/******************************************************************** KWin - the KDE window manager This file is part of the KDE project. Copyright (C) 2006-2007 Rivo Laks Copyright (C) 2010, 2011 Martin Gräßlin Copyright (C) 2012 Philipp Knechtges This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . *********************************************************************/ #include "kwinconfig.h" // KWIN_HAVE_OPENGL #include "kwinglplatform.h" #include "kwinglutils_funcs.h" #include "kwinglutils.h" #include "kwingltexture_p.h" #include #include #include #include #include #include namespace KWin { //**************************************** // GLTexture //**************************************** bool GLTexturePrivate::s_supportsFramebufferObjects = false; bool GLTexturePrivate::s_supportsARGB32 = false; bool GLTexturePrivate::s_supportsUnpack = false; uint GLTexturePrivate::s_textureObjectCounter = 0; uint GLTexturePrivate::s_fbo = 0; GLTexture::GLTexture() : d_ptr(new GLTexturePrivate()) { } GLTexture::GLTexture(GLTexturePrivate& dd) : d_ptr(&dd) { } GLTexture::GLTexture(const GLTexture& tex) : d_ptr(tex.d_ptr) { } GLTexture::GLTexture(const QImage& image, GLenum target) : d_ptr(new GLTexturePrivate()) { Q_D(GLTexture); if (image.isNull()) return; d->m_target = target; if (d->m_target != GL_TEXTURE_RECTANGLE_ARB) { d->m_scale.setWidth(1.0 / image.width()); d->m_scale.setHeight(1.0 / image.height()); d->m_canUseMipmaps = true; } else { d->m_scale.setWidth(1.0); d->m_scale.setHeight(1.0); d->m_canUseMipmaps = false; } d->m_size = image.size(); d->m_yInverted = true; d->updateMatrix(); glGenTextures(1, &d->m_texture); bind(); if (!GLPlatform::instance()->isGLES()) { const QImage im = image.convertToFormat(QImage::Format_ARGB32_Premultiplied); glTexImage2D(d->m_target, 0, GL_RGBA8, im.width(), im.height(), 0, GL_BGRA, GL_UNSIGNED_INT_8_8_8_8_REV, im.bits()); } else { if (d->s_supportsARGB32) { const QImage im = image.convertToFormat(QImage::Format_ARGB32_Premultiplied); glTexImage2D(d->m_target, 0, GL_BGRA_EXT, im.width(), im.height(), 0, GL_BGRA_EXT, GL_UNSIGNED_BYTE, im.bits()); } else { const QImage im = image.convertToFormat(QImage::Format_RGBA8888_Premultiplied); glTexImage2D(d->m_target, 0, GL_RGBA, im.width(), im.height(), 0, GL_RGBA, GL_UNSIGNED_BYTE, im.bits()); } } unbind(); setFilter(GL_LINEAR); } GLTexture::GLTexture(const QPixmap& pixmap, GLenum target) : GLTexture(pixmap.toImage(), target) { } GLTexture::GLTexture(const QString& fileName) : GLTexture(QImage(fileName)) { } GLTexture::GLTexture(int width, int height) : d_ptr(new GLTexturePrivate()) { Q_D(GLTexture); d->m_target = GL_TEXTURE_2D; d->m_scale.setWidth(1.0 / width); d->m_scale.setHeight(1.0 / height); d->m_size = QSize(width, height); d->m_canUseMipmaps = true; d->updateMatrix(); glGenTextures(1, &d->m_texture); bind(); if (!GLPlatform::instance()->isGLES()) { glTexImage2D(d->m_target, 0, GL_RGBA8, width, height, 0, GL_BGRA, GL_UNSIGNED_INT_8_8_8_8_REV, nullptr); } else { // The format parameter in glTexSubImage() must match the internal format // of the texture, so it's important that we allocate the texture with // the format that