1212) << "Shader link log:" << log; mValid = true; return true; } void GLShader::bind() { glUseProgram(mProgram); } void GLShader::unbind() { glUseProgram(0); } void GLShader::resolveLocations() { if (mLocationsResolved) return; mMatrixLocation[TextureMatrix] = uniformLocation("textureMatrix"); mMatrixLocation[ProjectionMatrix] = uniformLocation("projection"); mMatrixLocation[ModelViewMatrix] = uniformLocation("modelview"); mMatrixLocation[WindowTransformation] = uniformLocation("windowTransformation"); mMatrixLocation[ScreenTransformation] = uniformLocation("screenTransformation"); mVec2Location[Offset] = uniformLocation("offset"); mVec4Location[ModulationConstant] = uniformLocation("modulation"); mFloatLocation[Saturation] = uniformLocation("saturation"); mLocationsResolved = true; } int GLShader::uniformLocation(const char *name) { const int location = glGetUniformLocation(mProgram, name); return location; } bool GLShader::setUniform(GLShader::MatrixUniform uniform, const QMatrix4x4 &matrix) { resolveLocations(); return setUniform(mMatrixLocation[uniform], matrix); } bool GLShader::setUniform(GLShader::Vec2Uniform uniform, const QVector2D &value) { resolveLocations(); return setUniform(mVec2Location[uniform], value); } bool GLShader::setUniform(GLShader::Vec4Uniform uniform, const QVector4D &value) { resolveLocations(); return setUniform(mVec4Location[uniform], value); } bool GLShader::setUniform(GLShader::FloatUniform uniform, float value) { resolveLocations(); return setUniform(mFloatLocation[uniform], value); } bool GLShader::setUniform(GLShader::IntUniform uniform, int value) { resolveLocations(); return setUniform(mIntLocation[uniform], value); } bool GLShader::setUniform(const char *name, float value) { const int location = uniformLocation(name); return setUniform(location, value); } bool GLShader::setUniform(const char *name, int value) { const int location = uniformLocation(name); return setUniform(location, value); } bool GLShader::setUniform(const char *name, const QVector2D& value) { const int location = uniformLocation(name); return setUniform(location, value); } bool GLShader::setUniform(const char *name, const QVector3D& value) { const int location = uniformLocation(name); return setUniform(location, value); } bool GLShader::setUniform(const char *name, const QVector4D& value) { const int location = uniformLocation(name); return setUniform(location, value); } bool GLShader::setUniform(const char *name, const QMatrix4x4& value) { const int location = uniformLocation(name); return setUniform(location, value); } bool GLShader::setUniform(const char *name, const QColor& color) { const int location = uniformLocation(name); return setUniform(location, color); } bool GLShader::setUniform(int location, float value) { if (location >= 0) { glUniform1f(location, value); } return (location >= 0); } bool GLShader::setUniform(int location, int value) { if (location >= 0) { glUniform1i(location, value); } return (location >= 0); } bool GLShader::setUniform(int location, const QVector2D &value) { if (location >= 0) { glUniform2fv(location, 1, (const GLfloat*)&value); } return (location >= 0); } bool GLShader::setUniform(int location, const QVector3D &value) { if (location >= 0) { glUniform3fv(location, 1, (const GLfloat*)&value); } return (location >= 0); } bool GLShader::setUniform(int location, const QVector4D &value) { if (location >= 0) { glUniform4fv(location, 1, (const