/******************************************************************** KWin - the KDE window manager This file is part of the KDE project. Copyright (C) 2006 Lubos Lunak Copyright (C) 2009, 2010, 2011 Martin Gräßlin Based on glcompmgr code by Felix Bellaby. Using code from Compiz and Beryl. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . *********************************************************************/ #include "scene_opengl.h" #ifdef KWIN_HAVE_EGL #include "eglonxbackend.h" #endif #ifndef KWIN_HAVE_OPENGLES #include "glxbackend.h" #endif #include #include #include #include "utils.h" #include "client.h" #include "composite.h" #include "deleted.h" #include "effects.h" #include "lanczosfilter.h" #include "overlaywindow.h" #include "paintredirector.h" #include // turns on checks for opengl errors in various places (for easier finding of them) // normally only few of them are enabled //#define CHECK_GL_ERROR #include #include #include #include #include #include #include #include #include #include #include #include #include namespace KWin { extern int currentRefreshRate(); //**************************************** // SceneOpenGL //**************************************** OpenGLBackend::OpenGLBackend() : m_overlayWindow(new OverlayWindow()) // TODO: maybe create only if needed? , m_waitSync(false) , m_directRendering(false) , m_failed(false) { } OpenGLBackend::~OpenGLBackend() { if (isFailed()) { m_overlayWindow->destroy(); } delete m_overlayWindow; } void OpenGLBackend::setFailed(const QString &reason) { kWarning(1212) << "Creating the OpenGL rendering failed: " << reason; m_failed = true; } void OpenGLBackend::idle() { if (hasPendingFlush()) present(); } /************************************************ * SceneOpenGL ***********************************************/ SceneOpenGL::SceneOpenGL(Workspace* ws, OpenGLBackend *backend) : Scene(ws) , init_ok(true) , m_backend(backend) { if (m_backend->isFailed()) { init_ok = false; return; } if (!viewportLimitsMatched(QSize(displayWidth(), displayHeight()))) return; // perform Scene specific checks GLPlatform *glPlatform = GLPlatform::instance(); #ifndef KWIN_HAVE_OPENGLES if (!hasGLExtension("GL_ARB_texture_non_power_of_two") && !hasGLExtension("GL_ARB_texture_rectangle")) { kError(1212) << "GL_ARB_texture_non_power_of_two and GL_ARB_texture_rectangle missing"; init_ok = false; return; // error } #endif if (glPlatform->isMesaDriver() && glPlatform->mesaVersion() < kVersionNumber(8, 0)) { kError(1212) << "KWin requires at least Mesa 8.0 for OpenGL compositing."; init_ok = false; return; } #ifndef KWIN_HAVE_OPENGLES glDrawBuffer(GL_BACK); #endif debug = qstrcmp(qgetenv("KWIN_GL_DEBUG"), "1") == 0; // set strict binding if (options->isGlStrictBindingFollowsDriver()) { options->setGlStrictBinding(!glPlatform->supports(LooseBinding)); } } SceneOpenGL::~SceneOpenGL() { if (init_ok) { // backend might be still needed for a different scene delete m_backend; } foreach (Window * w, windows) { delete w; } // do cleanup after initBuffer() SceneOpenGL::EffectFrame::cleanup(); checkGLError("Cleanup"); } SceneOpenGL *SceneOpenGL::createScene() { OpenGLBackend *backend = NULL; OpenGLPlatformInterface platformInterface = NoOpenGLPlatformInterface; // should we use glx? #ifndef KWIN_HAVE_OPENGLES // on OpenGL we default to glx platformInterface = GlxPlatformInterface; #endif #ifdef KWIN_HAVE_EGL #ifdef KWIN_HAVE_OPENGLES // for OpenGL ES we need to use the Egl Backend platformInterface = EglPlatformInterface; #else // check environment variable if (qstrcmp(qgetenv("KWIN_OPENGL_INTERFACE"), "egl") == 0) { kDebug(1212) << "Forcing EGL native interface through environment variable"; platformInterface = EglPlatformInterface; } #endif #endif switch (platformInterface) { case GlxPlatformInterface: #ifndef KWIN_HAVE_OPENGLES backend = new GlxBackend(); #endif break; case EglPlatformInterface: #ifdef KWIN_HAVE_EGL backend = new EglOnXBackend(); #endif break; default: // no backend available return NULL; } if (!backend || backend->isFailed()) { delete backend; return NULL; } SceneOpenGL *scene = NULL; // first let's try an OpenGL 2 scene if (SceneOpenGL2::supported(backend)) { scene = new SceneOpenGL2(backend); if (scene->initFailed()) { delete scene; scene = NULL; } else { return scene; } } #ifdef KWIN_HAVE_OPENGL_1 if (SceneOpenGL1::supported(backend)) { scene = new SceneOpenGL1(backend); if (scene->initFailed()) { delete scene; scene = NULL; } } #endif if (!scene) { if (GLPlatform::instance()->recommendedCompositor() == XRenderCompositing) { kError(1212) << "OpenGL driver recommends XRender based compositing. Falling back to XRender."; kError(1212) << "To overwrite the detection use the environment variable KWIN_COMPOSE"; kError(1212) << "For more information see http://community.kde.org/KWin/Environment_Variables#KWIN_COMPOSE"; QTimer::singleShot(0, Compositor::self(), SLOT(fallbackToXRenderCompositing())); } delete backend; } return scene; } OverlayWindow *SceneOpenGL::overlayWindow() { return m_backend->overlayWindow(); } bool SceneOpenGL::waitSyncAvailable() const { return m_backend->waitSyncAvailable(); } void SceneOpenGL::idle() { m_backend->idle(); Scene::idle(); } bool SceneOpenGL::initFailed() const { return !init_ok; } int SceneOpenGL::paint(QRegion damage, ToplevelList toplevels) { // actually paint the frame, flushed with the NEXT frame foreach (Toplevel * c, toplevels) { // TODO: cache the stacking_order in case it has not changed assert(windows.contains(c)); stacking_order.append(windows[ c ]); } m_backend->prepareRenderingFrame(); int mask = 0; #ifdef CHECK_GL_ERROR checkGLError("Paint1"); #endif const QRegion displayRegion(0, 0, displayWidth(), displayHeight()); paintScreen(&mask, &damage); // call generic implementation #ifndef KWIN_HAVE_OPENGLES // copy dirty parts from front to backbuffer if (options->glPreferBufferSwap() == Options::CopyFrontBuffer && damage != displayRegion) { GLint shader = 0; if (ShaderManager::instance()->isShaderBound()) { glGetIntegerv(GL_CURRENT_PROGRAM, &shader); glUseProgram(0); } bool reenableTexUnit = false; if (glIsEnabled(GL_TEXTURE_2D)) { glDisable(GL_TEXTURE_2D); reenableTexUnit = true; } // no idea why glScissor() is used, but Compiz has it and it doesn't seem to hurt glEnable(GL_SCISSOR_TEST); glReadBuffer(GL_FRONT); int xpos = 0; int ypos = 0; const QRegion dirty = displayRegion - damage; foreach (const QRect &r, dirty.rects()) { // convert to OpenGL coordinates int y = displayHeight() - r.y() - r.height(); glBitmap(0, 0, 0, 0, r.x() - xpos, y - ypos, NULL); // not glRasterPos2f, see glxbackend.cpp xpos = r.x(); ypos = y; glScissor(r.x(), y, r.width(), r.height()); glCopyPixels(r.x(), y, r.width(), r.height(), GL_COLOR); } glBitmap(0, 0, 0, 0, -xpos, -ypos, NULL); // move position back to 0,0 glReadBuffer(GL_BACK); glDisable(GL_SCISSOR_TEST); if (reenableTexUnit) { glEnable(GL_TEXTURE_2D); } // rebind previously bound shader if (ShaderManager::instance()->isShaderBound()) { glUseProgram(shader); } damage = displayRegion; } #endif #ifdef CHECK_GL_ERROR checkGLError("Paint2"); #endif m_backend->endRenderingFrame(damage); // do cleanup stacking_order.clear(); checkGLError("PostPaint"); return m_backend->renderTime(); } QMatrix4x4 SceneOpenGL::transformation(int mask, const ScreenPaintData &data) const { QMatrix4x4 matrix; if (!(mask & PAINT_SCREEN_TRANSFORMED)) return matrix; matrix.translate(data.translation()); data.scale().applyTo(&matrix); if (data.rotationAngle() == 0.0) return matrix; // Apply the rotation // cannot use data.rotation->applyTo(&matrix) as QGraphicsRotation uses projectedRotate to map back to 2D matrix.translate(data.rotationOrigin()); const QVector3D axis = data.rotationAxis(); matrix.rotate(data.rotationAngle(), axis.x(), axis.y(), axis.z()); matrix.translate(-data.rotationOrigin()); return matrix; } void SceneOpenGL::paintBackground(QRegion region) { PaintClipper pc(region); if (!PaintClipper::clip()) { glClearColor(0, 0, 0, 1); glClear(GL_COLOR_BUFFER_BIT); return; } if (pc.clip() && pc.paintArea().isEmpty()) return; // no background to paint QVector verts; for (PaintClipper::Iterator iterator; !iterator.isDone(); iterator.next()) { QRect r = iterator.boundingRect(); verts << r.x() + r.width() << r.y(); verts << r.x() << r.y(); verts << r.x() << r.y() + r.height(); verts << r.x() << r.y() + r.height(); verts << r.x() + r.width() << r.y() + r.height(); verts << r.x() + r.width() << r.y(); } doPaintBackground(verts); } void SceneOpenGL::extendPaintRegion(QRegion ®ion, bool opaqueFullscreen) { #ifndef KWIN_HAVE_OPENGLES if (options->glPreferBufferSwap() == Options::ExtendDamage) { // only Extend "large" repaints const QRegion displayRegion(0, 0, displayWidth(), displayHeight()); uint damagedPixels = 0; const uint fullRepaintLimit = (opaqueFullscreen?0.49f:0.748f)*displayWidth()*displayHeight(); // 16:9 is 75% of 4:3 and 2.55:1 is 49.01% of 5:4 // (5:4 is the most square format and 2.55:1 is Cinemascope55 - the widest ever shot // movie aspect - two times ;-) It's a Fox format, though, so maybe we want to restrict // to 2.20:1 - Panavision - which has actually been used for interesting movies ...) // would be 57% of 5/4 foreach (const QRect &r, region.rects()) { // damagedPixels += r.width() * r.height(); // combined window damage test damagedPixels = r.width() * r.height(); // experimental single window damage testing if (damagedPixels > fullRepaintLimit) { region = displayRegion; return; } } } else if (options->glPreferBufferSwap() == Options::PaintFullScreen) { // forced full rePaint region = QRegion(0, 0, displayWidth(), displayHeight()); } #else Q_UNUSED(region); Q_UNUSED(opaqueFullscreen); #endif } void SceneOpenGL::windowAdded(Toplevel* c) { assert(!windows.contains(c)); Window *w = createWindow(c); windows[ c ] = w; w->setScene(this); connect(c, SIGNAL(opacityChanged(KWin::Toplevel*,qreal)), SLOT(windowOpacityChanged(KWin::Toplevel*))); connect(c, SIGNAL(geometryShapeChanged(KWin::Toplevel*,QRect)), SLOT(windowGeometryShapeChanged(KWin::Toplevel*))); connect(c, SIGNAL(windowClosed(KWin::Toplevel*,KWin::Deleted*)), SLOT(windowClosed(KWin::Toplevel*,KWin::Deleted*))); c->effectWindow()->setSceneWindow(windows[ c ]); c->getShadow(); windows[ c ]->updateShadow(c->shadow()); } void SceneOpenGL::windowClosed(KWin::Toplevel* c, KWin::Deleted* deleted) { assert(windows.contains(c)); if (deleted != NULL) { // replace c with deleted Window* w = windows.take(c); w->updateToplevel(deleted); if (w->shadow()) { w->shadow()->setToplevel(deleted); } windows[ deleted ] = w; } else { delete windows.take(c); c->effectWindow()->setSceneWindow(NULL); } } void SceneOpenGL::windowDeleted(Deleted* c) { assert(windows.contains(c)); delete windows.take(c); c->effectWindow()->setSceneWindow(NULL); } void SceneOpenGL::windowGeometryShapeChanged(KWin::Toplevel* c) { if (!windows.contains(c)) // this is ok, shape is not valid return; // by default Window* w = windows[ c ]; w->discardShape(); w->checkTextureSize(); } void SceneOpenGL::windowOpacityChanged(KWin::Toplevel* t) { Q_UNUSED(t) #if 0 // not really needed, windows are painted on every repaint // and opacity is used when applying texture, not when // creating it if (!windows.contains(c)) // this is ok, texture is created return; // on demand Window* w = windows[ c ]; w->discardTexture(); #endif } SceneOpenGL::Texture *SceneOpenGL::createTexture() { return new Texture(m_backend); } SceneOpenGL::Texture *SceneOpenGL::createTexture(const QPixmap &pix, GLenum target) { return new Texture(m_backend, pix, target); } bool SceneOpenGL::viewportLimitsMatched(const QSize &size) const { GLint limit[2]; glGetIntegerv(GL_MAX_VIEWPORT_DIMS, limit); if (limit[0] < size.width() || limit[1] < size.height()) { QMetaObject::invokeMethod(Compositor::self(), "suspend", Qt::QueuedConnection, Q_ARG(Compositor::SuspendReason, Compositor::AllReasonSuspend)); const QString message = i18n("

OpenGL desktop effects not possible

" "Your system cannot perform OpenGL Desktop Effects at the " "current resolution

" "You can try to select the XRender backend, but it " "might be very slow for this resolution as well.
" "Alternatively, lower the combined resolution of all screens " "to %1x%2 ", limit[0], limit[1]); const QString details = i18n("The demanded resolution exceeds the GL_MAX_VIEWPORT_DIMS " "limitation of your GPU and is therefore not compatible " "with the OpenGL compositor.