will be used in update() and clear(). const GLenum format = d->s_supportsARGB32 ? GL_BGRA_EXT : GL_RGBA; glTexImage2D(d->m_target, 0, format, width, height, 0, format, GL_UNSIGNED_BYTE, nullptr); } unbind(); } GLTexture::GLTexture(const QSize &size) : GLTexture(size.width(), size.height()) { } GLTexture::~GLTexture() { } GLTexture& GLTexture::operator = (const GLTexture& tex) { d_ptr = tex.d_ptr; return *this; } GLTexturePrivate::GLTexturePrivate() { m_texture = 0; m_target = 0; m_filter = GL_NEAREST; m_wrapMode = GL_REPEAT; m_yInverted = false; m_canUseMipmaps = false; m_markedDirty = false; m_unnormalizeActive = 0; m_normalizeActive = 0; m_vbo = nullptr; m_filterChanged = true; m_wrapModeChanged = false; ++s_textureObjectCounter; } GLTexturePrivate::~GLTexturePrivate() { if (m_vbo != nullptr) { delete m_vbo; } if (m_texture != 0) { glDeleteTextures(1, &m_texture); } // Delete the FBO if this is the last Texture if (--s_textureObjectCounter == 0 && s_fbo) { glDeleteFramebuffers(1, &s_fbo); s_fbo = 0; } } void GLTexturePrivate::initStatic() { if (!GLPlatform::instance()->isGLES()) { s_supportsFramebufferObjects = hasGLVersion(3, 0) || hasGLExtension("GL_ARB_framebuffer_object") || hasGLExtension(QByteArrayLiteral("GL_EXT_framebuffer_object")); s_supportsARGB32 = true; s_supportsUnpack = true; } else { s_supportsFramebufferObjects = true; // QImage::Format_ARGB32_Premultiplied is a packed-pixel format, so it's only // equivalent to GL_BGRA/GL_UNSIGNED_BYTE on little-endian systems. s_supportsARGB32 = QSysInfo::ByteOrder == QSysInfo::LittleEndian && hasGLExtension(QByteArrayLiteral("GL_EXT_texture_format_BGRA8888")); s_supportsUnpack = hasGLExtension(QByteArrayLiteral("GL_EXT_unpack_subimage")); } } void GLTexturePrivate::cleanup() { s_supportsFramebufferObjects = false; s_supportsARGB32 = false; } bool GLTexture::isNull() const { Q_D(const GLTexture); return None == d->m_texture; } QSize GLTexture::size() const { Q_D(const GLTexture); return d->m_size; } void GLTexture::update(const QImage &image, const QPoint &offset, const QRect &src) { if (image.isNull() || isNull()) return; Q_D(GLTexture); bool useUnpack = !src.isNull() && d->s_supportsUnpack && d->s_supportsARGB32 && image.format() == QImage::Format_ARGB32_Premultiplied; int width = image.width(); int height = image.height(); QImage tmpImage; if (!src.isNull()) { if (d->s_supportsUnpack) { glPixelStorei(GL_UNPACK_ROW_LENGTH, image.width()); glPixelStorei(GL_UNPACK_SKIP_PIXELS, src.x()); glPixelStorei(GL_UNPACK_SKIP_ROWS, src.y()); } else { tmpImage = image.copy(src); } width = src.width(); height = src.height(); } const QImage &img = tmpImage.isNull() ? image : tmpImage; bind(); if (!GLPlatform::instance()->isGLES()) { const QImage im = img.convertToFormat(QImage::Format_ARGB32_Premultiplied); glTexSubImage2D(d->m_target, 0, offset.x(), offset.y(), width, height, GL_BGRA, GL_UNSIGNED_INT_8_8_8_8_REV, im.bits()); } else { if (d->s_supportsARGB32) { const QImage im = img.convertToFormat(QImage::Format_ARGB32_Premultiplied); glTexSubImage2D(d->m_target, 0, offset.x(), offset.y(), width, height, GL_BGRA_EXT, GL_UNSIGNED_BYTE, im.bits()); } else { const