GLfloat*)&value); } return (location >= 0); } bool GLShader::setUniform(int location, const QMatrix4x4 &value) { if (location >= 0) { GLfloat m[16]; const qreal *data = value.constData(); // i is column, j is row for m for (int i = 0; i < 16; ++i) { m[i] = data[i]; } glUniformMatrix4fv(location, 1, GL_FALSE, m); } return (location >= 0); } bool GLShader::setUniform(int location, const QColor &color) { if (location >= 0) { glUniform4f(location, color.redF(), color.greenF(), color.blueF(), color.alphaF()); } return (location >= 0); } int GLShader::attributeLocation(const char* name) { int location = glGetAttribLocation(mProgram, name); return location; } bool GLShader::setAttribute(const char* name, float value) { int location = attributeLocation(name); if (location >= 0) { glVertexAttrib1f(location, value); } return (location >= 0); } QMatrix4x4 GLShader::getUniformMatrix4x4(const char* name) { int location = uniformLocation(name); if (location >= 0) { GLfloat m[16]; glGetUniformfv(mProgram, location, m); QMatrix4x4 matrix(m[0], m[4], m[8], m[12], m[1], m[5], m[9], m[13], m[2], m[6], m[10], m[14], m[3], m[7], m[11], m[15]); matrix.optimize(); return matrix; } else { return QMatrix4x4(); } } //**************************************** // ShaderManager //**************************************** ShaderManager *ShaderManager::s_shaderManager = NULL; ShaderManager *ShaderManager::instance() { if (!s_shaderManager) { s_shaderManager = new ShaderManager(); s_shaderManager->initShaders(); s_shaderManager->m_inited = true; } return s_shaderManager; } void ShaderManager::disable() { // for safety do a Cleanup first ShaderManager::cleanup(); // create a new ShaderManager and set it to inited without calling init // that will ensure that the ShaderManager is not valid s_shaderManager = new ShaderManager(); s_shaderManager->m_inited = true; } void ShaderManager::cleanup() { delete s_shaderManager; s_shaderManager = NULL; } ShaderManager::ShaderManager() : m_orthoShader(NULL) , m_genericShader(NULL) , m_colorShader(NULL) , m_inited(false) , m_valid(false) { m_debug = qstrcmp(qgetenv("KWIN_GL_DEBUG"), "1") == 0; } ShaderManager::~ShaderManager() { while (!m_boundShaders.isEmpty()) { popShader(); } delete m_orthoShader; delete m_genericShader; delete m_colorShader; } GLShader *ShaderManager::getBoundShader() const { if (m_boundShaders.isEmpty()) { return NULL; } else { return m_boundShaders.top(); } } bool ShaderManager::isShaderBound() const { return !m_boundShaders.isEmpty(); } bool ShaderManager::isValid() const { return m_valid; } bool ShaderManager::isShaderDebug() const { return m_debug; } GLShader *ShaderManager::pushShader(ShaderType type, bool reset) { if (m_inited && !m_valid) { return NULL; } GLShader *shader; switch(type) { case SimpleShader: shader = m_orthoShader; break; case GenericShader: shader = m_genericShader; break; case ColorShader: shader = m_colorShader; break; default: return NULL; } pushShader(shader); if (reset) { resetShader(type); } return shader; } void ShaderManager::resetAllShaders() { if (!m_inited || !m_valid) { return; } pushShader(SimpleShader, true); pushShader(GenericShader, true); pushShader(ColorShader, true); popShader(); popShader(); popShader(); } void ShaderManager::pushShader(GLShader *shader) { // only bind shader if it is not already bound if (shader != getBoundShader()) { shader->bind(); } m_boundShaders.push(shader); } void ShaderManager::popShader() { if (m_boundShaders.isEmpty()) { return; } GLShader *shader = m_boundShaders.pop(); if (m_boundShaders.isEmpty()) { // no more shader bound - unbind shader->unbind(); } else if (shader != m_boundShaders.top()) { // only rebind if a different shader is on top of stack m_boundShaders.top()->bind(); } } GLShader *ShaderManager::loadFragmentShader(ShaderType vertex, const QString &fragmentFile) { QString vertexShader; switch(vertex) { case SimpleShader: vertexShader = ":/resources/scene-vertex.glsl"; break; case GenericShader: vertexShader = ":/resources/scene-generic-vertex.glsl"; break; case ColorShader: vertexShader = ":/resources/scene-color-vertex.glsl"; break; } GLShader *shader = new GLShader(vertexShader, fragmentFile); if (shader->isValid()) { pushShader(shader); resetShader(vertex); popShader(); } return shader; } GLShader *ShaderManager::loadVertexShader(ShaderType fragment, const QString &vertexFile) { QString fragmentShader; switch(fragment) { // Simple and Generic Shader use same fragment Shader case SimpleShader: case GenericShader: fragmentShader = ":/resources/scene-fragment.glsl"; break; case ColorShader: fragmentShader = ":/resources/scene-color-fragment.glsl"; break; } GLShader *shader = new GLShader(vertexFile, fragmentShader); if (shader->isValid()) { pushShader(shader); resetShader(fragment); popShader(); } return shader; } GLShader *ShaderManager::loadShaderFromCode(const QByteArray &vertexSource, const QByteArray &fragmentSource) { GLShader *shader = new GLShader(); shader->load(vertexSource, fragmentSource); return shader; } void ShaderManager::initShaders() { m_orthoShader = new GLShader(":/resources/scene-vertex.glsl", ":/resources/scene-fragment.glsl"); if (m_orthoShader->isValid()) { pushShader(SimpleShader, true); popShader(); kDebug(1212) << "Ortho Shader is valid"; } else { delete m_orthoShader; m_orthoShader = NULL; kDebug(1212) << "Orho Shader is not valid"; return; } m_genericShader = new GLShader(":/resources/scene-generic-vertex.glsl", ":/resources/scene-fragment.glsl"); if (m_genericShader->isValid()) { pushShader(GenericShader, true); popShader(); kDebug(1212) << "Generic Shader is valid"; } else { delete m_genericShader; m_genericShader = NULL; delete m_orthoShader; m_orthoShader = NULL; kDebug(1212) << "Generic Shader is not valid"; return; } m_colorShader = new GLShader(":/resources/scene-color-vertex.glsl", ":/resources/scene-color-fragment.glsl"); if (m_colorShader->isValid()) { pushShader(ColorShader, true); popShader(); kDebug(1212) << "Color Shader is valid"; } else { delete m_genericShader; m_genericShader = NULL; delete m_orthoShader; m_orthoShader = NULL; delete m_colorShader; m_colorShader = NULL; kDebug(1212) << "Color Scene Shader is not valid"; return; } m_valid = true; } void ShaderManager::resetShader(ShaderType type) { // resetShader is either called from init or from push, we know that a built-in shader is bound const QMatrix4x4 identity; QMatrix4x4 projection; QMatrix4x4 modelView; GLShader *shader = getBoundShader(); switch(type) { case SimpleShader: projection.ortho(0, displayWidth(), displayHeight(), 0, 0, 65535); break; case GenericShader: { // Set up the projection matrix float fovy = 60.0f; float aspect = 1.0f; float zNear = 0.1f; float zFar = 100.0f; float ymax = zNear * tan(fovy * M_PI / 360.0f); float ymin = -ymax; float xmin = ymin * aspect; float xmax = ymax * aspect; projection.frustum(xmin, xmax, ymin, ymax, zNear, zFar); // Set