/******************************************************************** KWin - the KDE window manager This file is part of the KDE project. Copyright (C) 2006-2007 Rivo Laks This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . *********************************************************************/ #include "kwinglutils.h" #ifdef KWIN_HAVE_OPENGL #include "kwinglobals.h" #include "kwineffects.h" #include "kwinglplatform.h" #include "kdebug.h" #include #include #include #include #include #include #include #include #include #include #define DEBUG_GLRENDERTARGET 0 #define MAKE_GL_VERSION(major, minor, release) ( ((major) << 16) | ((minor) << 8) | (release) ) namespace KWin { // Variables // GL version, use MAKE_GL_VERSION() macro for comparing with a specific version static int glVersion; // GLX version, use MAKE_GL_VERSION() macro for comparing with a specific version static int glXVersion; // EGL version, use MAKE_GL_VERSION() macro for comparing with a specific version static int eglVersion; // List of all supported GL, EGL and GLX extensions static QStringList glExtensions; static QStringList glxExtensions; static QStringList eglExtension; int glTextureUnitsCount; // Functions void initGLX() { #ifndef KWIN_HAVE_OPENGLES // Get GLX version int major, minor; glXQueryVersion(display(), &major, &minor); glXVersion = MAKE_GL_VERSION(major, minor, 0); // Get list of supported GLX extensions glxExtensions = QString((const char*)glXQueryExtensionsString( display(), DefaultScreen(display()))).split(' '); glxResolveFunctions(); #endif } void initEGL() { #ifdef KWIN_HAVE_OPENGLES EGLDisplay dpy = eglGetCurrentDisplay(); int major, minor; eglInitialize(dpy, &major, &minor); eglVersion = MAKE_GL_VERSION(major, minor, 0); eglExtension = QString((const char*)eglQueryString(dpy, EGL_EXTENSIONS)).split(' '); eglResolveFunctions(); #endif } void initGL() { // Get OpenGL version QString glversionstring = QString((const char*)glGetString(GL_VERSION)); QStringList glversioninfo = glversionstring.left(glversionstring.indexOf(' ')).split('.'); while (glversioninfo.count() < 3) glversioninfo << "0"; #ifndef KWIN_HAVE_OPENGLES glVersion = MAKE_GL_VERSION(glversioninfo[0].toInt(), glversioninfo[1].toInt(), glversioninfo[2].toInt()); #endif // Get list of supported OpenGL extensions glExtensions = QString((const char*)glGetString(GL_EXTENSIONS)).split(' '); // handle OpenGL extensions functions glResolveFunctions(); GLTexture::initStatic(); GLRenderTarget::initStatic(); GLVertexBuffer::initStatic(); } bool hasGLVersion(int major, int minor, int release) { return glVersion >= MAKE_GL_VERSION(major, minor, release); } bool hasGLXVersion(int major, int minor, int release) { return glXVersion >= MAKE_GL_VERSION(major, minor, release); } bool hasEGLVersion(int major, int minor, int release) { return eglVersion >= MAKE_GL_VERSION(major, minor, release); } bool hasGLExtension(const QString& extension) { return glExtensions.contains(extension) || glxExtensions.contains(extension) || eglExtension.contains(extension); } static QString formatGLError(GLenum err) { switch(err) { case GL_NO_ERROR: return "GL_NO_ERROR"; case GL_INVALID_ENUM: return "GL_INVALID_ENUM"; case GL_INVALID_VALUE: return "GL_INVALID_VALUE"; case GL_INVALID_OPERATION: return "GL_INVALID_OPERATION"; #ifndef KWIN_HAVE_OPENGLES case GL_STACK_OVERFLOW: return "GL_STACK_OVERFLOW"; case GL_STACK_UNDERFLOW: return "GL_STACK_UNDERFLOW"; #endif case GL_OUT_OF_MEMORY: return "GL_OUT_OF_MEMORY"; default: return QString("0x") + QString::number(err, 16); } } bool checkGLError(const char* txt) { GLenum err = glGetError(); if (err != GL_NO_ERROR) { kWarning(1212) << "GL error (" << txt << "): " << formatGLError(err); return true; } return false; } int nearestPowerOfTwo(int x) { // This method had been copied from Qt's nearest_gl_texture_size() int n = 0, last = 0; for (int s = 0; s < 32; ++s) { if (((x >> s) & 1) == 1) { ++n; last = s; } } if (n > 1) return 1 << (last + 1); return 1 << last; } void pushMatrix() { #ifndef KWIN_HAVE_OPENGLES glPushMatrix(); #endif } void pushMatrix(const QMatrix4x4 &matrix) { #ifdef KWIN_HAVE_OPENGLES Q_UNUSED(matrix) #else glPushMatrix(); multiplyMatrix(matrix); #endif } void multiplyMatrix(const QMatrix4x4 &matrix) { #ifdef KWIN_HAVE_OPENGLES Q_UNUSED(matrix) #else GLfloat m[16]; const qreal *data = matrix.constData(); for (int i = 0; i < 4; ++i) { for (int j = 0; j < 4; ++j) { m[i*4+j] = data[i*4+j]; } } glMultMatrixf(m); #endif } void loadMatrix(const QMatrix4x4 &matrix) { #ifdef KWIN_HAVE_OPENGLES Q_UNUSED(matrix) #else GLfloat m[16]; const qreal *data = matrix.constData(); for (int i = 0; i < 4; ++i) { for (int j = 0; j < 4; ++j) { m[i*4+j] = data[i*4+j]; } } glLoadMatrixf(m); #endif } void popMatrix() { #ifndef KWIN_HAVE_OPENGLES glPopMatrix(); #endif } //**************************************** // GLTexture //**************************************** bool GLTexture::sNPOTTextureSupported = false; bool GLTexture::sFramebufferObjectSupported = false; bool GLTexture::sSaturationSupported = false; GLTexture::GLTexture() { init(); } GLTexture::GLTexture(const QImage& image, GLenum target) { init(); load(image, target); } GLTexture::GLTexture(const QPixmap& pixmap, GLenum target) { init(); load(pixmap, target); } GLTexture::GLTexture(const QString& fileName) { init(); load(fileName); } GLTexture::GLTexture(int width, int height) { init(); if (NPOTTextureSupported() || (isPowerOfTwo(width) && isPowerOfTwo(height))) { mTarget = GL_TEXTURE_2D; mScale.setWidth(1.0 / width); mScale.setHeight(1.0 / height); mSize = QSize(width, height); can_use_mipmaps = true; glGenTextures(1, &mTexture); bind(); #ifdef KWIN_HAVE_OPENGLES // format and internal format have to match in ES, GL_RGBA8 and GL_BGRA are not available // see http://www.khronos.org/opengles/sdk/docs/man/xhtml/glTexImage2D.xml glTexImage2D(mTarget, 0, GL_RGBA, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, 0); #else glTexImage2D(mTarget, 0, GL_RGBA8, width, height, 0, GL_BGRA, GL_UNSIGNED_BYTE, 0); #endif unbind(); } } GLTexture::~GLTexture() { delete m_vbo; discard(); assert(mUnnormalizeActive == 0); assert(mNormalizeActive == 0); } void GLTexture::init() { mTexture = None; mTarget = 0; mFilter = 0; y_inverted = false; can_use_mipmaps = false; has_valid_mipmaps = false; mUnnormalizeActive = 0; mNormalizeActive = 0; m_vbo = 0; } void GLTexture::initStatic() { #ifdef KWIN_HAVE_OPENGLES sNPOTTextureSupported = true; sFramebufferObjectSupported = true; sSaturationSupported = true; #else sNPOTTextureSupported = hasGLExtension("GL_ARB_texture_non_power_of_two"); sFramebufferObjectSupported = hasGLExtension("GL_EXT_framebuffer_object"); sSaturationSupported = ((hasGLExtension("GL_ARB_texture_env_crossbar") && hasGLExtension("GL_ARB_texture_env_dot3")) || hasGLVersion(1, 4)) && (glTextureUnitsCount >= 4) && glActiveTexture != NULL; #endif } bool GLTexture::isNull() const { return mTexture == None; } QSize GLTexture::size() const { return mSize; } bool GLTexture::load(const QImage& image, GLenum target) { if (image.isNull()) return false; QImage img = image; mTarget = target; #ifndef KWIN_HAVE_OPENGLES if (mTarget != GL_TEXTURE_RECTANGLE_ARB) { #endif if (!NPOTTextureSupported() && (!isPowerOfTwo(image.width()) || !isPowerOfTwo(image.height()))) { // non-rectangular target requires POT texture img = img.scaled(nearestPowerOfTwo(image.width()), nearestPowerOfTwo(image.height())); } mScale.setWidth(1.0 / img.width()); mScale.setHeight(1.0 / img.height()); can_use_mipmaps = true; #ifndef KWIN_HAVE_OPENGLES } else { mScale.setWidth(1.0); mScale.setHeight(1.0); can_use_mipmaps = false; } #endif setFilter(GL_LINEAR); mSize = img.size(); y_inverted = false; img = convertToGLFormat(img); setDirty(); if (isNull()) glGenTextures(1, &mTexture); bind(); #ifdef KWIN_HAVE_OPENGLES // format and internal format have to match in ES, GL_RGBA8 and GL_BGRA are not available // see http://www.khronos.org/opengles/sdk/docs/man/xhtml/glTexImage2D.xml glTexImage2D(mTarget, 0, GL_RGBA, img.width(), img.height(), 0, GL_RGBA, GL_UNSIGNED_BYTE, img.bits()); #else glTexImage2D(mTarget, 0, GL_RGBA8, img.width(), img.height(), 0, GL_BGRA, GL_UNSIGNED_BYTE, img.bits()); #endif unbind(); return true; } bool GLTexture::load(const QPixmap& pixmap, GLenum target) { if (pixmap.isNull()) return false; return load(pixmap.toImage(), target); } bool GLTexture::load(const QString& fileName) { if (fileName.isEmpty()) return false; return load(QImage(fileName)); } void GLTexture::discard() { setDirty(); if (mTexture != None) glDeleteTextures(1, &mTexture); mTexture = None; } void GLTexture::bind() { #ifndef KWIN_HAVE_OPENGLES glEnable(mTarget); #endif glBindTexture(mTarget, mTexture); enableFilter(); } void GLTexture::unbind() { glBindTexture(mTarget, 0); #ifndef KWIN_HAVE_OPENGLES glDisable(mTarget); #endif } void GLTexture::render(QRegion region, const QRect& rect) { if (rect.size() != m_cachedSize) { m_cachedSize = rect.size(); QRect r(rect); r.moveTo(0, 0); if (!m_vbo) { m_vbo = new GLVertexBuffer(KWin::GLVertexBuffer::Static); } const float verts[ 4 * 2 ] = { // NOTICE: r.x/y could be replaced by "0", but that would make it unreadable... r.x(), r.y(), r.x(), r.y() + rect.height(), r.x() + rect.width(), r.y(), r.x() + rect.width(), r.y() + rect.height() }; const float texcoords[ 4 * 2 ] = { 0.0f, y_inverted ? 0.0f : 1.0f, // y needs to be swapped (normalized coords) 0.0f, y_inverted ? 1.0f : 0.0f, 1.0f, y_inverted ? 0.0f : 1.0f, 1.0f, y_inverted ? 