QImage im = img.convertToFormat(QImage::Format_RGBA8888_Premultiplied); glTexSubImage2D(d->m_target, 0, offset.x(), offset.y(), width, height, GL_RGBA, GL_UNSIGNED_BYTE, im.bits()); } } unbind(); setDirty(); if (useUnpack) { glPixelStorei(GL_UNPACK_ROW_LENGTH, 0); glPixelStorei(GL_UNPACK_SKIP_PIXELS, 0); glPixelStorei(GL_UNPACK_SKIP_ROWS, 0); } } void GLTexture::discard() { d_ptr = new GLTexturePrivate(); } void GLTexture::bind() { Q_D(GLTexture); glBindTexture(d->m_target, d->m_texture); if (d->m_markedDirty) { d->onDamage(); } if (d->m_filterChanged) { if (d->m_filter == GL_LINEAR_MIPMAP_LINEAR) { // trilinear filtering requested, but is it possible? if (d->s_supportsFramebufferObjects && d->m_canUseMipmaps) { glTexParameteri(d->m_target, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR); glTexParameteri(d->m_target, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glGenerateMipmap(d->m_target); } else { // can't use trilinear, so use bilinear d->m_filter = GL_LINEAR; glTexParameteri(d->m_target, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(d->m_target, GL_TEXTURE_MAG_FILTER, GL_LINEAR); } } else if (d->m_filter == GL_LINEAR) { glTexParameteri(d->m_target, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(d->m_target, GL_TEXTURE_MAG_FILTER, GL_LINEAR); } else { // if neither trilinear nor bilinear, default to fast filtering d->m_filter = GL_NEAREST; glTexParameteri(d->m_target, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(d->m_target, GL_TEXTURE_MAG_FILTER, GL_NEAREST); } d->m_filterChanged = false; } if (d->m_wrapModeChanged) { glTexParameteri(d->m_target, GL_TEXTURE_WRAP_S, d->m_wrapMode); glTexParameteri(d->m_target, GL_TEXTURE_WRAP_T, d->m_wrapMode); d->m_wrapModeChanged = false; } } void GLTexture::unbind() { Q_D(GLTexture); glBindTexture(d->m_target, 0); } void GLTexture::render(QRegion region, const QRect& rect, bool hardwareClipping) { Q_D(GLTexture); if (rect.size() != d->m_cachedSize) { d->m_cachedSize = rect.size(); QRect r(rect); r.moveTo(0, 0); if (!d->m_vbo) { d->m_vbo = new GLVertexBuffer(KWin::GLVertexBuffer::Static); } const float verts[ 4 * 2 ] = { // NOTICE: r.x/y could be replaced by "0", but that would make it unreadable... static_cast(r.x()), static_cast(r.y()), static_cast(r.x()), static_cast(r.y() + rect.height()), static_cast(r.x() + rect.width()), static_cast(r.y()), static_cast(r.x() + rect.width()), static_cast(r.y() + rect.height()) }; const float texWidth = (target() == GL_TEXTURE_RECTANGLE_ARB) ? width() : 1.0f; const float texHeight = (target() == GL_TEXTURE_RECTANGLE_ARB) ? height() : 1.0f; const float texcoords[ 4 * 2 ] = { 0.0f, d->m_yInverted ? 0.0f : texHeight, // y needs to be swapped (normalized coords) 0.0f, d->m_yInverted ? texHeight : 0.0f, texWidth, d->m_yInverted ? 