/******************************************************************** KWin - the KDE window manager This file is part of the KDE project. Copyright (C) 2006-2007 Rivo Laks This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . *********************************************************************/ #include "kwinglutils.h" #ifdef KWIN_HAVE_OPENGL #include "kwinglobals.h" #include "kwineffects.h" #include "kdebug.h" #include #include #include #include #include #include #include #include #include #include #define DEBUG_GLRENDERTARGET 0 #define MAKE_GL_VERSION(major, minor, release) ( ((major) << 16) | ((minor) << 8) | (release) ) namespace KWin { // Variables // GL version, use MAKE_GL_VERSION() macro for comparing with a specific version static int glVersion; // GLX version, use MAKE_GL_VERSION() macro for comparing with a specific version static int glXVersion; // EGL version, use MAKE_GL_VERSION() macro for comparing with a specific version static int eglVersion; // List of all supported GL, EGL and GLX extensions static QStringList glExtensions; static QStringList glxExtensions; static QStringList eglExtension; int glTextureUnitsCount; // Functions void initGLX() { #ifndef KWIN_HAVE_OPENGLES // Get GLX version int major, minor; glXQueryVersion( display(), &major, &minor ); glXVersion = MAKE_GL_VERSION( major, minor, 0 ); // Get list of supported GLX extensions glxExtensions = QString((const char*)glXQueryExtensionsString( display(), DefaultScreen( display()))).split(' '); glxResolveFunctions(); #endif } void initEGL() { #ifdef KWIN_HAVE_OPENGLES EGLDisplay dpy = eglGetCurrentDisplay(); int major, minor; eglInitialize(dpy, &major, &minor); eglVersion = MAKE_GL_VERSION(major, minor, 0); eglExtension = QString((const char*)eglQueryString(dpy, EGL_EXTENSIONS)).split(' '); eglResolveFunctions(); #endif } void initGL() { // Get OpenGL version QString glversionstring = QString((const char*)glGetString(GL_VERSION)); QStringList glversioninfo = glversionstring.left(glversionstring.indexOf(' ')).split('.'); #ifndef KWIN_HAVE_OPENGLES glVersion = MAKE_GL_VERSION(glversioninfo[0].toInt(), glversioninfo[1].toInt(), glversioninfo.count() > 2 ? glversioninfo[2].toInt() : 0); #endif // Get list of supported OpenGL extensions glExtensions = QString((const char*)glGetString(GL_EXTENSIONS)).split(' '); // handle OpenGL extensions functions glResolveFunctions(); GLTexture::initStatic(); GLShader::initStatic(); GLRenderTarget::initStatic(); GLVertexBuffer::initStatic(); } bool hasGLVersion(int major, int minor, int release) { return glVersion >= MAKE_GL_VERSION(major, minor, release); } bool hasGLXVersion(int major, int minor, int release) { return glXVersion >= MAKE_GL_VERSION(major, minor, release); } bool hasEGLVersion(int major, int minor, int release) { return eglVersion >= MAKE_GL_VERSION(major, minor, release); } bool hasGLExtension(const QString& extension) { return glExtensions.contains(extension) || glxExtensions.contains(extension) || eglExtension.contains(extension); } static QString formatGLError( GLenum err ) { switch ( err ) { case GL_NO_ERROR: return "GL_NO_ERROR"; case GL_INVALID_ENUM: return "GL_INVALID_ENUM"; case GL_INVALID_VALUE: return "GL_INVALID_VALUE"; case GL_INVALID_OPERATION: return "GL_INVALID_OPERATION"; #ifndef KWIN_HAVE_OPENGLES case GL_STACK_OVERFLOW: return "GL_STACK_OVERFLOW"; case GL_STACK_UNDERFLOW: return "GL_STACK_UNDERFLOW"; #endif case GL_OUT_OF_MEMORY: return "GL_OUT_OF_MEMORY"; default: return QString( "0x" ) + QString::number( err, 16 ); } } bool checkGLError( const char* txt ) { GLenum err = glGetError(); if( err != GL_NO_ERROR ) { kWarning(1212) << "GL error (" << txt << "): " << formatGLError( err ); return true; } return false; } int nearestPowerOfTwo( int x ) { // This method had been copied from Qt's nearest_gl_texture_size() int n = 0, last = 0; for (int s = 0; s < 32; ++s) { if (((x>>s) & 1) == 1) { ++n; last = s; } } if (n > 1) return 1 << (last+1); return 1 << last; } void renderGLGeometry( int count, const float* vertices, const float* texture, const float* color, int dim, int stride ) { return renderGLGeometry( infiniteRegion(), count, vertices, texture, color, dim, stride ); } void renderGLGeometry( const QRegion& region, int count, const float* vertices, const float* texture, const float* color, int dim, int stride ) { #ifndef KWIN_HAVE_OPENGLES // Using arrays only makes sense if we have larger number of vertices. // Otherwise overhead of enabling/disabling them is too big. bool use_arrays = (count > 5); if( use_arrays ) { glPushAttrib( GL_ENABLE_BIT ); glPushClientAttrib( GL_CLIENT_VERTEX_ARRAY_BIT ); // Enable arrays glEnableClientState( GL_VERTEX_ARRAY ); glVertexPointer( dim, GL_FLOAT, stride, vertices ); if( texture != NULL ) { glEnableClientState( GL_TEXTURE_COORD_ARRAY ); glTexCoordPointer( 2, GL_FLOAT, stride, texture ); } if( color != NULL ) { glEnableClientState( GL_COLOR_ARRAY ); glColorPointer( 4, GL_FLOAT, stride, color ); } } // Clip using scissoring if( !effects->isRenderTargetBound() ) { PaintClipper pc( region ); for( PaintClipper::Iterator iterator; !iterator.isDone(); iterator.next()) { if( use_arrays ) glDrawArrays( GL_QUADS, 0, count ); else renderGLGeometryImmediate( count, vertices, texture, color, dim, stride ); } } else { if( use_arrays ) glDrawArrays( GL_QUADS, 0, count ); else renderGLGeometryImmediate( count, vertices, texture, color, dim, stride ); } if( use_arrays ) { glPopClientAttrib(); glPopAttrib(); } #endif } void renderGLGeometryImmediate( int count, const float* vertices, const float* texture, const float* color, int dim, int stride ) { #ifndef KWIN_HAVE_OPENGLES // Find out correct glVertex*fv function according to dim parameter. void ( *glVertexFunc )( const float* ) = glVertex2fv; if( dim == 3 ) glVertexFunc = glVertex3fv; else if( dim == 4 ) glVertexFunc = glVertex4fv; // These are number of _floats_ per item, not _bytes_ per item as opengl uses. int vsize, tsize, csize; vsize = tsize = csize = stride / sizeof(float); if( !stride ) { // 0 means that arrays are tightly packed. This gives us different // strides for different arrays vsize = dim; tsize = 2; csize = 4; } glBegin( GL_QUADS ); // This sucks. But makes it faster. if( texture && color ) { for( int i = 0; i < count; i++ ) { glTexCoord2fv( texture + i*tsize ); glColor4fv( color + i*csize ); glVertexFunc( vertices + i*vsize ); } } else if( texture ) { for( int i = 0; i < count; i++ ) { glTexCoord2fv( texture + i*tsize ); glVertexFunc( vertices + i*vsize ); } } else if( color ) { for( int i = 0; i < count; i++ ) { glColor4fv( color + i*csize ); glVertexFunc( vertices + i*vsize ); } } else { for( int i = 0; i < count; i++ ) glVertexFunc( vertices + i*vsize ); } glEnd(); #endif } void addQuadVertices(QVector& verts, float x1, float y1, float x2, float y2) { verts << x1 << y1; verts << x1 << y2; verts << x2 << y2; verts << x2 << y1; } //**************************************** // GLTexture //**************************************** bool GLTexture::mNPOTTextureSupported = false; bool GLTexture::mFramebufferObjectSupported = false; bool GLTexture::mSaturationSupported = false; GLTexture::GLTexture() { init(); } GLTexture::GLTexture( const QImage& image, GLenum target ) { init(); load( image, target ); } GLTexture::GLTexture( const QPixmap& pixmap, GLenum target ) { init(); load( pixmap, target ); } GLTexture::GLTexture( const QString& fileName ) { init(); load( fileName ); } GLTexture::GLTexture( int width, int height ) { init(); if( NPOTTextureSupported() || ( isPowerOfTwo( width ) && isPowerOfTwo( height ))) { mTarget = GL_TEXTURE_2D; mScale.setWidth( 1.0 / width); mScale.setHeight( 1.0 / height); mSize = QSize( width, height ); can_use_mipmaps = true; glGenTextures( 1, &mTexture ); bind(); #ifdef KWIN_HAVE_OPENGLES // format and internal format have to match in ES, GL_RGBA8 and GL_BGRA are not available // see http://www.khronos.org/opengles/sdk/docs/man/xhtml/glTexImage2D.xml glTexImage2D( mTarget, 0, GL_RGBA, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, 0); #else glTexImage2D( mTarget, 0, GL_RGBA8, width, height, 0, GL_BGRA, GL_UNSIGNED_BYTE, 0); #endif unbind(); } } GLTexture::~GLTexture() { delete m_vbo; discard(); assert( mUnnormalizeActive == 0 ); assert( mNormalizeActive == 0 ); } void GLTexture::init() { mTexture = None; mTarget = 0; mFilter = 0; y_inverted = false; can_use_mipmaps = false; has_valid_mipmaps = false; mUnnormalizeActive = 0; mNormalizeActive = 0; m_vbo = 0; } void GLTexture::initStatic() { #ifdef KWIN_HAVE_OPENGLES mNPOTTextureSupported = true; mFramebufferObjectSupported = true; mSaturationSupported = true; #else mNPOTTextureSupported = hasGLExtension( "GL_ARB_texture_non_power_of_two" ); mFramebufferObjectSupported = hasGLExtension( "GL_EXT_framebuffer_object" ); mSaturationSupported = ((hasGLExtension("GL_ARB_texture_env_crossbar") && hasGLExtension("GL_ARB_texture_env_dot3")) || hasGLVersion(1, 4)) && (glTextureUnitsCount >= 4) && glActiveTexture != NULL; #endif } bool GLTexture::isNull() const { return mTexture == None; } QSize GLTexture::size() const { return mSize; } bool GLTexture::load( const QImage& image, GLenum target ) { if( image.isNull()) return false; QImage img = image; mTarget = target; #ifndef KWIN_HAVE_OPENGLES if( mTarget != GL_TEXTURE_RECTANGLE_ARB ) { #endif if( !NPOTTextureSupported() && ( !isPowerOfTwo( image.width()) || !isPowerOfTwo( image.height()))) { // non-rectangular target requires POT texture img = img.scaled( nearestPowerOfTwo( image.width()), nearestPowerOfTwo( image.height())); } mScale.setWidth( 1.0 / img.width()); mScale.setHeight( 1.0 / img.height()); can_use_mipmaps = true; #ifndef KWIN_HAVE_OPENGLES } else { mScale.setWidth( 1.0 ); mScale.setHeight( 1.0 ); can_use_mipmaps = false; } #endif setFilter( GL_LINEAR ); mSize = img.size(); y_inverted = false; img = convertToGLFormat( img ); setDirty(); if( isNull()) glGenTextures( 1, &mTexture ); bind(); #ifdef KWIN_HAVE_OPENGLES // format and internal format have to match in ES, GL_RGBA8 and GL_BGRA are not available // see http://www.khronos.org/opengles/sdk/docs/man/xhtml/glTexImage2D.xml glTexImage2D( mTarget, 0, GL_RGBA, img.width(), img.height(), 0, GL_RGBA, GL_UNSIGNED_BYTE, img.bits()); #else glTexImage2D( mTarget, 0, GL_RGBA8, img.width(), img.height(), 0, GL_BGRA, GL_UNSIGNED_BYTE, img.bits()); #endif unbind(); return true; } bool GLTexture::load( const QPixmap& pixmap, GLenum target ) { if( pixmap.isNull()) return false; #ifdef KWIN_HAVE_OPENGLES if( isNull() ) glGenTextures( 1, &mTexture ); mTarget = target; bind(); const EGLint attribs[] = { EGL_IMAGE_PRESERVED_KHR, EGL_TRUE, EGL_NONE }; EGLDisplay dpy = eglGetCurrentDisplay(); EGLImageKHR image = eglCreateImageKHR(dpy, EGL_NO_CONTEXT, EGL_NATIVE_PIXMAP_KHR, (EGLClientBuffer)pixmap.handle(), attribs); glEGLImageTargetTexture2DOES(GL_TEXTURE_2D, (GLeglImageOES)image); eglDestroyImageKHR(dpy, image); unbind(); return true; #else return load( pixmap.toImage(), target ); #endif } bool GLTexture::load( const QString& fileName ) { if( fileName.isEmpty()) return false; return load( QImage( fileName )); } void GLTexture::discard() { setDirty(); if( mTexture != None ) glDeleteTextures( 1, &mTexture ); mTexture = None; } void GLTexture::bind() { #ifndef KWIN_HAVE_OPENGLES glEnable( mTarget ); #endif glBindTexture( mTarget, mTexture ); enableFilter(); } void GLTexture::unbind() { glBindTexture( mTarget, 0 ); #ifndef KWIN_HAVE_OPENGLES glDisable( mTarget ); #endif } void GLTexture::render( QRegion region, const QRect& rect ) { render( region, rect, false ); } void GLTexture::render( QRegion region, const QRect& rect, bool useShader ) { if( rect.size() != m_cachedSize ) { m_cachedSize = rect.size(); QRect r(rect); r.moveTo(0,0); if( !m_vbo ) { m_vbo = new GLVertexBuffer( KWin::GLVertexBuffer::Static ); } const float verts[ 4 * 2 ] = { // NOTICE: r.x/y could be replaced by "0", but that would make it unreadable... r.x(), r.y(), r.x(), r.y() + rect.height(), r.x() + rect.width(), r.y(), r.x() + rect.width(), r.y() + rect.height() }; const float texcoords[ 4 * 2 ] = { 0.0f, y_inverted ? 0.0f : 1.0f, // y needs to be swapped (normalized coords) 0.0f, y_inverted ? 1.0f : 0.0f, 1.0f, y_inverted ? 0.0f : 1.0f, 1.0f, y_inverted ? 1.0f : 0.0f }; m_vbo->setData( 4, 2, verts, texcoords ); } if (useShader) { GLint currentProgram; glGetIntegerv( GL_CURRENT_PROGRAM, ¤tProgram ); GLint location = glGetUniformLocation(currentProgram, "geometry"); glUniform4f(location, rect.x(), rect.y(), 0.0f, 0.0f); } else { #ifndef KWIN_HAVE_OPENGLES glTranslatef( rect.x(), rect.y(), 0.0f ); #endif } m_vbo->setUseShader( useShader ); m_vbo->render( region, GL_TRIANGLE_STRIP ); if (!useShader) { #ifndef KWIN_HAVE_OPENGLES glTranslatef( -rect.x(), -rect.y(), 0.0f ); #endif } } void GLTexture::enableUnnormalizedTexCoords() { #ifndef KWIN_HAVE_OPENGLES assert( mNormalizeActive == 0 ); if( mUnnormalizeActive++ != 0 ) return; // update texture matrix to handle GL_TEXTURE_2D and GL_TEXTURE_RECTANGLE glMatrixMode( GL_TEXTURE ); glPushMatrix(); glLoadIdentity(); glScalef( mScale.width(), mScale.height(), 1 ); if( !y_inverted ) { // Modify texture matrix so that we could always use non-opengl // coordinates for textures glScalef( 1, -1, 1 ); glTranslatef( 0, -mSize.height(), 0 ); } glMatrixMode( GL_MODELVIEW ); #endif } void GLTexture::disableUnnormalizedTexCoords() { #ifndef KWIN_HAVE_OPENGLES if( --mUnnormalizeActive != 0 ) return; // Restore texture matrix glMatrixMode( GL_TEXTURE ); glPopMatrix(); glMatrixMode( GL_MODELVIEW ); #endif } void GLTexture::enableNormalizedTexCoords() { #ifndef KWIN_HAVE_OPENGLES assert( mUnnormalizeActive == 0 ); if( mNormalizeActive++ != 0 ) return; // update texture matrix to handle GL_TEXTURE_2D and GL_TEXTURE_RECTANGLE glMatrixMode( GL_TEXTURE ); glPushMatrix(); glLoadIdentity(); glScalef( mSize.width() * mScale.width(), mSize.height() * mScale.height(), 1 ); if( y_inverted ) { // Modify texture matrix so that we could always use non-opengl // coordinates for textures glScalef( 1, -1, 1 ); glTranslatef( 0, -1, 0 ); } glMatrixMode( GL_MODELVIEW ); #endif } void GLTexture::disableNormalizedTexCoords() { #ifndef KWIN_HAVE_OPENGLES if( --mNormalizeActive != 0 ) return; // Restore texture matrix glMatrixMode( GL_TEXTURE ); glPopMatrix(); glMatrixMode( GL_MODELVIEW ); #endif } GLuint GLTexture::texture() const { return mTexture; } GLenum GLTexture::target() const { return mTarget; } GLenum GLTexture::filter() const { return mFilter; } bool GLTexture::isDirty() const { return has_valid_mipmaps; } void GLTexture::setTexture( GLuint texture ) { discard(); mTexture = texture; } void GLTexture::setTarget( GLenum target ) { mTarget = target; } void GLTexture::setFilter( GLenum filter ) { mFilter = filter; } void