" "XRender does not know such limitation, but the performance " "will usually be impacted by the hardware limitations that " "restrict the OpenGL viewport size."); const int oldTimeout = QDBusConnection::sessionBus().interface()->timeout(); QDBusConnection::sessionBus().interface()->setTimeout(500); if (QDBusConnection::sessionBus().interface()->isServiceRegistered("org.kde.kwinCompositingDialog").value()) { QDBusInterface dialog( "org.kde.kwinCompositingDialog", "/CompositorSettings", "org.kde.kwinCompositingDialog" ); dialog.asyncCall("warn", message, details, ""); } else { const QString args = "warn " + message.toLocal8Bit().toBase64() + " details " + details.toLocal8Bit().toBase64(); KProcess::startDetached("kcmshell4", QStringList() << "kwincompositing" << "--args" << args); } QDBusConnection::sessionBus().interface()->setTimeout(oldTimeout); return false; } glGetIntegerv(GL_MAX_TEXTURE_SIZE, limit); if (limit[0] < size.width() || limit[0] < size.height()) { KConfig cfg("kwin_dialogsrc"); if (!KConfigGroup(&cfg, "Notification Messages").readEntry("max_tex_warning", true)) return true; const QString message = i18n("

OpenGL desktop effects might be unusable

" "OpenGL Desktop Effects at the current resolution are supported " "but might be exceptionally slow.
" "Also large windows will turn entirely black.

" "Consider to suspend compositing, switch to the XRender backend " "or lower the resolution to %1x%1." , limit[0]); const QString details = i18n("The demanded resolution exceeds the GL_MAX_TEXTURE_SIZE " "limitation of your GPU, thus windows of that size cannot be " "assigned to textures and will be entirely black.
" "Also this limit will often be a performance level barrier despite " "below GL_MAX_VIEWPORT_DIMS, because the driver might fall back to " "software rendering in this case."); const int oldTimeout = QDBusConnection::sessionBus().interface()->timeout(); QDBusConnection::sessionBus().interface()->setTimeout(500); if (QDBusConnection::sessionBus().interface()->isServiceRegistered("org.kde.kwinCompositingDialog").value()) { QDBusInterface dialog( "org.kde.kwinCompositingDialog", "/CompositorSettings", "org.kde.kwinCompositingDialog" ); dialog.asyncCall("warn", message, details, "kwin_dialogsrc:max_tex_warning"); } else { const QString args = "warn " + message.toLocal8Bit().toBase64() + " details " + details.toLocal8Bit().toBase64() + " dontagain kwin_dialogsrc:max_tex_warning"; KProcess::startDetached("kcmshell4", QStringList() << "kwincompositing" << "--args" << args); } QDBusConnection::sessionBus().interface()->setTimeout(oldTimeout); } return true; } void SceneOpenGL::screenGeometryChanged(const QSize &size) { if (!viewportLimitsMatched(size)) return; Scene::screenGeometryChanged(size); glViewport(0,0, size.width(), size.height()); m_backend->screenGeometryChanged(size); ShaderManager::instance()->resetAllShaders(); } //**************************************** // SceneOpenGL2 //**************************************** bool SceneOpenGL2::supported(OpenGLBackend *backend) { const QByteArray forceEnv = qgetenv("KWIN_COMPOSE"); if (!forceEnv.isEmpty()) { if (qstrcmp(forceEnv, "O2") == 0) { kDebug(1212) << "OpenGL 2 compositing enforced by environment variable"; return true; } else { // OpenGL 2 disabled by environment variable return false; } } if (!backend->isDirectRendering()) { return false; } if (GLPlatform::instance()->recommendedCompositor() < OpenGL2Compositing) { kDebug(1212) << "Driver does not recommend OpenGL 2 compositing"; #ifndef KWIN_HAVE_OPENGLES return false; #endif } if (options->isGlLegacy()) { kDebug(1212) << "OpenGL 2 disabled by config option"; return false; } return true; } SceneOpenGL2::SceneOpenGL2(OpenGLBackend *backend) : SceneOpenGL(Workspace::self(), backend) , m_lanczosFilter(NULL) , m_colorCorrection(new ColorCorrection(this)) { if (!init_ok) { // base ctor already failed return; } // Initialize color correction before the shaders kDebug(1212) << "Color correction:" << options->isColorCorrected(); m_colorCorrection->setEnabled(options->isColorCorrected()); connect(m_colorCorrection, SIGNAL(changed()), Compositor::self(), SLOT(addRepaintFull())); connect(m_colorCorrection, SIGNAL(errorOccured()), options, SLOT(setColorCorrected()), Qt::QueuedConnection); connect(options, SIGNAL(colorCorrectedChanged()), this, SLOT(slotColorCorrectedChanged()), Qt::QueuedConnection); if (!ShaderManager::instance()->isValid()) { kDebug(1212) << "No Scene Shaders available"; init_ok = false; return; } // push one shader on the stack so