0.0f : texHeight, texWidth, d->m_yInverted ? texHeight : 0.0f }; d->m_vbo->setData(4, 2, verts, texcoords); } QMatrix4x4 translation; translation.translate(rect.x(), rect.y()); GLShader *shader = ShaderManager::instance()->getBoundShader(); shader->setUniform(GLShader::Offset, QVector2D(rect.x(), rect.y())); shader->setUniform(GLShader::WindowTransformation, translation); d->m_vbo->render(region, GL_TRIANGLE_STRIP, hardwareClipping); shader->setUniform(GLShader::WindowTransformation, QMatrix4x4()); } GLuint GLTexture::texture() const { Q_D(const GLTexture); return d->m_texture; } GLenum GLTexture::target() const { Q_D(const GLTexture); return d->m_target; } GLenum GLTexture::filter() const { Q_D(const GLTexture); return d->m_filter; } void GLTexture::clear() { Q_D(GLTexture); if (!GLTexturePrivate::s_fbo && GLRenderTarget::supported() && GLPlatform::instance()->driver() != Driver_Catalyst) // fail. -> bug #323065 glGenFramebuffers(1, &GLTexturePrivate::s_fbo); if (GLTexturePrivate::s_fbo) { // Clear the texture glBindFramebuffer(GL_FRAMEBUFFER, GLTexturePrivate::s_fbo); glClearColor(0, 0, 0, 0); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, d->m_texture, 0); glClear(GL_COLOR_BUFFER_BIT); glBindFramebuffer(GL_FRAMEBUFFER, 0); } else { if (const int size = width()*height()) { uint32_t *buffer = new uint32_t[size]; memset(buffer, 0, size*sizeof(uint32_t)); bind(); if (!GLPlatform::instance()->isGLES()) { glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, width(), height(), GL_BGRA, GL_UNSIGNED_INT_8_8_8_8_REV, buffer); } else { const GLenum format = d->s_supportsARGB32 ? GL_BGRA_EXT : GL_RGBA; glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, width(), height(), format, GL_UNSIGNED_BYTE, buffer); } unbind(); delete[] buffer; } } } bool GLTexture::isDirty() const { Q_D(const GLTexture); return d->m_markedDirty; } void GLTexture::setFilter(GLenum filter) { Q_D(GLTexture); if (filter != d->m_filter) { d->m_filter = filter; d->m_filterChanged = true; } } void GLTexture::setWrapMode(GLenum mode) { Q_D(GLTexture); if (mode != d->m_wrapMode) { d->m_wrapMode = mode; d->m_wrapModeChanged=true; } } void GLTexturePrivate::onDamage() { if (m_filter == GL_LINEAR_MIPMAP_LINEAR && !m_filterChanged) { glGenerateMipmap(m_target); } } void GLTexture::setDirty() { Q_D(GLTexture); d->m_markedDirty = true; } void GLTexturePrivate::updateMatrix() { m_matrix[NormalizedCoordinates].setToIdentity(); m_matrix[UnnormalizedCoordinates].setToIdentity(); if (m_target == GL_TEXTURE_RECTANGLE_ARB) m_matrix[NormalizedCoordinates].scale(m_size.width(), m_size.height()); else m_matrix[UnnormalizedCoordinates].scale(1.0 / m_size.width(), 1.0 / m_size.height()); if (!m_yInverted) { m_matrix[NormalizedCoordinates].translate(0.0, 1.0); m_matrix[NormalizedCoordinates].scale(1.0, -1.0); m_matrix[UnnormalizedCoordinates].translate(0.0, m_size.height()); m_matrix[UnnormalizedCoordinates].scale(1.0, -1.0); } } bool GLTexture::isYInverted() const { Q_D(const GLTexture); return d->m_yInverted; } void GLTexture::setYInverted(bool inverted) { Q_D(GLTexture); d->m_yInverted = inverted; d->updateMatrix(); } int GLTexture::width() const { Q_D(const GLTexture); return d->m_size.width(); } int GLTexture::height() const { Q_D(const GLTexture); return d->m_size.height(); } QMatrix4x4 GLTexture::matrix(TextureCoordinateType type) const { Q_D(const GLTexture); return d->m_matrix[type]; } bool GLTexture::framebufferObjectSupported() { return GLTexturePrivate::s_supportsFramebufferObjects; } } // namespace KWin