GLTexture::setWrapMode( GLenum mode ) { bind(); glTexParameteri( mTarget, GL_TEXTURE_WRAP_S, mode ); glTexParameteri( mTarget, GL_TEXTURE_WRAP_T, mode ); unbind(); } void GLTexture::setDirty() { has_valid_mipmaps = false; } void GLTexture::enableFilter() { if( mFilter == GL_LINEAR_MIPMAP_LINEAR ) { // trilinear filtering requested, but is it possible? if( NPOTTextureSupported() && framebufferObjectSupported() && can_use_mipmaps ) { glTexParameteri( mTarget, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR ); glTexParameteri( mTarget, GL_TEXTURE_MAG_FILTER, GL_LINEAR ); if( !has_valid_mipmaps ) { glGenerateMipmap( mTarget ); has_valid_mipmaps = true; } } else { // can't use trilinear, so use bilinear setFilter( GL_LINEAR ); glTexParameteri( mTarget, GL_TEXTURE_MIN_FILTER, GL_LINEAR ); glTexParameteri( mTarget, GL_TEXTURE_MAG_FILTER, GL_LINEAR ); } } else if( mFilter == GL_LINEAR ) { glTexParameteri( mTarget, GL_TEXTURE_MIN_FILTER, GL_LINEAR ); glTexParameteri( mTarget, GL_TEXTURE_MAG_FILTER, GL_LINEAR ); } else { // if neither trilinear nor bilinear, default to fast filtering setFilter( GL_NEAREST ); glTexParameteri( mTarget, GL_TEXTURE_MIN_FILTER, GL_NEAREST ); glTexParameteri( mTarget, GL_TEXTURE_MAG_FILTER, GL_NEAREST ); } } static void convertToGLFormatHelper(QImage &dst, const QImage &img, GLenum texture_format) { // Copied from Qt Q_ASSERT(dst.size() == img.size()); Q_ASSERT(dst.depth() == 32); Q_ASSERT(img.depth() == 32); const int width = img.width(); const int height = img.height(); const uint *p = (const uint*) img.scanLine(img.height() - 1); uint *q = (uint*) dst.scanLine(0); #ifndef KWIN_HAVE_OPENGLES if (texture_format == GL_BGRA) { if (QSysInfo::ByteOrder == QSysInfo::BigEndian) { // mirror + swizzle for (int i=0; i < height; ++i) { const uint *end = p + width; while (p < end) { *q = ((*p << 24) & 0xff000000) | ((*p >> 24) & 0x000000ff) | ((*p << 8) & 0x00ff0000) | ((*p >> 8) & 0x0000ff00); p++; q++; } p -= 2 * width; } } else { const uint bytesPerLine = img.bytesPerLine(); for (int i=0; i < height; ++i) { memcpy(q, p, bytesPerLine); q += width; p -= width; } } } else { #endif if (QSysInfo::ByteOrder == QSysInfo::BigEndian) { for (int i=0; i < height; ++i) { const uint *end = p + width; while (p < end) { *q = (*p << 8) | ((*p >> 24) & 0xFF); p++; q++; } p -= 2 * width; } } else { for (int i=0; i < height; ++i) { const uint *end = p + width; while (p < end) { *q = ((*p << 16) & 0xff0000) | ((*p >> 16) & 0xff) | (*p & 0xff00ff00); p++; q++; } p -= 2 * width; } } #ifndef KWIN_HAVE_OPENGLES } #endif } QImage GLTexture::convertToGLFormat( const QImage& img ) const { // Copied from Qt's QGLWidget::convertToGLFormat() QImage res(img.size(), QImage::Format_ARGB32); #ifdef KWIN_HAVE_OPENGLES convertToGLFormatHelper(res, img.convertToFormat(QImage::Format_ARGB32), GL_RGBA); #else convertToGLFormatHelper(res, img.convertToFormat(QImage::Format_ARGB32), GL_BGRA); #endif return res; } //**************************************** // GLShader //**************************************** bool GLShader::mFragmentShaderSupported = false; bool GLShader::mVertexShaderSupported = false; void GLShader::initStatic() { #ifdef KWIN_HAVE_OPENGLES mFragmentShaderSupported = mVertexShaderSupported = true; #else mFragmentShaderSupported = mVertexShaderSupported = hasGLExtension("GL_ARB_shader_objects") && hasGLExtension("GL_ARB_shading_language_100"); mVertexShaderSupported &= hasGLExtension("GL_ARB_vertex_shader"); mFragmentShaderSupported &= hasGLExtension("GL_ARB_fragment_shader"); #endif } GLShader::GLShader(const QString& vertexfile, const QString& fragmentfile) { mValid = false; mProgram = 0; mTextureWidth = -1.0f; mTextureHeight = -1.0f; loadFromFiles(vertexfile, fragmentfile); } GLShader::~GLShader() { if(mProgram) { glDeleteProgram(mProgram); } } bool GLShader::loadFromFiles(const QString& vertexfile, const QString& fragmentfile) { QFile vf(vertexfile); if(!vf.open(QIODevice::ReadOnly)) { kError(1212) << "Couldn't open '" << vertexfile << "' for reading!" << endl; return false; } QString vertexsource(vf.readAll()); QFile ff(fragmentfile); if(!ff.open(QIODevice::ReadOnly)) { kError(1212) << "Couldn't open '" << fragmentfile << "' for reading!" << endl; return false; } QString fragsource(ff.readAll()); return load(vertexsource, fragsource); } bool GLShader::load(const QString& vertexsource, const QString& fragmentsource) { // Make sure shaders are actually supported if(( !vertexsource.isEmpty() && !vertexShaderSupported() ) || ( !fragmentsource.isEmpty() && !fragmentShaderSupported() )) { kDebug(1212) << "Shaders not supported"; return false; } GLuint vertexshader; GLuint fragmentshader; GLsizei logsize, logarraysize; char* log = 0; // Create program object mProgram = glCreateProgram(); if(!vertexsource.isEmpty()) { // Create shader object vertexshader = glCreateShader(GL_VERTEX_SHADER); // Load it const QByteArray& srcba = vertexsource.toLatin1(); const char* src = srcba.data(); glShaderSource(vertexshader, 1, &src, NULL); // Compile the shader glCompileShader(vertexshader); // Make sure it compiled correctly int compiled; glGetShaderiv(vertexshader, GL_COMPILE_STATUS, &compiled); // Get info log glGetShaderiv(vertexshader, GL_INFO_LOG_LENGTH, &logarraysize); log = new char[logarraysize]; glGetShaderInfoLog(vertexshader, logarraysize, &logsize, log); if(!compiled) { kError(1212) << "Couldn't compile vertex shader! Log:" << endl << log << endl; delete[] log; return false; } else if(logsize > 0) kDebug(1212) << "Vertex shader compilation log:"<< log; // Attach the shader to the program glAttachShader(mProgram, vertexshader); // Delete shader glDeleteShader(vertexshader); delete[] log; } if(!fragmentsource.isEmpty()) { fragmentshader = glCreateShader(GL_FRAGMENT_SHADER); // Load it const QByteArray& srcba = fragmentsource.toLatin1(); const char* src = srcba.data(); glShaderSource(fragmentshader, 1, &src, NULL); //glShaderSource(fragmentshader, 1, &fragmentsrc.latin1(), NULL); // Compile the shader glCompileShader(fragmentshader); // Make sure it compiled correctly int compiled; glGetShaderiv(fragmentshader, GL_COMPILE_STATUS, &compiled); // Get info log glGetShaderiv(fragmentshader, GL_INFO_LOG_LENGTH, &logarraysize); log = new char[logarraysize]; glGetShaderInfoLog(fragmentshader, logarraysize, &logsize, log); if(!compiled) { kError(1212) << "Couldn't compile fragment shader! Log:" << endl << log << endl; delete[] log; return false; } else if(logsize > 0) kDebug(1212) << "Fragment shader compilation log:"<< log; // Attach the shader to the program glAttachShader(mProgram, fragmentshader); // Delete shader glDeleteShader(fragmentshader); delete[] log; } // Link the program glLinkProgram(mProgram); // Make sure it linked correctly int linked; glGetProgramiv(mProgram, GL_LINK_STATUS, &linked); // Get info log glGetProgramiv(mProgram, GL_INFO_LOG_LENGTH, &logarraysize); log = new char[logarraysize]; glGetProgramInfoLog(mProgram, logarraysize, &logsize, log); if(!linked) { kError(1212) << "Couldn't link the program! Log" << endl << log << endl; delete[] log; return false; } else if(logsize > 0) kDebug(1212) << "Shader linking log:"<< log; delete[] log; mValid = true; return true; } void GLShader::bind() { glUseProgram(mProgram); } void GLShader::unbind() { glUseProgram(0); } int GLShader::uniformLocation(const char* name) { int location = glGetUniformLocation(mProgram, name); return location; } bool GLShader::setUniform(const char* name, float value) { int location = uniformLocation(name); if(location >= 0) { glUniform1f(location, value); } return (location >= 0); } bool GLShader::setUniform(const char* name, int value) { int location = uniformLocation(name); if(location >= 0) { glUniform1i(location, value); } return (location >= 0); } bool GLShader::setUniform(const char* name, const QVector2D& value) { const int location = uniformLocation(name); if(location >= 0) { glUniform2f(location, value.x(), value.y()); } return (location >= 0); } bool GLShader::setUniform(const char* name, const QVector3D& value) { const int location = uniformLocation(name); if(location >= 0) { glUniform3f(location, value.x(), value.y(), value.z()); } return (location >= 0); } bool GLShader::setUniform(const char* name, const QVector4D& value) { const int location = uniformLocation(name); if(location >= 0) { glUniform4f(location, value.x(), value.y(), value.z(), value.w()); } return (location >= 0); } bool GLShader::setUniform(const char* name, const QMatrix4x4& value) { const int location = uniformLocation(name); if (location >= 0) { GLfloat m[16]; const qreal *data = value.constData(); // i is column, j is row for m for (int i = 0; i < 4; ++i) { for (int j=0; j < 4; ++j) { m[i*4+j] = data[j*4+i]; } } glUniformMatrix4fv(location, 1, GL_FALSE, m); } return (location >= 0); } bool GLShader::setUniform(const char* name, const QColor& color) { const int location = uniformLocation(name); if (location >= 0) { glUniform4f(location, color.redF(), color.greenF(), color.blueF(), color.alphaF()); } return (location >= 0); } int GLShader::attributeLocation(const char* name) { int location = glGetAttribLocation(mProgram, name); return location; } bool GLShader::setAttribute(const char* name, float value) { int location = attributeLocation(name); if(location >= 0) { glVertexAttrib1f(location, value); } return (location >= 0); } void GLShader::setTextureHeight(float height) { mTextureHeight = height; } void GLShader::setTextureWidth(float width) { mTextureWidth = width; } float GLShader::textureHeight() { return mTextureHeight; } float GLShader::textureWidth() { return mTextureWidth; } void GLShader::bindAttributeLocation(int index, const char* name) { glBindAttribLocation(mProgram, index, name); // TODO: relink the shader } //**************************************** // ShaderManager //**************************************** ShaderManager *ShaderManager::s_shaderManager = NULL; ShaderManager *ShaderManager::instance() { if (!s_shaderManager) { s_shaderManager = new ShaderManager(); } return s_shaderManager; } void ShaderManager::cleanup() { delete s_shaderManager; } ShaderManager::ShaderManager() : m_orthoShader(NULL) , m_genericShader(NULL) , m_colorShader(NULL) , m_inited(false) , m_valid(false) { initShaders(); m_inited = true; } ShaderManager::~ShaderManager() { while (!m_boundShaders.isEmpty()) { popShader(); } delete m_orthoShader; delete m_genericShader; delete m_colorShader; } GLShader *ShaderManager::getBoundShader() const { if (m_boundShaders.isEmpty()) { return NULL; } else { return m_boundShaders.top(); } } bool ShaderManager::isShaderBound() const { return !m_boundShaders.isEmpty(); } bool ShaderManager::isValid() const { return m_valid; } GLShader *ShaderManager::pushShader(ShaderType type, bool reset) { if (m_inited && !m_valid) { return NULL; } GLShader *shader; switch (type) { case SimpleShader: shader = m_orthoShader; break; case GenericShader: shader = m_genericShader; break; case ColorShader: shader = m_colorShader; break; default: return NULL; } pushShader(shader); if (reset) { resetShader(type); } return shader; } void ShaderManager::pushShader(GLShader *shader) { // only bind shader if it is not already bound if (shader != getBoundShader()) { shader->bind(); } m_boundShaders.push(shader); } void ShaderManager::popShader() { if (m_boundShaders.isEmpty()) { return; } GLShader *shader = m_boundShaders.pop(); if (m_boundShaders.isEmpty()) { // no more shader bound - unbind shader->unbind(); } else if (shader != m_boundShaders.top()) { // only rebind if a different shader is on top of stack m_boundShaders.top()->bind(); } } void ShaderManager::initShaders() { m_orthoShader = new GLShader(":/resources/scene-vertex.glsl", ":/resources/scene-fragment.glsl"); if (m_orthoShader->isValid()) { pushShader(SimpleShader, true); popShader(); kDebug(1212) << "Ortho Shader is valid"; } else { delete m_orthoShader; m_orthoShader = NULL; kDebug(1212) << "Orho Shader is not valid"; return; } m_genericShader = new GLShader( ":/resources/scene-generic-vertex.glsl", ":/resources/scene-fragment.glsl" ); if (m_genericShader->isValid()) { pushShader(GenericShader, true); popShader(); kDebug(1212) << "Generic Shader is valid"; } else { delete m_genericShader; m_genericShader = NULL; delete m_orthoShader; m_orthoShader = NULL; kDebug(1212) << "Generic Shader is not valid"; return; } m_colorShader = new GLShader(":/resources/scene-color-vertex.glsl", ":/resources/scene-color-fragment.glsl"); if (m_colorShader->isValid()) { pushShader(ColorShader, true); popShader(); kDebug(1212) << "Color Shader is valid"; } else { delete m_genericShader; m_genericShader = NULL; delete m_orthoShader; m_orthoShader = NULL; delete m_colorShader; m_colorShader = NULL; kDebug(1212) << "Color Scene Shader is not valid"; return; } m_valid = true; } void ShaderManager::resetShader(ShaderType type) { // resetShader is either called from init or from push, we know that a built-in shader is bound GLShader *shader = getBoundShader(); switch (type) { case SimpleShader: shader->setUniform("displaySize", QVector2D(displayWidth(), displayHeight())); // TODO: has to become offset shader->setUniform("geometry", QVector4D(0, 0, 0, 0)); shader->setUniform("debug", 0); shader->setUniform("sample", 0); // TODO: has to become textureSize shader->setUniform("textureWidth", 1.0f); shader->setUniform("textureHeight", 1.0f); // TODO: has to become colorManiuplation shader->setUniform("opacity", 1.0f); shader->setUniform("brightness", 1.0f); shader->setUniform("saturation", 1.0f); break; case GenericShader: { shader->setUniform("debug", 0); shader->setUniform("sample", 0); QMatrix4x4 projection; float fovy = 60.0f; float aspect = 1.0f; float zNear = 0.1f; float zFar = 100.0f; float ymax = zNear * tan(fovy * M_PI / 360.0f); float ymin = -ymax; float xmin = ymin * aspect; float xmax = ymax * aspect; projection.frustum(xmin, xmax, ymin, ymax, zNear, zFar); shader->setUniform("projection", projection); QMatrix4x4 modelview; float scaleFactor = 1.1 * tan( fovy * M_PI / 360.0f )/ymax; modelview.translate(xmin*scaleFactor, ymax*scaleFactor, -1.1); modelview.scale((xmax-xmin)*scaleFactor/displayWidth(), -(ymax-ymin)*scaleFactor/displayHeight(), 0.001); shader->setUniform("modelview", modelview); const QMatrix4x4 identity; shader->setUniform("screenTransformation", identity); shader->setUniform("windowTransformation", identity); // TODO: has to become textureSize shader->setUniform("textureWidth", 1.0f); shader->setUniform("textureHeight", 1.0f); // TODO: has to become colorManiuplation shader->setUniform("opacity", 1.0f); shader->setUniform("brightness", 1.0f); shader->setUniform("saturation", 1.0f); break; } case ColorShader: shader->setUniform("displaySize", QVector2D(displayWidth(), displayHeight())); // TODO: has to become offset shader->setUniform("geometry", QVector4D(0, 0, 0, 0)); shader->setUniform("geometryColor", QVector4D(0, 0, 0, 1)); break; } } /*** GLRenderTarget ***/ bool GLRenderTarget::mSupported = false; void GLRenderTarget::initStatic() { #ifdef KWIN_HAVE_OPENGLES mSupported = true; #else mSupported = hasGLExtension("GL_EXT_framebuffer_object") && glFramebufferTexture2D; #endif } GLRenderTarget::GLRenderTarget(GLTexture* color) { // Reset variables mValid = false; mTexture = color; // Make sure FBO is supported if(mSupported && mTexture && !mTexture->isNull()) { initFBO(); } else kError(1212) << "Render targets aren't supported!" << endl; } GLRenderTarget::~GLRenderTarget() { if(mValid) { glDeleteFramebuffers(1, &mFramebuffer); } } bool GLRenderTarget::enable() { if(!valid()) { kError(1212) << "Can't enable invalid render target!" << endl; return false; } glBindFramebuffer(GL_FRAMEBUFFER, mFramebuffer); mTexture->setDirty(); return true; } bool GLRenderTarget::disable() { if(!valid()) { kError(1212) << "Can't disable invalid render target!" << endl; return false; } glBindFramebuffer(GL_FRAMEBUFFER, 0); mTexture->setDirty(); return true; } static QString formatFramebufferStatus( GLenum status ) { switch( status ) { case GL_FRAMEBUFFER_INCOMPLETE_ATTACHMENT: // An attachment is the wrong type / is invalid / has 0 width or height return "GL_FRAMEBUFFER_INCOMPLETE_ATTACHMENT"; case GL_FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT: // There are no images attached to the framebuffer return "GL_FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT"; case GL_FRAMEBUFFER_UNSUPPORTED: // A format or the combination of formats of the attachments is unsupported return "GL_FRAMEBUFFER_UNSUPPORTED"; #ifndef KWIN_HAVE_OPENGLES case GL_FRAMEBUFFER_INCOMPLETE_DIMENSIONS_EXT: // Not all attached images have the same width and height return "GL_FRAMEBUFFER_INCOMPLETE_DIMENSIONS_EXT"; case GL_FRAMEBUFFER_INCOMPLETE_FORMATS_EXT: // The color attachments don't have the same format return "GL_FRAMEBUFFER_INCOMPLETE_FORMATS_EXT"; case GL_FRAMEBUFFER_INCOMPLETE_MULTISAMPLE_EXT: // The attachments don't have the same number of samples return "GL_FRAMEBUFFER_INCOMPLETE_MULTISAMPLE"; case GL_FRAMEBUFFER_INCOMPLETE_DRAW_BUFFER_EXT: // The draw buffer is missing return "GL_FRAMEBUFFER_INCOMPLETE_DRAW_BUFFER"; case GL_FRAMEBUFFER_INCOMPLETE_READ_BUFFER_EXT: // The read buffer is missing return "GL_FRAMEBUFFER_INCOMPLETE_READ_BUFFER"; #endif default: return "Unknown (0x" + QString::number(status, 16) + ')'; } } void GLRenderTarget::initFBO() { #if DEBUG_GLRENDERTARGET GLenum err = glGetError(); if( err != GL_NO_ERROR ) kError(1212) << "Error status when entering GLRenderTarget::initFBO: " << formatGLError( err ); #endif glGenFramebuffers(1, &mFramebuffer); #if DEBUG_GLRENDERTARGET if( (err = glGetError()) != GL_NO_ERROR ) { kError(1212) << "glGenFramebuffers failed: " << formatGLError( err ); return; } #endif glBindFramebuffer(GL_FRAMEBUFFER, mFramebuffer); #if DEBUG_GLRENDERTARGET if( (err = glGetError()) != GL_NO_ERROR ) { kError(1212) << "glBindFramebuffer failed: " << formatGLError( err ); glDeleteFramebuffers(1, &mFramebuffer); return; } #endif glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, mTexture->target(), mTexture->texture(), 0); #if DEBUG_GLRENDERTARGET if( (err = glGetError()) != GL_NO_ERROR ) { kError(1212) << "glFramebufferTexture2D failed: " << formatGLError( err ); glBindFramebuffer(GL_FRAMEBUFFER, 0); glDeleteFramebuffers(1, &mFramebuffer); return; } #endif const GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER); glBindFramebuffer(GL_FRAMEBUFFER, 0); if( status != GL_FRAMEBUFFER_COMPLETE ) { // We have an incomplete framebuffer, consider it invalid if (status == 0) kError(1212) << "glCheckFramebufferStatus failed: " << formatGLError( glGetError() ); else kError(1212) << "Invalid framebuffer status: " << formatFramebufferStatus( status ); glDeleteFramebuffers(1, &mFramebuffer); return; } mValid = true; } //********************************* // GLVertexBufferPrivate //********************************* class GLVertexBufferPrivate { public: GLVertexBufferPrivate( GLVertexBuffer::UsageHint usageHint ) : hint( usageHint ) , numberVertices( 0 ) , dimension( 2 ) , useShader( false ) , useColor( false ) , useTexCoords( true ) , color( 0, 0, 0, 255 ) { if( GLVertexBufferPrivate::supported ) { glGenBuffers( 2, buffers ); } } ~GLVertexBufferPrivate() { if( GLVertexBufferPrivate::supported ) { glDeleteBuffers( 2, buffers ); } } GLVertexBuffer::UsageHint hint; GLuint buffers[2]; int numberVertices; int dimension; bool useShader; static bool supported; QVector legacyVertices; QVector legacyTexCoords; bool useColor; bool useTexCoords; QColor color; void legacyPainting( QRegion region, GLenum primitiveMode ); void corePainting( const QRegion& region, GLenum primitiveMode ); }; bool GLVertexBufferPrivate::supported = false; void GLVertexBufferPrivate::legacyPainting( QRegion region, GLenum primitiveMode ) { #ifndef KWIN_HAVE_OPENGLES // Enable arrays glEnableClientState( GL_VERTEX_ARRAY ); glVertexPointer( dimension, GL_FLOAT, 0, legacyVertices.constData() ); if (!legacyTexCoords.isEmpty()) { glEnableClientState( GL_TEXTURE_COORD_ARRAY ); glTexCoordPointer( 2, GL_FLOAT, 0, legacyTexCoords.constData() ); } if (useColor) { glColor4f(color.redF(), color.greenF(), color.blueF(), color.alphaF()); } // Clip using scissoring PaintClipper pc( region ); for( PaintClipper::Iterator iterator; !iterator.isDone(); iterator.next()) { glDrawArrays( primitiveMode, 0, numberVertices ); } glDisableClientState( GL_VERTEX_ARRAY ); if (!legacyTexCoords.isEmpty()) { glDisableClientState( GL_TEXTURE_COORD_ARRAY ); } #endif } void GLVertexBufferPrivate::corePainting( const QRegion& region, GLenum primitiveMode ) { glEnableVertexAttribArray( 0 ); if (useTexCoords) { glEnableVertexAttribArray( 1 ); } GLShader *shader = ShaderManager::instance()->getBoundShader(); GLint vertexAttrib = shader->attributeLocation("vertex"); GLint texAttrib = shader->attributeLocation("texCoord" ); if (useColor) { shader->setUniform("geometryColor", color); } glBindBuffer( GL_ARRAY_BUFFER, buffers[ 0 ] ); glVertexAttribPointer( vertexAttrib, dimension, GL_FLOAT, GL_FALSE, 0, 0 ); if (texAttrib != -1 && useTexCoords) { glBindBuffer( GL_ARRAY_BUFFER, buffers[ 1 ] ); glVertexAttribPointer( texAttrib, 2, GL_FLOAT, GL_FALSE, 0, 0 ); } // Clip using scissoring PaintClipper pc( region ); for( PaintClipper::Iterator iterator; !iterator.isDone(); iterator.next()) { glDrawArrays( primitiveMode, 0, numberVertices ); } glBindBuffer( GL_ARRAY_BUFFER, 0 ); if (useTexCoords) { glDisableVertexAttribArray( 1 ); } glDisableVertexAttribArray( 0 ); } //********************************* // GLVertexBuffer //********************************* GLVertexBuffer::GLVertexBuffer( UsageHint hint ) : d( new GLVertexBufferPrivate( hint ) ) { } GLVertexBuffer::~GLVertexBuffer() { delete d; } void GLVertexBuffer::setData( int numberVertices, int dim, const float* vertices, const float* texcoords ) { d->numberVertices = numberVertices; d->dimension = dim; d->useTexCoords = (texcoords != NULL); if( !GLVertexBufferPrivate::supported ) { // legacy data d->legacyVertices.clear(); d->legacyVertices.reserve( numberVertices * dim ); for( int i=0; ilegacyVertices << vertices[i]; } d->legacyTexCoords.clear(); if (d->useTexCoords) { d->legacyTexCoords.reserve( numberVertices * 2 ); for (int i=0; ilegacyTexCoords << texcoords[i]; } } return; } GLenum hint; switch( d->hint ) { case Dynamic: hint = GL_DYNAMIC_DRAW; break; case Static: hint = GL_STATIC_DRAW; break; case Stream: hint = GL_STREAM_DRAW; break; default: // just to make the compiler happy hint = GL_STREAM_DRAW; break; } glBindBuffer( GL_ARRAY_BUFFER, d->buffers[ 0 ] ); glBufferData( GL_ARRAY_BUFFER, sizeof(GLfloat)*numberVertices*d->dimension, vertices, hint ); if (d->useTexCoords) { glBindBuffer( GL_ARRAY_BUFFER, d->buffers[ 1 ] ); glBufferData( GL_ARRAY_BUFFER, sizeof(GLfloat)*numberVertices*2, texcoords, hint ); } glBindBuffer( GL_ARRAY_BUFFER, 0 ); } void GLVertexBuffer::render( GLenum primitiveMode ) { render( infiniteRegion(), primitiveMode ); } void GLVertexBuffer::render( const QRegion& region, GLenum primitiveMode ) { if( !GLVertexBufferPrivate::supported ) { d->legacyPainting( region, primitiveMode ); return; } if( d->useShader ) { d->corePainting( region, primitiveMode ); return; } #ifndef KWIN_HAVE_OPENGLES glEnableClientState( GL_VERTEX_ARRAY ); glEnableClientState( GL_TEXTURE_COORD_ARRAY ); glBindBuffer( GL_ARRAY_BUFFER, d->buffers[ 0 ] ); glVertexPointer( d->dimension, GL_FLOAT, 0, 0 ); glBindBuffer( GL_ARRAY_BUFFER, d->buffers[ 1 ] ); glTexCoordPointer( 2, GL_FLOAT, 0, 0 ); if (d->useColor) { glColor4f(d->color.redF(), d->color.greenF(), d->color.blueF(), d->color.alphaF()); } // Clip using scissoring PaintClipper pc( region ); for( PaintClipper::Iterator iterator; !iterator.isDone(); iterator.next()) { glDrawArrays( primitiveMode, 0, d->numberVertices ); } glBindBuffer( GL_ARRAY_BUFFER, 0 ); glDisableClientState( GL_VERTEX_ARRAY ); glDisableClientState( GL_TEXTURE_COORD_ARRAY ); #endif } void GLVertexBuffer::setUseShader( bool use ) { d->useShader = use; } bool GLVertexBuffer::isUseShader() const { return d->useShader; } bool GLVertexBuffer::isSupported() { return GLVertexBufferPrivate::supported; } bool GLVertexBuffer::isUseColor() const { return d->useColor; } void GLVertexBuffer::setUseColor(bool enable) { d->useColor = enable; } void GLVertexBuffer::setColor(const QColor& color, bool enable) { d->useColor = enable; d->color = color; } void GLVertexBuffer::initStatic() { #ifdef KWIN_HAVE_OPENGLES GLVertexBufferPrivate::supported = true; #else GLVertexBufferPrivate::supported = hasGLExtension( "GL_ARB_vertex_buffer_object" ); #endif } } // namespace #endif