/* * Copyright © 2010 Fredrik Höglund * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; see the file COPYING. if not, write to * the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, * Boston, MA 02110-1301, USA. */ #include "blurshader.h" #include #include #include #include #include #include #include #include using namespace KWin; BlurShader::BlurShader() : mRadius(0), mValid(false) { } BlurShader::~BlurShader() { } BlurShader *BlurShader::create() { if (GLSLBlurShader::supported()) return new GLSLBlurShader(); return new ARBBlurShader(); } void BlurShader::setRadius(int radius) { const int r = qMax(radius, 2); if (mRadius != r) { mRadius = r; reset(); init(); } } void BlurShader::setDirection(Qt::Orientation direction) { mDirection = direction; } float BlurShader::gaussian(float x, float sigma) const { return (1.0 / std::sqrt(2.0 * M_PI) * sigma) * std::exp(-((x * x) / (2.0 * sigma * sigma))); } QVector BlurShader::gaussianKernel() const { int size = qMin(mRadius | 1, maxKernelSize()); if (!(size & 0x1)) size -= 1; QVector kernel(size); const int center = size / 2; const qreal sigma = (size - 1) / 2.5; // Generate the gaussian kernel kernel[center] = gaussian(0, sigma) * .5; for (int i = 1; i <= center; i++) { const float val = gaussian(1.5 + (i - 1) * 2.0, sigma); kernel[center + i] = val; kernel[center - i] = val; } // Normalize the kernel qreal total = 0; for (int i = 0; i < size; i++) total += kernel[i]; for (int i = 0; i < size; i++) kernel[i] /= total; return kernel; } // ---------------------------------------------------------------------------- GLSLBlurShader::GLSLBlurShader() : BlurShader(), shader(NULL) { } GLSLBlurShader::~GLSLBlurShader() { reset(); } void GLSLBlurShader::reset() { delete shader; shader = NULL; setIsValid(false); } bool GLSLBlurShader::supported() { if (!GLPlatform::instance()->supports(GLSL)) return false; if (effects->compositingType() == OpenGL1Compositing) return false; (void) glGetError(); // Clear the error state #ifdef KWIN_HAVE_OPENGL_1 // These are the minimum values the implementation is required to support int value = 0; glGetIntegerv(GL_MAX_VARYING_FLOATS, &value); if (value < 32) return false; glGetIntegerv(GL_MAX_FRAGMENT_UNIFORM_COMPONENTS, &value); if (value < 64) return false; glGetIntegerv(GL_MAX_VERTEX_UNIFORM_COMPONENTS, &value); if (value < 512) return false; #endif if (glGetError() != GL_NO_ERROR) return false; return true; } void GLSLBlurShader::setPixelDistance(float val) { if (!isValid()) return; QVector2D pixelSize(0.0, 0.0); if (direction() == Qt::Horizontal) pixelSize.setX(val); else pixelSize.setY(val); shader->setUniform("pixelSize", pixelSize); } void GLSLBlurShader::setTextureMatrix(const QMatrix4x4 &matrix) { if (!isValid()) { return; } shader->setUniform("u_textureMatrix", matrix); } void GLSLBlurShader::setModelViewProjectionMatrix(const QMatrix4x4 &matrix) { if (!isValid()) { return; } shader->setUniform("u_modelViewProjectionMatrix", matrix); } void GLSLBlurShader::bind() { if (!isValid()) return; ShaderManager::instance()->pushShader(shader); } void GLSLBlurShader::unbind() { ShaderManager::instance()->popShader(); } int GLSLBlurShader::maxKernelSize() const { #ifdef KWIN_HAVE_OPENGLES // GL_MAX_VARYING_FLOATS not available in GLES // querying for GL_MAX_VARYING_VECTORS crashes on nouveau // using the minimum value of 8 return 8 * 2; #else int value; glGetIntegerv(GL_MAX_VARYING_FLOATS, &value); // Maximum number of vec4 varyings * 2 // The code generator will pack two vec2's into each vec4. return value / 2; #endif } void GLSLBlurShader::init() { QVector kernel = gaussianKernel(); const int size = kernel.size(); const int center = size / 2; QByteArray vertexSource; QByteArray fragmentSource; // Vertex shader // =================================================================== QTextStream stream(&vertexSource); stream << "uniform mat4 u_modelViewProjectionMatrix;\n"; stream << "uniform mat4 u_textureMatrix;\n"; stream << "uniform vec2 pixelSize;\n\n"; stream << "attribute vec4 vertex;\n"; stream << "attribute vec4 texCoord;\n\n"; stream << "varying vec4 samplePos[" << std::ceil(size / 2.0) << "];\n"; stream << "\n"; stream << "void main(void)\n"; stream << "{\n"; stream << " vec4 center = vec4(u_textureMatrix * texCoord).stst;\n"; stream << " vec4 ps = pixelSize.stst;\n\n"; for (int i = 0; i < size; i += 2) { float offset1, offset2; if (i < center) { offset1 = -(1.5 + (center - i - 1) * 2.0); offset2 = (i + 1) == center ? 0 : offset1 + 2; } else if (i > center) { offset1 = 1.5 + (i - center - 1) * 2.0; offset2 = (i + 1) == size ? 0 : offset1 + 2; } else { offset1 = 0; offset2 = 1.5; } stream << " samplePos[" << i / 2 << "] = center + ps * vec4(" << offset1 << ", " << offset1 << ", " << offset2 << ", " << offset2 << ");\n"; } stream << "\n"; stream << " gl_Position = u_modelViewProjectionMatrix * vertex;\n"; stream << "}\n"; stream.flush(); // Fragment shader // =================================================================== QTextStream stream2(&fragmentSource); stream2 << "uniform sampler2D texUnit;\n"; stream2 << "varying vec4 samplePos[" << std::ceil(size / 2.0) << "];\n\n"; for (int i = 0; i <= center; i++) stream2 << "const vec4 kernel" << i << " = vec4(" << kernel[i] << ");\n"; stream2 << "\n"; stream2 << "void main(void)\n"; stream2 << "{\n"; stream2 << " vec4 sum = texture2D(texUnit, samplePos[0].st) * kernel0;\n"; for (int i = 1; i < size; i++) stream2 << " sum = sum + texture2D(texUnit, samplePos[" << i / 2 << ((i % 2) ? "].pq)" : "].st)") << " * kernel" << (i > center ? size - i - 1 : i) << ";\n"; stream2 << " gl_FragColor = sum;\n"; stream2 << "}\n"; stream2.flush(); shader = ShaderManager::instance()->loadShaderFromCode(vertexSource, fragmentSource); if (shader->isValid()) { QMatrix4x4 modelViewProjection; modelViewProjection.ortho(0, displayWidth(), displayHeight(), 0, 0, 65535); ShaderManager::instance()->pushShader(shader); shader->setUniform("texUnit", 0); shader->setUniform("u_textureMatrix", QMatrix4x4()); shader->setUniform("u_modelViewProjectionMatrix", modelViewProjection); ShaderManager::instance()->popShader(); } setIsValid(shader->isValid()); } // ---------------------------------------------------------------------------- ARBBlurShader::ARBBlurShader() : BlurShader(), program(0) { } ARBBlurShader::~ARBBlurShader() { reset(); } void ARBBlurShader::reset() { #ifdef KWIN_HAVE_OPENGL_1 if (program) { glDeleteProgramsARB(1, &program); program = 0; } setIsValid(false); #endif } bool ARBBlurShader::supported() { #ifdef KWIN_HAVE_OPENGLES return false; #else if (!hasGLExtension("GL_ARB_fragment_program")) return false; (void) glGetError(); // Clear the error state // These are the minimum values the implementation is required to support int value = 0; glGetProgramivARB(GL_FRAGMENT_PROGRAM_ARB, GL_MAX_PROGRAM_PARAMETERS_ARB, &value); if (value < 24) return false; glGetProgramivARB(GL_FRAGMENT_PROGRAM_ARB, GL_MAX_PROGRAM_TEMPORARIES_ARB, &value); if (value < 16) return false; glGetProgramivARB(GL_FRAGMENT_PROGRAM_ARB, GL_MAX_PROGRAM_INSTRUCTIONS_ARB, &value); if (value < 72) return false; glGetProgramivARB(GL_FRAGMENT_PROGRAM_ARB, GL_MAX_PROGRAM_TEX_INSTRUCTIONS_ARB, &value); if (value < 24) return false; glGetProgramivARB(GL_FRAGMENT_PROGRAM_ARB, GL_MAX_PROGRAM_TEX_INDIRECTIONS_ARB, &value); if (value < 4) return false; if (glGetError() != GL_NO_ERROR) return false; return true; #endif } void ARBBlurShader::setPixelDistance(float val) { #ifdef KWIN_HAVE_OPENGLES Q_UNUSED(val) #else float firstStep = val * 1.5; float nextStep = val * 2.0; if (direction() == Qt::Horizontal) { glProgramLocalParameter4fARB(GL_FRAGMENT_PROGRAM_ARB, 0, firstStep, 0, 0, 0); glProgramLocalParameter4fARB(GL_FRAGMENT_PROGRAM_ARB, 1, nextStep, 0, 0, 0); } else { glProgramLocalParameter4fARB(GL_FRAGMENT_PROGRAM_ARB, 0, 0, firstStep, 0, 0); glProgramLocalParameter4fARB(GL_FRAGMENT_PROGRAM_ARB, 1, 0, nextStep, 0, 0); } #endif } void ARBBlurShader::bind() { #ifdef KWIN_HAVE_OPENGL_1 if (!isValid()) return; glEnable(GL_FRAGMENT_PROGRAM_ARB); glBindProgramARB(GL_FRAGMENT_PROGRAM_ARB, program); #endif } void ARBBlurShader::unbind() { #ifdef KWIN_HAVE_OPENGL_1 int boundObject; glGetProgramivARB(GL_FRAGMENT_PROGRAM_ARB, GL_PROGRAM_BINDING_ARB, &boundObject); if (boundObject == (int)program) { glBindProgramARB(GL_FRAGMENT_PROGRAM_ARB, 0); glDisable(GL_FRAGMENT_PROGRAM_ARB); } #endif } int ARBBlurShader::maxKernelSize() const { #ifdef KWIN_HAVE_OPENGLES return 0; #else int value; int result; glGetProgramivARB(GL_FRAGMENT_PROGRAM_ARB, GL_MAX_PROGRAM_PARAMETERS_ARB, &value); result = (value - 1) * 2; // We only need to store half the kernel, since it's symmetrical glGetProgramivARB(GL_FRAGMENT_PROGRAM_ARB, GL_MAX_PROGRAM_INSTRUCTIONS_ARB, &value); result = qMin(result, value / 3); // We need 3 instructions / sample return result; #endif } void ARBBlurShader::init() { #ifdef KWIN_HAVE_OPENGL_1 QVector kernel = gaussianKernel(); const int size = kernel.size(); const int center = size / 2; QByteArray text; QTextStream stream(&text); stream << "!!ARBfp1.0\n"; // The kernel values are hardcoded into the program for (int i = 0; i <= center; i++) stream << "PARAM kernel" << i << " = " << kernel[center + i] << ";\n"; stream << "PARAM firstSample = program.local[0];\n"; // Distance from gl_TexCoord[0] to the next sample stream << "PARAM nextSample = program.local[1];\n"; // Distance to the subsequent sample // Temporary variables to hold coordinates and texture samples for (int i = 0; i < size; i++) stream << "TEMP temp" << i << ";\n"; // Compute the texture coordinates stream << "ADD temp1, fragment.texcoord[0], firstSample;\n"; // temp1 = gl_TexCoord[0] + firstSample stream << "SUB temp2, fragment.texcoord[0], firstSample;\n"; // temp2 = gl_TexCoord[0] - firstSample for (int i = 1, j = 3; i < center; i++, j += 2) { stream << "ADD temp" << j + 0 << ", temp" << j - 2 << ", nextSample;\n"; stream << "SUB temp" << j + 1 << ", temp" << j - 1 << ", nextSample;\n"; } // Sample the texture coordinates stream << "TEX temp0, fragment.texcoord[0], texture[0], 2D;\n"; for (int i = 1; i < size; i++) stream << "TEX temp" << i << ", temp" << i << ", texture[0], 2D;\n"; // Multiply the samples with the kernel values and compute the sum stream << "MUL temp0, temp0, kernel0;\n"; for (int i = 0, j = 1; i < center; i++) { stream << "MAD temp0, temp" << j++ << ", kernel" << i + 1 << ", temp0;\n"; stream << "MAD temp0, temp" << j++ << ", kernel" << i + 1 << ", temp0;\n"; } stream << "MOV result.color, temp0;\n"; // gl_FragColor = temp0 stream << "END\n"; stream.flush(); glGenProgramsARB(1, &program); glBindProgramARB(GL_FRAGMENT_PROGRAM_ARB, program); glProgramStringARB(GL_FRAGMENT_PROGRAM_ARB, GL_PROGRAM_FORMAT_ASCII_ARB, text.length(), text.constData()); if (glGetError()) { const char *error = (const char*)glGetString(GL_PROGRAM_ERROR_STRING_ARB); kError() << "Failed to compile fragment program:" << error; setIsValid(false); } else setIsValid(true); glBindProgramARB(GL_FRAGMENT_PROGRAM_ARB, 0); #endif }