up the model-view matrix float scaleFactor = 1.1 * tan(fovy * M_PI / 360.0f) / ymax; modelView.translate(xmin * scaleFactor, ymax * scaleFactor, -1.1); modelView.scale((xmax - xmin)*scaleFactor / displayWidth(), -(ymax - ymin)*scaleFactor / displayHeight(), 0.001); break; } case ColorShader: projection.ortho(0, displayWidth(), displayHeight(), 0, 0, 65535); shader->setUniform("geometryColor", QVector4D(0, 0, 0, 1)); break; } shader->setUniform("sampler", 0); shader->setUniform(GLShader::ProjectionMatrix, projection); shader->setUniform(GLShader::ModelViewMatrix, modelView); shader->setUniform(GLShader::ScreenTransformation, identity); shader->setUniform(GLShader::WindowTransformation, identity); shader->setUniform(GLShader::Offset, QVector2D(0, 0)); shader->setUniform(GLShader::ModulationConstant, QVector4D(1.0, 1.0, 1.0, 1.0)); shader->setUniform(GLShader::Saturation, 1.0f); } /*** GLRenderTarget ***/ bool GLRenderTarget::sSupported = false; bool GLRenderTarget::s_blitSupported = false; QStack GLRenderTarget::s_renderTargets = QStack(); QSize GLRenderTarget::s_oldViewport; void GLRenderTarget::initStatic() { #ifdef KWIN_HAVE_OPENGLES sSupported = true; s_blitSupported = false; #else sSupported = hasGLExtension("GL_EXT_framebuffer_object") && glFramebufferTexture2D; s_blitSupported = hasGLExtension("GL_EXT_framebuffer_blit"); #endif } bool GLRenderTarget::isRenderTargetBound() { return !s_renderTargets.isEmpty(); } bool GLRenderTarget::blitSupported() { return s_blitSupported; } void GLRenderTarget::pushRenderTarget(GLRenderTarget* target) { if (s_renderTargets.isEmpty()) { GLint params[4]; glGetIntegerv(GL_VIEWPORT, params); s_oldViewport = QSize(params[2], params[3]); } target->enable(); s_renderTargets.push(target); } GLRenderTarget* GLRenderTarget::popRenderTarget() { GLRenderTarget* ret = s_renderTargets.pop(); ret->disable(); if (!s_renderTargets.isEmpty()) { s_renderTargets.top()->enable(); } else if (!s_oldViewport.isEmpty()) { glViewport (0, 0, s_oldViewport.width(), s_oldViewport.height()); } return ret; } GLRenderTarget::GLRenderTarget(const GLTexture& color) { // Reset variables mValid = false; mTexture = color; // Make sure FBO is supported if (sSupported && !mTexture.isNull()) { initFBO(); } else kError(1212) << "Render targets aren't supported!" << endl; } GLRenderTarget::~GLRenderTarget() { if (mValid) { glDeleteFramebuffers(1, &mFramebuffer); } } bool GLRenderTarget::enable() { if (!valid()) { kError(1212) << "Can't enable invalid render target!" << endl; return false; } glBindFramebuffer(GL_FRAMEBUFFER, mFramebuffer); glViewport(0, 0, mTexture.width(), mTexture.height()); mTexture.setDirty(); return true; } bool GLRenderTarget::disable() { if (!valid()) { kError(1212) << "Can't disable invalid render target!" << endl; return false; } glBindFramebuffer(GL_FRAMEBUFFER, 0); mTexture.setDirty(); return true; } static QString formatFramebufferStatus(GLenum status) { switch(status) { case GL_FRAMEBUFFER_INCOMPLETE_ATTACHMENT: // An attachment is the wrong type / is invalid / has 0 width or height return "GL_FRAMEBUFFER_INCOMPLETE_ATTACHMENT"; case GL_FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT: // There are no images attached to the framebuffer return "GL_FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT"; case GL_FRAMEBUFFER_UNSUPPORTED: // A format or the combination of formats of the attachments is unsupported return "GL_FRAMEBUFFER_UNSUPPORTED"; #ifndef KWIN_HAVE_OPENGLES case GL_FRAMEBUFFER_INCOMPLETE_DIMENSIONS_EXT: // Not all attached images have the same width and height return "GL_FRAMEBUFFER_INCOMPLETE_DIMENSIONS_EXT"; case GL_FRAMEBUFFER_INCOMPLETE_FORMATS_EXT: // The color attachments don't have the same format return "GL_FRAMEBUFFER_INCOMPLETE_FORMATS_EXT"; case GL_FRAMEBUFFER_INCOMPLETE_MULTISAMPLE_EXT: // The attachments don't have the same number of samples return "GL_FRAMEBUFFER_INCOMPLETE_MULTISAMPLE"; case GL_FRAMEBUFFER_INCOMPLETE_DRAW_BUFFER_EXT: // The draw buffer is missing return "GL_FRAMEBUFFER_INCOMPLETE_DRAW_BUFFER"; case GL_FRAMEBUFFER_INCOMPLETE_READ_BUFFER_EXT: // The read buffer is missing return "GL_FRAMEBUFFER_INCOMPLETE_READ_BUFFER"; #endif default: return "Unknown (0x" + QString::number(status, 16) + ')'; } } void GLRenderTarget::initFBO() { #if DEBUG_GLRENDERTARGET GLenum err = glGetError(); if (err != GL_NO_ERROR) kError(1212) << "Error status when entering GLRenderTarget::initFBO: " << formatGLError(err); #endif glGenFramebuffers(1, &mFramebuffer); #if DEBUG_GLRENDERTARGET if ((err = glGetError()) != GL_NO_ERROR) { kError(1212) << "glGenFramebuffers failed: " << formatGLError(err); return; } #endif glBindFramebuffer(GL_FRAMEBUFFER, mFramebuffer); #if DEBUG_GLRENDERTARGET if ((err = glGetError()) != GL_NO_ERROR) { kError(1212) << "glBindFramebuffer failed: " << formatGLError(err); glDeleteFramebuffers(1, &mFramebuffer); return; } #endif glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, mTexture.target(), mTexture.texture(), 0); #if DEBUG_GLRENDERTARGET if ((err = glGetError()) != GL_NO_ERROR) { kError(1212) << "glFramebufferTexture2D failed: " << formatGLError(err); glBindFramebuffer(GL_FRAMEBUFFER, 0); glDeleteFramebuffers(1, &mFramebuffer); return; } #endif const GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER); glBindFramebuffer(GL_FRAMEBUFFER, 0); if (status != GL_FRAMEBUFFER_COMPLETE) { // We have an incomplete framebuffer, consider it invalid if (status == 0) kError(1212) << "glCheckFramebufferStatus failed: " << formatGLError(glGetError()); else kError(1212) << "Invalid framebuffer status: " << formatFramebufferStatus(status); glDeleteFramebuffers(1, &mFramebuffer); return; } mValid = true; } void GLRenderTarget::blitFromFramebuffer(const QRect &source, const QRect &destination, GLenum filter) { if (!GLRenderTarget::blitSupported()) { return; } #ifdef KWIN_HAVE_OPENGLES Q_UNUSED(source) Q_UNUSED(destination) Q_UNUSED(filter) #else GLRenderTarget::pushRenderTarget(this); glBindFramebuffer(GL_DRAW_FRAMEBUFFER, mFramebuffer); glBindFramebuffer(GL_READ_FRAMEBUFFER, 0); const QRect s = source.isNull() ? QRect(0, 0, displayWidth(), displayHeight()) : source; const QRect d = destination.isNull() ? QRect(0, 0, mTexture.width(), mTexture.height()) : destination; glBlitFramebuffer(s.x(), displayHeight() - s.y() - s.height(), s.x() + s.width(), displayHeight() - s.y(), d.x(), mTexture.height() - d.y() - d.height(), d.x() + d.width(), mTexture.height() - d.y(), GL_COLOR_BUFFER_BIT, filter); GLRenderTarget::popRenderTarget(); #endif } void GLRenderTarget::attachTexture(const GLTexture& target) { if (!mValid || mTexture.texture() == target.texture()) { return; } pushRenderTarget(this); mTexture = target; glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, mTexture.target(), mTexture.texture(), 0); popRenderTarget(); } //********************************* // GLVertexBufferPrivate //********************************* class GLVertexBufferPrivate { public: GLVertexBufferPrivate(GLVertexBuffer::UsageHint usageHint) : vertexCount(0) , dimension(2) , useColor(false) , useTexCoords(true) , color(0, 0, 0, 255) { if (GLVertexBufferPrivate::supported) { glGenBuffers(2, buffers); } switch(usageHint) { case GLVertexBuffer::Dynamic: usage = GL_DYNAMIC_DRAW; break; case GLVertexBuffer::Static: usage = GL_STATIC_DRAW; break; default: usage = GL_STREAM_DRAW; break; } } ~GLVertexBufferPrivate() { if (GLVertexBufferPrivate::supported) { glDeleteBuffers(2, buffers); } } GLuint buffers[2]; GLenum usage; int vertexCount; int dimension; static bool supported; static GLVertexBuffer *streamingBuffer; QVector legacyVertices; QVector legacyTexCoords; bool useColor; bool useTexCoords; QColor color; //! VBO is not supported void legacyPainting(QRegion region, GLenum primitiveMode, bool hardwareClipping); //! VBO and shaders are both supported void corePainting(const QRegion& region, GLenum primitiveMode, bool hardwareClipping); //! VBO is supported, but shaders are not supported void fallbackPainting(const QRegion& region, GLenum primitiveMode, bool hardwareClipping); }; bool GLVertexBufferPrivate::supported = false; GLVertexBuffer *GLVertexBufferPrivate::streamingBuffer = NULL; void GLVertexBufferPrivate::legacyPainting(QRegion region, GLenum primitiveMode, bool hardwareClipping) { #ifndef KWIN_HAVE_OPENGL_1 Q_UNUSED(region) Q_UNUSED(primitiveMode) Q_UNUSED(hardwareClipping) #else // Enable arrays glEnableClientState(GL_VERTEX_ARRAY); glVertexPointer(dimension, GL_FLOAT, 0, legacyVertices.constData()); if (!legacyTexCoords.isEmpty()) { glEnableClientState(GL_TEXTURE_COORD_ARRAY); glTexCoordPointer(2, GL_FLOAT, 0, legacyTexCoords.constData()); } if (useColor) { glColor4f(color.redF(), color.greenF(), color.blueF(), color.alphaF()); } if (!hardwareClipping) { glDrawArrays(primitiveMode, 0, vertexCount); } else { foreach (const QRect& r, region.rects()) { glScissor(r.x(), displayHeight() - r.y() - r.height(), r.width(), r.height()); glDrawArrays(primitiveMode, 0, vertexCount); } } glDisableClientState(GL_VERTEX_ARRAY); if (!legacyTexCoords.isEmpty()) { glDisableClientState(GL_TEXTURE_COORD_ARRAY); } #endif } void GLVertexBufferPrivate::corePainting(const QRegion& region, GLenum primitiveMode, bool hardwareClipping) { GLShader *shader = ShaderManager::instance()->getBoundShader(); GLint vertexAttrib = shader->attributeLocation("vertex"); GLint texAttrib = shader->attributeLocation("texCoord"); glEnableVertexAttribArray(vertexAttrib); if (useTexCoords) { glEnableVertexAttribArray(texAttrib); } if (useColor) { shader->setUniform("geometryColor", color); } glBindBuffer(GL_ARRAY_BUFFER, buffers[ 0 ]); glVertexAttribPointer(vertexAttrib, dimension, GL_FLOAT, GL_FALSE, 0, 0); if (texAttrib != -1 && useTexCoords) { glBindBuffer(GL_ARRAY_BUFFER, buffers[ 1 ]); glVertexAttribPointer(texAttrib, 2, GL_FLOAT, GL_FALSE, 0, 0); } if (!hardwareClipping) { glDrawArrays(primitiveMode, 0, vertexCount); } else { foreach (const QRect& r, region.rects()) { glScissor(r.x(), displayHeight() - r.y() - r.height(), r.width(), r.height()); glDrawArrays(primitiveMode, 0, vertexCount); } } glBindBuffer(GL_ARRAY_BUFFER, 0); if (useTexCoords) { glDisableVertexAttribArray(texAttrib); } glDisableVertexAttribArray(vertexAttrib); } void GLVertexBufferPrivate::fallbackPainting(const