that one is always bound ShaderManager::instance()->pushShader(ShaderManager::SimpleShader); if (checkGLError("Init")) { kError(1212) << "OpenGL 2 compositing setup failed"; init_ok = false; return; // error } kDebug(1212) << "OpenGL 2 compositing successfully initialized"; } SceneOpenGL2::~SceneOpenGL2() { } void SceneOpenGL2::paintGenericScreen(int mask, ScreenPaintData data) { ShaderBinder binder(ShaderManager::GenericShader); binder.shader()->setUniform(GLShader::ScreenTransformation, transformation(mask, data)); Scene::paintGenericScreen(mask, data); } void SceneOpenGL2::doPaintBackground(const QVector< float >& vertices) { GLVertexBuffer *vbo = GLVertexBuffer::streamingBuffer(); vbo->reset(); vbo->setUseColor(true); vbo->setData(vertices.count() / 2, 2, vertices.data(), NULL); ShaderBinder binder(ShaderManager::ColorShader); binder.shader()->setUniform(GLShader::Offset, QVector2D(0, 0)); vbo->render(GL_TRIANGLES); } SceneOpenGL::Window *SceneOpenGL2::createWindow(Toplevel *t) { return new SceneOpenGL2Window(t); } void SceneOpenGL2::finalDrawWindow(EffectWindowImpl* w, int mask, QRegion region, WindowPaintData& data) { if (m_colorCorrection->isEnabled()) { // Split the painting for separate screens int numScreens = Workspace::self()->numScreens(); for (int screen = 0; screen < numScreens; ++ screen) { QRegion regionForScreen(region); if (numScreens > 1) regionForScreen = region.intersected(Workspace::self()->screenGeometry(screen)); data.setScreen(screen); performPaintWindow(w, mask, regionForScreen, data); } } else { performPaintWindow(w, mask, region, data); } } void SceneOpenGL2::performPaintWindow(EffectWindowImpl* w, int mask, QRegion region, WindowPaintData& data) { if (mask & PAINT_WINDOW_LANCZOS) { if (!m_lanczosFilter) { m_lanczosFilter = new LanczosFilter(this); // recreate the lanczos filter when the screen gets resized connect(QApplication::desktop(), SIGNAL(screenCountChanged(int)), SLOT(resetLanczosFilter())); connect(QApplication::desktop(), SIGNAL(resized(int)), SLOT(resetLanczosFilter())); } m_lanczosFilter->performPaint(w, mask, region, data); } else w->sceneWindow()->performPaint(mask, region, data); } void SceneOpenGL2::resetLanczosFilter() { // TODO: Qt5 - replace by a lambda slot delete m_lanczosFilter; m_lanczosFilter = NULL; } ColorCorrection *SceneOpenGL2::colorCorrection() { return m_colorCorrection; } void SceneOpenGL2::slotColorCorrectedChanged() { if (m_colorCorrection->setEnabled(options->isColorCorrected())) { // Reload all shaders ShaderManager::cleanup(); ShaderManager::instance(); } } //**************************************** // SceneOpenGL1 //**************************************** #ifdef KWIN_HAVE_OPENGL_1 bool SceneOpenGL1::supported(OpenGLBackend *backend) { Q_UNUSED(backend) const QByteArray forceEnv = qgetenv("KWIN_COMPOSE"); if (!forceEnv.isEmpty()) { if (qstrcmp(forceEnv, "O1") == 0) { kDebug(1212) << "OpenGL 1 compositing enforced by environment variable"; return true; } else { // OpenGL 1 disabled by environment variable return false; } } if (GLPlatform::instance()->recommendedCompositor() < OpenGL1Compositing) { kDebug(1212) << "Driver does not recommend OpenGL 1 compositing"; return false; } return true; } SceneOpenGL1::SceneOpenGL1(OpenGLBackend *backend) : SceneOpenGL(Workspace::self(), backend) , m_resetModelViewProjectionMatrix(true) { if (!init_ok) { // base ctor already failed return; } ShaderManager::disable(); setupModelViewProjectionMatrix(); if (checkGLError("Init")) { kError(1212) << "OpenGL 1 compositing setup failed"; init_ok = false; return; // error } kDebug(1212) << "OpenGL 1 compositing successfully initialized"; } SceneOpenGL1::~SceneOpenGL1() { } int SceneOpenGL1::paint(QRegion damage, ToplevelList windows) { if (m_resetModelViewProjectionMatrix) { // reset model view projection matrix if required setupModelViewProjectionMatrix(); } return SceneOpenGL::paint(damage, windows); } void SceneOpenGL1::paintGenericScreen(int mask, ScreenPaintData data) { pushMatrix(transformation(mask, data)); Scene::paintGenericScreen(mask, data); popMatrix(); } void SceneOpenGL1::doPaintBackground(const QVector< float >& vertices) { GLVertexBuffer *vbo = GLVertexBuffer::streamingBuffer(); vbo->reset(); vbo->setUseColor(true); vbo->setData(vertices.count() / 2, 2, vertices.data(), NULL); vbo->render(GL_TRIANGLES); } void SceneOpenGL1::setupModelViewProjectionMatrix() { glMatrixMode(GL_PROJECTION); glLoadIdentity(); float fovy = 60.0f; float aspect = 1.0f; float zNear = 0.1f; float zFar = 100.0f; float ymax = zNear * tan(fovy * M_PI / 360.0f); float ymin = -ymax; float xmin = ymin * aspect; float xmax = ymax * aspect; // swap top and bottom to have OpenGL coordinate system match X system glFrustum(xmin, xmax, ymin, ymax, zNear, zFar); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); float scaleFactor = 1.1 * tan(fovy * M_PI / 360.0f) / ymax; glTranslatef(xmin * scaleFactor, ymax * scaleFactor, -1.1); glScalef((xmax - xmin)*scaleFactor / displayWidth(), -(ymax - ymin)*scaleFactor / displayHeight(), 0.001); m_resetModelViewProjectionMatrix = false; } void SceneOpenGL1::screenGeometryChanged(const QSize &size) { SceneOpenGL::screenGeometryChanged(size); m_resetModelViewProjectionMatrix = true; } SceneOpenGL::Window *SceneOpenGL1::createWindow(Toplevel *t) { return new SceneOpenGL1Window(t); } #endif //**************************************** // SceneOpenGL::Texture //**************************************** SceneOpenGL::Texture::Texture(OpenGLBackend *backend) : GLTexture(*backend->createBackendTexture(this)) { } SceneOpenGL::Texture::Texture(OpenGLBackend *backend, const QPixmap &pix, GLenum target) : GLTexture(*backend->createBackendTexture(this)) { load(pix, target); } SceneOpenGL::Texture::~Texture() { } SceneOpenGL::Texture& SceneOpenGL::Texture::operator = (const SceneOpenGL::Texture& tex) { d_ptr = tex.d_ptr; return *this; } void SceneOpenGL::Texture::discard() { d_ptr = d_func()->backend()->createBackendTexture(this); } bool SceneOpenGL::Texture::load(const Pixmap& pix, const QSize& size, int depth) { if (pix == None) return false; return load(pix, size, depth, QRegion(0, 0, size.width(), size.height())); } bool SceneOpenGL::Texture::load(const QImage& image, GLenum target) { if (image.isNull()) return false; return load(QPixmap::fromImage(image), target); } bool SceneOpenGL::Texture::load(const QPixmap& pixmap, GLenum target) { if (pixmap.isNull()) return false; // Checking whether QPixmap comes with its own X11 Pixmap if (Extensions::nonNativePixmaps()) { return GLTexture::load(pixmap.toImage(), target); } // use the X11 pixmap provided by Qt return load(pixmap.handle(), pixmap.size(), pixmap.depth()); } void SceneOpenGL::Texture::findTarget() { Q_D(Texture); d->findTarget(); } bool SceneOpenGL::Texture::load(const Pixmap& pix, const QSize& size, int depth, QRegion region) { Q_UNUSED(region) // decrease the reference counter for the old texture d_ptr = d_func()->backend()->createBackendTexture(this); //new TexturePrivate(); Q_D(Texture); return d->loadTexture(pix, size, depth); } //**************************************** // SceneOpenGL::Texture //**************************************** SceneOpenGL::TexturePrivate::TexturePrivate() { } SceneOpenGL::TexturePrivate::~TexturePrivate() { } //**************************************** // SceneOpenGL::Window //**************************************** SceneOpenGL::Window::Window(Toplevel* c) : Scene::Window(c) , m_scene(NULL) , texture(NULL) { } SceneOpenGL::Window::~Window() { delete texture; } // Bind the window pixmap to an OpenGL texture. bool SceneOpenGL::Window::bindTexture() { if (!texture) { texture = m_scene->createTexture(); } if (!texture->isNull()) { if (!toplevel->damage().isEmpty()) { // mipmaps need to be updated texture->setDirty(); toplevel->resetDamage(QRect(toplevel->clientPos(), toplevel->clientSize())); } return true; } // Get the pixmap with the window contents Pixmap pix = toplevel->windowPixmap(); if (pix == None) return false; bool success = texture->load(pix, toplevel->size(), toplevel->depth(), toplevel->damage()); if (success) toplevel->resetDamage(QRect(toplevel->clientPos(), toplevel->clientSize())); else kDebug(1212) << "Failed to bind window"; return success; } void SceneOpenGL::Window::discardTexture() { if (texture) { texture->discard(); } } // This call is used in SceneOpenGL::windowGeometryShapeChanged(), // which originally called discardTexture(), however this was causing performance // problems with the launch feedback icon - large number of texture rebinds. // Since the launch feedback icon does not resize, only changes shape, it // is not necessary to rebind the texture (with no strict binding), therefore // discard the texture only if size changes. void SceneOpenGL::Window::checkTextureSize() { if (!texture) { return; } if (texture->size() != size()) discardTexture(); } // when the window's composite pixmap is discarded, undo binding it to the texture void SceneOpenGL::Window::pixmapDiscarded() { if (!texture) { return; } texture->discard(); } QMatrix4x4 SceneOpenGL::Window::transformation(int mask, const WindowPaintData &data) const { QMatrix4x4 matrix; matrix.translate(x(), y()); if (!