1.0f : 0.0f }; m_vbo->setData(4, 2, verts, texcoords); } QMatrix4x4 translation; translation.translate(rect.x(), rect.y()); if (ShaderManager::instance()->isShaderBound()) { GLShader *shader = ShaderManager::instance()->getBoundShader(); shader->setUniform(GLShader::Offset, QVector2D(rect.x(), rect.y())); shader->setUniform(GLShader::WindowTransformation, translation); shader->setUniform(GLShader::TextureWidth, 1.0f); shader->setUniform(GLShader::TextureHeight, 1.0f); } else { pushMatrix(translation); } m_vbo->render(region, GL_TRIANGLE_STRIP); if (ShaderManager::instance()->isShaderBound()) { GLShader *shader = ShaderManager::instance()->getBoundShader(); shader->setUniform(GLShader::WindowTransformation, QMatrix4x4()); } else { popMatrix(); } } void GLTexture::enableUnnormalizedTexCoords() { #ifndef KWIN_HAVE_OPENGLES assert(mNormalizeActive == 0); if (mUnnormalizeActive++ != 0) return; // update texture matrix to handle GL_TEXTURE_2D and GL_TEXTURE_RECTANGLE glMatrixMode(GL_TEXTURE); glPushMatrix(); glLoadIdentity(); glScalef(mScale.width(), mScale.height(), 1); if (!y_inverted) { // Modify texture matrix so that we could always use non-opengl // coordinates for textures glScalef(1, -1, 1); glTranslatef(0, -mSize.height(), 0); } glMatrixMode(GL_MODELVIEW); #endif } void GLTexture::disableUnnormalizedTexCoords() { #ifndef KWIN_HAVE_OPENGLES if (--mUnnormalizeActive != 0) return; // Restore texture matrix glMatrixMode(GL_TEXTURE); glPopMatrix(); glMatrixMode(GL_MODELVIEW); #endif } void GLTexture::enableNormalizedTexCoords() { #ifndef KWIN_HAVE_OPENGLES assert(mUnnormalizeActive == 0); if (mNormalizeActive++ != 0) return; // update texture matrix to handle GL_TEXTURE_2D and GL_TEXTURE_RECTANGLE glMatrixMode(GL_TEXTURE); glPushMatrix(); glLoadIdentity(); glScalef(mSize.width() * mScale.width(), mSize.height() * mScale.height(), 1); if (y_inverted) { // Modify texture matrix so that we could always use non-opengl // coordinates for textures glScalef(1, -1, 1); glTranslatef(0, -1, 0); } glMatrixMode(GL_MODELVIEW); #endif } void GLTexture::disableNormalizedTexCoords() { #ifndef KWIN_HAVE_OPENGLES if (--mNormalizeActive != 0) return; // Restore texture matrix glMatrixMode(GL_TEXTURE); glPopMatrix(); glMatrixMode(GL_MODELVIEW); #endif } GLuint GLTexture::texture() const { return mTexture; } GLenum GLTexture::target() const { return mTarget; } GLenum GLTexture::filter() const { return mFilter; } bool GLTexture::isDirty() const { return has_valid_mipmaps; } void GLTexture::setTexture(GLuint texture) { discard(); mTexture = texture; } void GLTexture::setTarget(GLenum target) { mTarget = target; } void GLTexture::setFilter(GLenum filter) { mFilter = filter; } void GLTexture::setWrapMode(GLenum mode) { bind(); glTexParameteri(mTarget, GL_TEXTURE_WRAP_S, mode); glTexParameteri(mTarget, GL_TEXTURE_WRAP_T, mode); unbind(); } void GLTexture::setDirty() { has_valid_mipmaps = false; } void GLTexture::enableFilter() { if (mFilter == GL_LINEAR_MIPMAP_LINEAR) { // trilinear filtering requested, but is it possible? if (NPOTTextureSupported() && framebufferObjectSupported() && can_use_mipmaps) { glTexParameteri(mTarget, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR); glTexParameteri(mTarget, GL_TEXTURE_MAG_FILTER, GL_LINEAR); if (!has_valid_mipmaps) { glGenerateMipmap(mTarget); has_valid_mipmaps = true; } } else { // can't use trilinear, so use bilinear setFilter(GL_LINEAR); glTexParameteri(mTarget, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(mTarget, GL_TEXTURE_MAG_FILTER, GL_LINEAR); } } else if (mFilter == GL_LINEAR) { glTexParameteri(mTarget, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(mTarget, GL_TEXTURE_MAG_FILTER, GL_LINEAR); } else { // if neither trilinear nor bilinear, default to fast filtering setFilter(GL_NEAREST); glTexParameteri(mTarget, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(mTarget, GL_TEXTURE_MAG_FILTER, GL_NEAREST); } } static void convertToGLFormatHelper(QImage &dst, const QImage &img, GLenum texture_format) { #ifdef KWIN_HAVE_OPENGLES Q_UNUSED(texture_format) #endif // Copied from Qt Q_ASSERT(dst.size() == img.size()); Q_ASSERT(dst.depth() == 32); Q_ASSERT(img.depth() == 32); const int width = img.width(); const int height = img.height(); const uint *p = (const uint*) img.scanLine(img.height() - 1); uint *q = (uint*) dst.scanLine(0); #ifndef KWIN_HAVE_OPENGLES if (texture_format == GL_BGRA) { if (QSysInfo::ByteOrder == QSysInfo::BigEndian) { // mirror + swizzle for (int i = 0; i < height; ++i) { const uint *end = p + width; while (p < end) { *q = ((*p << 24) & 0xff000000) | ((*p >> 24) & 0x000000ff) | ((*p << 8) & 0x00ff0000) | ((*p >> 8) & 0x0000ff00); p++; q++; } p -= 2 * width; } } else { const uint bytesPerLine = img.bytesPerLine(); for (int i = 0; i < height; ++i) { memcpy(q, p, bytesPerLine); q += width; p -= width; } } } else { #endif if (QSysInfo::ByteOrder == QSysInfo::BigEndian) { for (int i = 0; i < height; ++i) { const uint *end = p + width; while (p < end) { *q = (*p << 8) | ((*p >> 24) & 0xFF); p++; q++; } p -= 2 * width; } } else { for (int i = 0; i < height; ++i) { const uint *end = p + width; while (p < end) { *q = ((*p << 16) & 0xff0000) | ((*p >> 16) & 0xff) | (*p & 0xff00ff00); p++; q++; } p -= 2 * width; } } #ifndef KWIN_HAVE_OPENGLES } #endif } QImage GLTexture::convertToGLFormat(const QImage& img) const { // Copied from Qt's QGLWidget::convertToGLFormat() QImage res(img.size(), QImage::Format_ARGB32); #ifdef KWIN_HAVE_OPENGLES convertToGLFormatHelper(res, img.convertToFormat(QImage::Format_ARGB32), GL_RGBA); #else