QRegion& region, GLenum primitiveMode, bool hardwareClipping) { #ifndef KWIN_HAVE_OPENGL_1 Q_UNUSED(region) Q_UNUSED(primitiveMode) Q_UNUSED(hardwareClipping) #else glEnableClientState(GL_VERTEX_ARRAY); glEnableClientState(GL_TEXTURE_COORD_ARRAY); glBindBuffer(GL_ARRAY_BUFFER, buffers[ 0 ]); glVertexPointer(dimension, GL_FLOAT, 0, 0); glBindBuffer(GL_ARRAY_BUFFER, buffers[ 1 ]); glTexCoordPointer(2, GL_FLOAT, 0, 0); if (useColor) { glColor4f(color.redF(), color.greenF(), color.blueF(), color.alphaF()); } // Clip using scissoring if (!hardwareClipping) { glDrawArrays(primitiveMode, 0, vertexCount); } else { foreach (const QRect& r, region.rects()) { glScissor(r.x(), displayHeight() - r.y() - r.height(), r.width(), r.height()); glDrawArrays(primitiveMode, 0, vertexCount); } } glBindBuffer(GL_ARRAY_BUFFER, 0); glDisableClientState(GL_VERTEX_ARRAY); glDisableClientState(GL_TEXTURE_COORD_ARRAY); #endif } //********************************* // GLVertexBuffer //********************************* GLVertexBuffer::GLVertexBuffer(UsageHint hint) : d(new GLVertexBufferPrivate(hint)) { } GLVertexBuffer::~GLVertexBuffer() { delete d; } void GLVertexBuffer::setData(int vertexCount, int dim, const float* vertices, const float* texcoords) { d->vertexCount = vertexCount; d->dimension = dim; d->useTexCoords = (texcoords != NULL); if (!GLVertexBufferPrivate::supported) { // legacy data d->legacyVertices.clear(); d->legacyVertices.reserve(vertexCount * dim); for (int i = 0; i < vertexCount * dim; ++i) { d->legacyVertices << vertices[i]; } d->legacyTexCoords.clear(); if (d->useTexCoords) { d->legacyTexCoords.reserve(vertexCount * 2); for (int i = 0; i < vertexCount * 2; ++i) { d->legacyTexCoords << texcoords[i]; } } return; } glBindBuffer(GL_ARRAY_BUFFER, d->buffers[ 0 ]); glBufferData(GL_ARRAY_BUFFER, sizeof(GLfloat)*vertexCount * d->dimension, vertices, d->usage); if (d->useTexCoords) { glBindBuffer(GL_ARRAY_BUFFER, d->buffers[ 1 ]); glBufferData(GL_ARRAY_BUFFER, sizeof(GLfloat)*vertexCount * 2, texcoords, d->usage); } glBindBuffer(GL_ARRAY_BUFFER, 0); } void GLVertexBuffer::render(GLenum primitiveMode) { render(infiniteRegion(), primitiveMode, false); } void GLVertexBuffer::render(const QRegion& region, GLenum primitiveMode, bool hardwareClipping) { if (!GLVertexBufferPrivate::supported) { d->legacyPainting(region, primitiveMode, hardwareClipping); } else if (ShaderManager::instance()->isShaderBound()) { d->corePainting(region, primitiveMode, hardwareClipping); } else { d->fallbackPainting(region, primitiveMode, hardwareClipping); } } bool GLVertexBuffer::isSupported() { return GLVertexBufferPrivate::supported; } bool GLVertexBuffer::isUseColor() const { return d->useColor; } void GLVertexBuffer::setUseColor(bool enable) { d->useColor = enable; } void GLVertexBuffer::setColor(const QColor& color, bool enable) { d->useColor = enable; d->color = color; } void GLVertexBuffer::reset() { d->useColor = false; d->color = QColor(0, 0, 0, 255); d->vertexCount = 0; d->dimension = 2; d->useTexCoords = true; } void GLVertexBuffer::initStatic() { #ifdef KWIN_HAVE_OPENGLES GLVertexBufferPrivate::supported = true; #else GLVertexBufferPrivate::supported = hasGLExtension("GL_ARB_vertex_buffer_object"); #endif GLVertexBufferPrivate::streamingBuffer = new GLVertexBuffer(GLVertexBuffer::Stream); } GLVertexBuffer *GLVertexBuffer::streamingBuffer() { return GLVertexBufferPrivate::streamingBuffer; } } // namespace