(mask & PAINT_WINDOW_TRANSFORMED)) return matrix; matrix.translate(data.translation()); data.scale().applyTo(&matrix); if (data.rotationAngle() == 0.0) return matrix; // Apply the rotation // cannot use data.rotation.applyTo(&matrix) as QGraphicsRotation uses projectedRotate to map back to 2D matrix.translate(data.rotationOrigin()); const QVector3D axis = data.rotationAxis(); matrix.rotate(data.rotationAngle(), axis.x(), axis.y(), axis.z()); matrix.translate(-data.rotationOrigin()); return matrix; } // paint the window void SceneOpenGL::Window::performPaint(int mask, QRegion region, WindowPaintData data) { if (region.isEmpty()) return; bool hardwareClipping = region != infiniteRegion() && (mask & PAINT_WINDOW_TRANSFORMED); if (region != infiniteRegion() && !hardwareClipping) { WindowQuadList quads; const QRegion filterRegion = region.translated(-x(), -y()); // split all quads in bounding rect with the actual rects in the region foreach (const WindowQuad &quad, data.quads) { foreach (const QRect &r, filterRegion.rects()) { const QRectF rf(r); const QRectF quadRect(QPointF(quad.left(), quad.top()), QPointF(quad.right(), quad.bottom())); // case 1: completely contains, include and do not check other rects if (rf.contains(quadRect)) { quads << quad; break; } // case 2: intersection if (rf.intersects(quadRect)) { const QRectF intersected = rf.intersected(quadRect); quads << quad.makeSubQuad(intersected.left(), intersected.top(), intersected.right(), intersected.bottom()); } } } data.quads = quads; } if (!bindTexture()) { return; } if (hardwareClipping) { glEnable(GL_SCISSOR_TEST); } // Update the texture filter if (options->glSmoothScale() != 0 && (mask & (PAINT_WINDOW_TRANSFORMED | PAINT_SCREEN_TRANSFORMED))) filter = ImageFilterGood; else filter = ImageFilterFast; texture->setFilter(filter == ImageFilterGood ? GL_LINEAR : GL_NEAREST); beginRenderWindow(mask, data); GLVertexBuffer *vbo = GLVertexBuffer::streamingBuffer(); vbo->reset(); // shadow if (m_shadow) { paintShadow(region, data, hardwareClipping); } // decorations if (toplevel->isClient()) { paintDecorations(data, region, hardwareClipping); } else if (toplevel->isDeleted()) { paintDecorations(data, region, hardwareClipping); } // paint the content WindowQuadList contentQuads = data.quads.select(WindowQuadContents); if (!contentQuads.empty()) { texture->bind(); prepareStates(Content, data.opacity(), data.brightness(), data.saturation(), data.screen()); renderQuads(mask, region, contentQuads, texture, false, hardwareClipping); restoreStates(Content, data.opacity(), data.brightness(), data.saturation()); texture->unbind(); #ifndef KWIN_HAVE_OPENGLES if (m_scene && m_scene->debug) { glPolygonMode(GL_FRONT_AND_BACK, GL_LINE); renderQuads(mask, region, contentQuads, texture, false, hardwareClipping); glPolygonMode(GL_FRONT_AND_BACK, GL_FILL); } #endif } if (hardwareClipping) { glDisable(GL_SCISSOR_TEST); } endRenderWindow(data); } template void SceneOpenGL::Window::paintDecorations(const WindowPaintData &data, const QRegion ®ion, bool hardwareClipping) { T* t = static_cast(toplevel); PaintRedirector *redirector = t->decorationPaintRedirector(); if (t->noBorder() || !redirector) { return; } WindowQuadList decoration = data.quads.select(WindowQuadDecoration); QRect topRect, leftRect, rightRect, bottomRect; t->layoutDecorationRects(leftRect, topRect, rightRect, bottomRect, Client::WindowRelative); WindowQuadList topList, leftList, rightList, bottomList; foreach (const WindowQuad & quad, decoration) { if (topRect.contains(QPoint(quad.originalLeft(), quad.originalTop()))) { topList.append(quad); continue; } if (bottomRect.contains(QPoint(quad.originalLeft(), quad.originalTop()))) { bottomList.append(quad); continue; } if (leftRect.contains(QPoint(quad.originalLeft(), quad.originalTop()))) { leftList.append(quad); continue; } if (rightRect.contains(QPoint(quad.originalLeft(), quad.originalTop()))) { rightList.append(quad); continue; } } redirector->ensurePixmapsPainted(); GLTexture *left = redirector->leftDecoPixmap(); GLTexture *top = redirector->topDecoPixmap(); GLTexture *right = redirector->rightDecoPixmap(); GLTexture *bottom = redirector->bottomDecoPixmap(); paintDecoration(top, DecorationTop, region, topRect, data, topList, hardwareClipping); paintDecoration(left, DecorationLeft, region, leftRect, data, leftList, hardwareClipping); paintDecoration(right, DecorationRight, region, rightRect, data, rightList, hardwareClipping); paintDecoration(bottom, DecorationBottom, region, bottomRect, data, bottomList, hardwareClipping); redirector->markAsRepainted(); } void