convertToGLFormatHelper(res, img.convertToFormat(QImage::Format_ARGB32), GL_BGRA); #endif return res; } //**************************************** // GLShader //**************************************** GLShader::GLShader() : mProgram(0) , mValid(false) , mLocationsResolved(false) , mTextureWidth(-1.0f) , mTextureHeight(-1.0f) { } GLShader::GLShader(const QString& vertexfile, const QString& fragmentfile) : mProgram(0) , mValid(false) , mLocationsResolved(false) , mTextureWidth(-1.0f) , mTextureHeight(-1.0f) { loadFromFiles(vertexfile, fragmentfile); } GLShader::~GLShader() { if (mProgram) { glDeleteProgram(mProgram); } } bool GLShader::loadFromFiles(const QString &vertexFile, const QString &fragmentFile) { QFile vf(vertexFile); if (!vf.open(QIODevice::ReadOnly)) { kError(1212) << "Couldn't open" << vertexFile << "for reading!" << endl; return false; } const QByteArray vertexSource = vf.readAll(); QFile ff(fragmentFile); if (!ff.open(QIODevice::ReadOnly)) { kError(1212) << "Couldn't open" << fragmentFile << "for reading!" << endl; return false; } const QByteArray fragmentSource = ff.readAll(); return load(vertexSource, fragmentSource); } bool GLShader::compile(GLuint program, GLenum shaderType, const QByteArray &source) const { GLuint shader = glCreateShader(shaderType); // Prepare the source code QByteArray ba; #ifdef KWIN_HAVE_OPENGLES ba.append("#ifdef GL_ES\nprecision highp float;\n#endif\n"); #endif ba.append(source); const char* src = ba.constData(); glShaderSource(shader, 1, &src, NULL); // Compile the shader glCompileShader(shader); // Get the shader info log int maxLength, length; glGetShaderiv(shader, GL_INFO_LOG_LENGTH, &maxLength); QByteArray log(maxLength, 0); glGetShaderInfoLog(shader, maxLength, &length, log.data()); // Check the status int status; glGetShaderiv(shader, GL_COMPILE_STATUS, &status); if (status == 0) { const char *typeName = (shaderType == GL_VERTEX_SHADER ? "vertex" : "fragment"); kError(1212) << "Failed to compile" << typeName << "shader:" << endl << log << endl; } else if (length > 0) kDebug(1212) << "Shader compile log:" << log; if (status != 0) glAttachShader(program, shader); glDeleteShader(shader); return status != 0; } bool GLShader::load(const QByteArray &vertexSource, const QByteArray &fragmentSource) { // Make sure shaders are actually supported if (!GLPlatform::instance()->supports(GLSL)) { kError(1212) << "Shaders are not supported"; return false; } // Create the shader program mProgram = glCreateProgram(); // Compile the vertex shader if (!vertexSource.isEmpty()) { bool success = compile(mProgram, GL_VERTEX_SHADER, vertexSource); if (!success) { glDeleteProgram(mProgram); mProgram = 0; return false; } } // Compile the fragment shader if (!fragmentSource.isEmpty()) { bool success = compile(mProgram, GL_FRAGMENT_SHADER, fragmentSource); if (!success) { glDeleteProgram(mProgram); mProgram = 0; return false; } } glLinkProgram(mProgram); // Get the program info log int maxLength, length; glGetProgramiv(mProgram, GL_INFO_LOG_LENGTH, &maxLength); QByteArray log(maxLength, 0); glGetProgramInfoLog(mProgram, maxLength, &length, log.data()); // Make sure the program linked successfully int status; glGetProgramiv(mProgram, GL_LINK_STATUS, &status); if (status == 0) { kError(1212) << "Failed to link shader:" << endl << log << endl; glDeleteProgram(mProgram); mProgram = 0; return false; } else if (length > 0) kDebug(1212) << "Shader link log:" << log; mValid = true; return true; } void GLShader::bind() { glUseProgram(mProgram); } void GLShader::unbind() { glUseProgram(0); } void GLShader::resolveLocations() { if (mLocationsResolved) return; mMatrixLocation[TextureMatrix] = uniformLocation("textureMatrix"); mMatrixLocation[ProjectionMatrix] = uniformLocation("projection"); mMatrixLocation[ModelViewMatrix] = uniformLocation("modelview"); mMatrixLocation[WindowTransformation] = uniformLocation("windowTransformation"); mMatrixLocation[ScreenTransformation] = uniformLocation("screenTransformation"); mVec2Location[Offset] = uniformLocation("offset"); mVec4Location[ModulationConstant] = uniformLocation("modulation"); mFloatLocation[Saturation] = uniformLocation("saturation"); mFloatLocation[TextureWidth] = uniformLocation("textureWidth"); mFloatLocation[TextureHeight] = uniformLocation("textureHeight"); mIntLocation[AlphaToOne] = uniformLocation("u_forceAlpha"); mLocationsResolved = true; } int GLShader::uniformLocation(const char *name) { const int location = glGetUniformLocation(mProgram, name); return location; } bool GLShader::setUniform(GLShader::MatrixUniform uniform, const QMatrix4x4 &matrix) { resolveLocations(); return setUniform(mMatrixLocation[uniform], matrix); } bool GLShader::setUniform(GLShader::Vec2Uniform uniform, const QVector2D &value) { resolveLocations(); return setUniform(mVec2Location[uniform], value); } bool GLShader::setUniform(GLShader::Vec4Uniform uniform, const QVector4D &value) { resolveLocations(); return setUniform(mVec4Location[uniform], value); } bool GLShader::setUniform(GLShader::FloatUniform uniform, float value) { resolveLocations(); return setUniform(mFloatLocation[uniform], value); } bool GLShader::setUniform(GLShader::IntUniform uniform, int value) { resolveLocations(); return setUniform(mIntLocation[uniform], value); } bool GLShader::setUniform(const char *name, float value) { const int location = uniformLocation(name); return setUniform(location, value); } bool GLShader::setUniform(const char *name, int value) { const int location = uniformLocation(name); return setUniform(location, value); } bool GLShader::setUniform(const char *name, const QVector2D& value) { const int location = uniformLocation(name); return setUniform(location, value); } bool GLShader::setUniform(const char *name, const QVector3D& value) { const int location = uniformLocation(name); return setUniform(location, value); } bool GLShader::setUniform(const char *name, const QVector4D& value) { const int location = uniformLocation(name); return setUniform(location, value); } bool GLShader::setUniform(const char *name, const QMatrix4x4& value) { const int location = uniformLocation(name); return setUniform(location, value); } bool GLShader::setUniform(const char *name, const QColor& color) { const int location = uniformLocation(name); return setUniform(location, color); } bool GLShader::setUniform(int location, float value) { if (location >= 0) { glUniform1f(location, value); } return (location >= 0); } bool GLShader::setUniform(int location, int value) { if (location >= 0) { glUniform1i(location, value); } return (location >= 0); } bool GLShader::setUniform(int location, const QVector2D &value) { if (location >= 0) { glUniform2fv(location, 1, (const GLfloat*)&value); } return (location >= 0); } bool GLShader::setUniform(int location, const QVector3D &value) { if (location >= 0) { glUniform3fv(location, 1, (const GLfloat*)&value); } return (location >= 0); } bool GLShader::setUniform(int location, const QVector4D &value) { if (location >= 0) { glUniform4fv(location, 1, (const GLfloat*)&value); } return (location >= 0); } bool GLShader::setUniform(int location, const QMatrix4x4 &value) { if (location >= 0) { GLfloat m[16]; const qreal *data = value.constData(); // i is column, j is row for m for (int i = 0; i < 16; ++i) { m[i] = data[i]; } glUniformMatrix4fv(location, 1, GL_FALSE, m); } return (location >= 0); } bool GLShader::setUniform(int location, const QColor &color) { if (location >= 0) { glUniform4f(location, color.redF(), color.greenF(), color.blueF(), color.alphaF()); } return (location >= 0); } int GLShader::attributeLocation(const char* name) { int location = glGetAttribLocation(mProgram, name); return location; } bool GLShader::setAttribute(const char* name, float value) { int location = attributeLocation(name); if (location >= 0) { glVertexAttrib1f(location, value); } return (location >= 0); } void GLShader::setTextureHeight(float height) { mTextureHeight = height; } void GLShader::setTextureWidth(float width) { mTextureWidth = width; } float GLShader::textureHeight() { return mTextureHeight; } float GLShader::textureWidth() { return mTextureWidth; } QMatrix4x4 GLShader::getUniformMatrix4x4(const char* name) { int location = uniformLocation(name); if (location >= 0) { GLfloat m[16]; glGetUniformfv(mProgram, location, m); QMatrix4x4 matrix(m[0], m[4], m[8], m[12], m[1], m[5], m[9], m[13], m[2], m[6], m[10], m[14], m[3], m[7], m[11], m[15]); matrix.optimize(); return matrix; } else { return QMatrix4x4(); } } //**************************************** // ShaderManager //**************************************** ShaderManager *ShaderManager::s_shaderManager = NULL; ShaderManager *ShaderManager::instance() { if (!s_shaderManager) { s_shaderManager = new ShaderManager(); } return s_shaderManager; } void ShaderManager::cleanup() { delete s_shaderManager; } ShaderManager::ShaderManager() : m_orthoShader(NULL) , m_genericShader(NULL) , m_colorShader(NULL) , m_inited(false) , m_valid(false) { initShaders(); m_inited = true; } ShaderManager::~ShaderManager() { while (!m_boundShaders.isEmpty()) { popShader(); } delete m_orthoShader; delete m_genericShader; delete m_colorShader; } GLShader *ShaderManager::getBoundShader() const { if (m_boundShaders.isEmpty()) { return NULL; } else { return m_boundShaders.top(); } } bool ShaderManager::isShaderBound() const { return !m_boundShaders.isEmpty(); } bool ShaderManager::isValid() const { return m_valid; } GLShader *ShaderManager::pushShader(ShaderType type, bool reset) { if (m_inited && !m_valid) { return NULL; } GLShader *shader; switch(type) { case SimpleShader: shader = m_orthoShader; break; case GenericShader: shader = m_genericShader; break; case ColorShader: shader = m_colorShader; break; default: return NULL; } pushShader(shader); if (reset) { resetShader(type); } return shader; } void ShaderManager::pushShader(GLShader *shader) { // only bind shader if it is not already bound if (shader != getBoundShader()) { shader->bind(); } m_boundShaders.push(shader); } void ShaderManager::popShader() { if (m_boundShaders.isEmpty()) { return; } GLShader *shader = m_boundShaders.pop(); if (m_boundShaders.isEmpty()) { // no more shader bound - unbind shader->unbind(); } else if (shader != m_boundShaders.top()) { // only rebind if a different shader is on top of stack m_boundShaders.top()->bind(); } } GLShader *ShaderManager::loadFragmentShader(ShaderType vertex, const QString &fragmentFile) { QString vertexShader; switch(vertex) { case SimpleShader: vertexShader = ":/resources/scene-vertex.glsl"; break; case GenericShader: vertexShader = ":/resources/scene-generic-vertex.glsl"; break; case ColorShader: vertexShader = ":/resources/scene-color-vertex.glsl"; break; } GLShader *shader = new GLShader(vertexShader, fragmentFile); if (shader->isValid()) { pushShader(shader); resetShader(vertex); popShader(); } return shader; } GLShader *ShaderManager::loadVertexShader(ShaderType fragment, const QString &vertexFile) { QString fragmentShader; switch(fragment) { // Simple and Generic Shader use same fragment Shader case SimpleShader: case GenericShader: fragmentShader = ":/resources/scene-fragment.glsl"; break; case ColorShader: fragmentShader = ":/resources/scene-color-fragment.glsl"; break; } GLShader *shader = new GLShader(vertexFile, fragmentShader); if (shader->isValid()) { pushShader(shader); resetShader(fragment); popShader(); } return shader; } GLShader *ShaderManager::loadShaderFromCode(const QByteArray &vertexSource, const QByteArray &fragmentSource) { GLShader *shader = new GLShader(); shader->load(vertexSource, fragmentSource); return shader; } void ShaderManager::initShaders() { m_orthoShader = new GLShader(":/resources/scene-vertex.glsl", ":/resources/scene-fragment.glsl"); if (m_orthoShader->isValid()) { pushShader(SimpleShader, true); popShader(); kDebug(1212) << "Ortho Shader is valid"; } else { delete m_orthoShader; m_orthoShader = NULL; kDebug(1212) << "Orho Shader is not valid"; return; } m_genericShader = new GLShader(":/resources/scene-generic-vertex.glsl", ":/resources/scene-fragment.glsl"); if (m_genericShader->isValid()) { pushShader(GenericShader, true); popShader(); kDebug(1212) << "Generic Shader is valid"; } else { delete m_genericShader; m_genericShader = NULL; delete m_orthoShader; m_orthoShader = NULL; kDebug(1212) << "Generic Shader is not valid"; return; } m_colorShader = new GLShader(":/resources/scene-color-vertex.glsl", ":/resources/scene-color-fragment.glsl"); if (m_colorShader->isValid()) { pushShader(ColorShader, true); popShader(); kDebug(1212) << "Color Shader is valid"; } else { delete m_genericShader; m_genericShader = NULL; delete m_orthoShader; m_orthoShader = NULL; delete m_colorShader; m_colorShader = NULL; kDebug(1212) << "Color Scene Shader is not valid"; return; } m_valid = true; } void ShaderManager::resetShader(ShaderType type) { // resetShader is either called from init or from push, we know that a built-in shader is bound const QMatrix4x4 identity; QMatrix4x4 projection; QMatrix4x4 modelView; GLShader *shader = getBoundShader(); switch(type) { case SimpleShader: projection.ortho(0, displayWidth(), displayHeight(), 0, 0, 65535); break; case GenericShader: { // Set up the projection matrix float fovy = 60.0f; float aspect = 1.0f; float zNear = 0.1f; float zFar = 100.0f; float ymax = zNear * tan(fovy * M_PI / 360.0f); float ymin = -ymax; float xmin = ymin * aspect; float xmax = ymax * aspect; projection.frustum(xmin, xmax, ymin, ymax, zNear, zFar); // Set up the model-view matrix float scaleFactor = 1.1 * tan(fovy * M_PI / 360.0f) / ymax; modelView.translate(xmin * scaleFactor, ymax * scaleFactor, -1.1); modelView.scale((xmax - xmin)*scaleFactor / displayWidth(), -(ymax - ymin)*scaleFactor / displayHeight(), 0.001); break; } case ColorShader: projection.ortho(0, displayWidth(), displayHeight(), 0, 0, 65535); shader->setUniform("geometryColor", QVector4D(0, 0, 0, 1)); break; } //shader->setUniform("debug", 0); shader->setUniform("sampler", 0); shader->setUniform(GLShader::ProjectionMatrix, projection); shader->setUniform(GLShader::ModelViewMatrix, modelView); shader->setUniform(GLShader::ScreenTransformation, identity); shader->setUniform(GLShader::WindowTransformation, identity); shader->setUniform(GLShader::Offset, QVector2D(0, 0)); shader->setUniform(GLShader::ModulationConstant, QVector4D(1.0, 1.0, 1.0, 1.0)); shader->setUniform(GLShader::Saturation, 1.0f); shader->setUniform(GLShader::AlphaToOne, 0); // TODO: has to become textureSize shader->setUniform(GLShader::TextureWidth, 1.0f); shader->setUniform(GLShader::TextureHeight, 1.0f); } /*** GLRenderTarget ***/ bool GLRenderTarget::sSupported = false; void GLRenderTarget::initStatic() { #ifdef KWIN_HAVE_OPENGLES sSupported = true; #else sSupported = hasGLExtension("GL_EXT_framebuffer_object") && glFramebufferTexture2D; #endif } GLRenderTarget::GLRenderTarget(GLTexture* color) { // Reset variables mValid = false; mTexture = color; // Make sure FBO is supported if (sSupported && mTexture && !mTexture->isNull()) { initFBO(); } else kError(1212) << "Render targets aren't supported!" << endl; } GLRenderTarget::~GLRenderTarget() { if (mValid) { glDeleteFramebuffers(1, &mFramebuffer); } } bool GLRenderTarget::enable() { if (!valid()) { kError(1212) << "Can't enable invalid render target!" << endl; return false; } glBindFramebuffer(GL_FRAMEBUFFER, mFramebuffer); mTexture->setDirty(); return true; } bool GLRenderTarget::disable() { if (!valid()) { kError(1212) << "Can't disable invalid render target!" << endl; return false; } glBindFramebuffer(GL_FRAMEBUFFER, 0); mTexture->setDirty(); return true; } static QString formatFramebufferStatus(GLenum status) { switch(status) { case GL_FRAMEBUFFER_INCOMPLETE_ATTACHMENT: // An attachment is the wrong type / is invalid / has 0 width or height return "GL_FRAMEBUFFER_INCOMPLETE_ATTACHMENT"; case GL_FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT: // There are no images attached to the framebuffer return "GL_FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT"; case GL_FRAMEBUFFER_UNSUPPORTED: // A format or the combination of formats of the attachments is unsupported return "GL_FRAMEBUFFER_UNSUPPORTED"; #ifndef KWIN_HAVE_OPENGLES case GL_FRAMEBUFFER_INCOMPLETE_DIMENSIONS_EXT: // Not all attached images have the same width and height return "GL_FRAMEBUFFER_INCOMPLETE_DIMENSIONS_EXT"; case GL_FRAMEBUFFER_INCOMPLETE_FORMATS_EXT: // The color attachments don't have the same format return "GL_FRAMEBUFFER_INCOMPLETE_FORMATS_EXT"; case GL_FRAMEBUFFER_INCOMPLETE_MULTISAMPLE_EXT: // The attachments don't have the same number of samples return "GL_FRAMEBUFFER_INCOMPLETE_MULTISAMPLE"; case GL_FRAMEBUFFER_INCOMPLETE_DRAW_BUFFER_EXT: // The draw buffer is missing return "GL_FRAMEBUFFER_INCOMPLETE_DRAW_BUFFER"; case GL_FRAMEBUFFER_INCOMPLETE_READ_BUFFER_EXT: // The read buffer is missing return "GL_FRAMEBUFFER_INCOMPLETE_READ_BUFFER"; #endif default: return "Unknown (0x" + QString::number(status, 16) + ')'; } } void GLRenderTarget::initFBO() { #if DEBUG_GLRENDERTARGET GLenum err = glGetError(); if (err != GL_NO_ERROR) kError(1212) << "Error status when entering GLRenderTarget::initFBO: " << formatGLError(err); #endif glGenFramebuffers(1, &mFramebuffer); #if DEBUG_GLRENDERTARGET if ((err = glGetError()) != GL_NO_ERROR) { kError(1212) << "glGenFramebuffers failed: " << formatGLError(err); return; } #endif glBindFramebuffer(GL_FRAMEBUFFER, mFramebuffer); #if DEBUG_GLRENDERTARGET if ((err = glGetError()) != GL_NO_ERROR) { kError(1212) << "glBindFramebuffer failed: " << formatGLError(err); glDeleteFramebuffers(1, &mFramebuffer); return; } #endif glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, mTexture->target(), mTexture->texture(), 0); #if DEBUG_GLRENDERTARGET if ((err = glGetError()) != GL_NO_ERROR) { kError(1212) << "glFramebufferTexture2D failed: " << formatGLError(err); glBindFramebuffer(GL_FRAMEBUFFER, 0); glDeleteFramebuffers(1, &mFramebuffer); return; } #endif const GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER); glBindFramebuffer(GL_FRAMEBUFFER, 0); if (status != GL_FRAMEBUFFER_COMPLETE) { // We have an incomplete framebuffer, consider it invalid if (status == 0) kError(1212) << "glCheckFramebufferStatus failed: " << formatGLError(glGetError()); else kError(1212) << "Invalid framebuffer status: " << formatFramebufferStatus(status); glDeleteFramebuffers(1, &mFramebuffer); return; } mValid = true; } //********************************* // GLVertexBufferPrivate //********************************* class GLVertexBufferPrivate { public: GLVertexBufferPrivate(GLVertexBuffer::UsageHint usageHint) : hint(usageHint) , numberVertices(0) , dimension(2) , useColor(false) , useTexCoords(true) , color(0, 0, 0, 255) { if (GLVertexBufferPrivate::supported) { glGenBuffers(2, buffers); } } ~GLVertexBufferPrivate() { if (GLVertexBufferPrivate::supported) { glDeleteBuffers(2, buffers); } } GLVertexBuffer::UsageHint hint; GLuint buffers[2]; int numberVertices; int dimension; static bool supported; static GLVertexBuffer *streamingBuffer; QVector legacyVertices; QVector legacyTexCoords; bool useColor; bool useTexCoords; QColor color; //! VBO is not supported void legacyPainting(QRegion region, GLenum primitiveMode); //! VBO and shaders are both supported void corePainting(const QRegion& region, GLenum primitiveMode); //! VBO is supported, but shaders are not supported void fallbackPainting(const QRegion& region, GLenum primitiveMode); }; bool GLVertexBufferPrivate::supported = false; GLVertexBuffer *GLVertexBufferPrivate::streamingBuffer = NULL; void GLVertexBufferPrivate::legacyPainting(QRegion region, GLenum primitiveMode) { #ifdef KWIN_HAVE_OPENGLES Q_UNUSED(region) Q_UNUSED(primitiveMode) #else // Enable arrays glEnableClientState(GL_VERTEX_ARRAY); glVertexPointer(dimension, GL_FLOAT, 0, legacyVertices.constData()); if (!legacyTexCoords.isEmpty()) { glEnableClientState(GL_TEXTURE_COORD_ARRAY); glTexCoordPointer(2, GL_FLOAT, 0, legacyTexCoords.constData()); } if (useColor) { glColor4f(color.redF(), color.greenF(), color.blueF(), color.alphaF()); } // Clip using scissoring if (region != infiniteRegion()) { PaintClipper pc(region); for (PaintClipper::Iterator iterator; !iterator.isDone(); iterator.next()) { glDrawArrays(primitiveMode, 0, numberVertices); } } else { glDrawArrays(primitiveMode, 0, numberVertices); } glDisableClientState(GL_VERTEX_ARRAY); if (!legacyTexCoords.isEmpty()) { glDisableClientState(GL_TEXTURE_COORD_ARRAY); } #endif } void GLVertexBufferPrivate::corePainting(const QRegion& region, GLenum primitiveMode) { GLShader *shader = ShaderManager::instance()->getBoundShader(); GLint vertexAttrib = shader->attributeLocation("vertex"); GLint texAttrib = shader->attributeLocation("texCoord"); glEnableVertexAttribArray(vertexAttrib); if (useTexCoords) { glEnableVertexAttribArray(texAttrib); } if (useColor) { shader->setUniform("geometryColor", color); } glBindBuffer(GL_ARRAY_BUFFER, buffers[ 0 ]); glVertexAttribPointer(vertexAttrib, dimension, GL_FLOAT, GL_FALSE, 0, 0); if (texAttrib != -1 && useTexCoords) { glBindBuffer(GL_ARRAY_BUFFER, buffers[ 1 ]); glVertexAttribPointer(texAttrib, 2, GL_FLOAT, GL_FALSE, 0, 0); } // Clip using scissoring if (region != infiniteRegion()) { PaintClipper pc(region); for (PaintClipper::Iterator iterator; !iterator.isDone(); iterator.next()) { glDrawArrays(primitiveMode, 0, numberVertices); } } else { glDrawArrays(primitiveMode, 0, numberVertices); } glBindBuffer(GL_ARRAY_BUFFER, 0); if (useTexCoords) { glDisableVertexAttribArray(texAttrib); } glDisableVertexAttribArray(vertexAttrib); } void GLVertexBufferPrivate::fallbackPainting(const QRegion& region, GLenum primitiveMode) { #ifdef KWIN_HAVE_OPENGLES Q_UNUSED(region) Q_UNUSED(primitiveMode) #else glEnableClientState(GL_VERTEX_ARRAY); glEnableClientState(GL_TEXTURE_COORD_ARRAY); glBindBuffer(GL_ARRAY_BUFFER, buffers[ 0 ]); glVertexPointer(dimension, GL_FLOAT, 0, 0); glBindBuffer(GL_ARRAY_BUFFER, buffers[ 1 ]); glTexCoordPointer(2, GL_FLOAT, 0, 0); if (useColor) { glColor4f(color.redF(), color.greenF(), color.blueF(), color.alphaF()); } // Clip using scissoring if (region != infiniteRegion()) { PaintClipper pc(region); for (PaintClipper::Iterator iterator; !iterator.isDone(); iterator.next()) { glDrawArrays(primitiveMode, 0, numberVertices); } } else { glDrawArrays(primitiveMode, 0, numberVertices); } glBindBuffer(GL_ARRAY_BUFFER, 0); glDisableClientState(GL_VERTEX_ARRAY); glDisableClientState(GL_TEXTURE_COORD_ARRAY); #endif } //********************************* // GLVertexBuffer //********************************* GLVertexBuffer::GLVertexBuffer(UsageHint hint) : d(new GLVertexBufferPrivate(hint)) { } GLVertexBuffer::~GLVertexBuffer() { delete d; } void GLVertexBuffer::setData(int numberVertices, int dim, const float* vertices, const float* texcoords) { d->numberVertices = numberVertices; d->dimension = dim; d->useTexCoords = (texcoords != NULL); if (!GLVertexBufferPrivate::supported) { // legacy data d->legacyVertices.clear(); d->legacyVertices.reserve(numberVertices * dim); for (int i = 0; i < numberVertices * dim; ++i) { d->legacyVertices << vertices[i]; } d->legacyTexCoords.clear(); if (d->useTexCoords) { d->legacyTexCoords.reserve(numberVertices * 2); for (int i = 0; i < numberVertices * 2; ++i) { d->legacyTexCoords << texcoords[i]; } } return; } GLenum hint; switch(d->hint) { case Dynamic: hint = GL_DYNAMIC_DRAW; break; case Static: hint = GL_STATIC_DRAW; break; case Stream: hint = GL_STREAM_DRAW; break; default: // just to make the compiler happy hint = GL_STREAM_DRAW; break; } glBindBuffer(GL_ARRAY_BUFFER, d->buffers[ 0 ]); glBufferData(GL_ARRAY_BUFFER, sizeof(GLfloat)*numberVertices * d->dimension, vertices, hint); if (d->useTexCoords) { glBindBuffer(GL_ARRAY_BUFFER, d->buffers[ 1 ]); glBufferData(GL_ARRAY_BUFFER, sizeof(GLfloat)*numberVertices * 2, texcoords, hint); } glBindBuffer(GL_ARRAY_BUFFER, 0); } void GLVertexBuffer::render(GLenum primitiveMode) { render(infiniteRegion(), primitiveMode); } void GLVertexBuffer::render(const QRegion& region, GLenum primitiveMode) { if (!GLVertexBufferPrivate::supported) { d->legacyPainting(region, primitiveMode); } else if (ShaderManager::instance()->isShaderBound()) { d->corePainting(region, primitiveMode); } else { d->fallbackPainting(region, primitiveMode); } } bool GLVertexBuffer::isSupported() { return GLVertexBufferPrivate::supported; } bool GLVertexBuffer::isUseColor() const { return d->useColor; } void GLVertexBuffer::setUseColor(bool enable) { d->useColor = enable; } void GLVertexBuffer::setColor(const QColor& color, bool enable) { d->useColor = enable; d->color = color; } void GLVertexBuffer::reset() { d->useColor = false; d->color = QColor(0, 0, 0, 255); d->numberVertices = 0; d->dimension = 2; d->useTexCoords = true; } void GLVertexBuffer::initStatic() { #ifdef KWIN_HAVE_OPENGLES GLVertexBufferPrivate::supported = true; #else GLVertexBufferPrivate::supported = hasGLExtension("GL_ARB_vertex_buffer_object"); #endif GLVertexBufferPrivate::streamingBuffer = new GLVertexBuffer(GLVertexBuffer::Stream); } GLVertexBuffer *GLVertexBuffer::streamingBuffer() { return GLVertexBufferPrivate::streamingBuffer; } } // namespace #endif