SceneOpenGL::Window::paintDecoration(GLTexture *decorationTexture, TextureType decorationType, const QRegion& region, const QRect& rect, const WindowPaintData& data, const WindowQuadList& quads, bool hardwareClipping) { if (!decorationTexture) { return; } // We have to update the texture although we do not paint anything. // This is especially needed if we draw the opaque part of the window // and the decoration in two different passes (as we in Scene::paintSimpleWindow do). // Otherwise we run into the situation that in the first pass there are some // pending decoration repaints but we don't paint the decoration and in the // second pass it's the other way around. if (quads.isEmpty()) return; if (filter == ImageFilterGood) decorationTexture->setFilter(GL_LINEAR); else decorationTexture->setFilter(GL_NEAREST); decorationTexture->setWrapMode(GL_CLAMP_TO_EDGE); decorationTexture->bind(); prepareStates(decorationType, data.opacity() * data.decorationOpacity(), data.brightness(), data.saturation(), data.screen()); makeDecorationArrays(quads, rect, decorationTexture); GLVertexBuffer::streamingBuffer()->render(region, GL_TRIANGLES, hardwareClipping); restoreStates(decorationType, data.opacity() * data.decorationOpacity(), data.brightness(), data.saturation()); decorationTexture->unbind(); #ifndef KWIN_HAVE_OPENGLES if (m_scene && m_scene->debug) { glPolygonMode(GL_FRONT_AND_BACK, GL_LINE); GLVertexBuffer::streamingBuffer()->render(region, GL_TRIANGLES, hardwareClipping); glPolygonMode(GL_FRONT_AND_BACK, GL_FILL); } #endif } void SceneOpenGL::Window::paintShadow(const QRegion ®ion, const WindowPaintData &data, bool hardwareClipping) { WindowQuadList quads = data.quads.select(WindowQuadShadowTopLeft); quads.append(data.quads.select(WindowQuadShadowTop)); quads.append(data.quads.select(WindowQuadShadowTopRight)); quads.append(data.quads.select(WindowQuadShadowRight)); quads.append(data.quads.select(WindowQuadShadowBottomRight)); quads.append(data.quads.select(WindowQuadShadowBottom)); quads.append(data.quads.select(WindowQuadShadowBottomLeft)); quads.append(data.quads.select(WindowQuadShadowLeft)); if (quads.isEmpty()) { return; } GLTexture *texture = static_cast(m_shadow)->shadowTexture(); if (!texture) { return; } if (filter == ImageFilterGood) texture->setFilter(GL_LINEAR); else texture->setFilter(GL_NEAREST); texture->setWrapMode(GL_CLAMP_TO_EDGE); texture->bind(); prepareStates(Shadow, data.opacity(), data.brightness(), data.saturation(), data.screen()); renderQuads(0, region, quads, texture, true, hardwareClipping); restoreStates(Shadow, data.opacity(), data.brightness(), data.saturation()); texture->unbind(); #ifndef KWIN_HAVE_OPENGLES if (m_scene && m_scene->debug) { glPolygonMode(GL_FRONT_AND_BACK, GL_LINE); renderQuads(0, region, quads, texture, true, hardwareClipping); glPolygonMode(GL_FRONT_AND_BACK, GL_FILL); } #endif } void SceneOpenGL::Window::makeDecorationArrays(const WindowQuadList& quads, const QRect &rect, GLTexture *tex) const { QVector vertices; QVector texcoords; vertices.reserve(quads.count() * 6 * 2); texcoords.reserve(quads.count() * 6 * 2); float width = rect.width(); float height = rect.height(); #ifndef KWIN_HAVE_OPENGLES if (tex->target() == GL_TEXTURE_RECTANGLE_ARB) { width = 1.0; height = 1.0; } #endif foreach (const WindowQuad & quad, quads) { vertices << quad[ 1 ].x(); vertices << quad[ 1 ].y(); vertices << quad[ 0 ].x(); vertices << quad[ 0 ].y(); vertices << quad[ 3 ].x(); vertices << quad[ 3 ].y(); vertices << quad[ 3 ].x(); vertices << quad[ 3 ].y(); vertices << quad[ 2 ].x(); vertices << quad[ 2 ].y(); vertices << quad[ 1 ].x(); vertices << quad[ 1 ].y(); if (tex->isYInverted()) { texcoords << (float)(quad.originalRight() - rect.x()) / width; texcoords << (float)(quad.originalTop() - rect.y()) / height; texcoords << (float)(quad.originalLeft() - rect.x()) / width; texcoords << (float)(quad.originalTop() - rect.y()) / height; texcoords << (float)(quad.originalLeft() - rect.x()) / width; texcoords << (float)(quad.originalBottom() - rect.y()) / height; texcoords << (float)(quad.originalLeft() - rect.x()) / width; texcoords << (float)(quad.originalBottom() - rect.y()) / height; texcoords << (float)(quad.originalRight() - rect.x()) / width; texcoords << (float)(quad.originalBottom() - rect.y()) / height; texcoords << (float)(quad.originalRight() - rect.x()) / width; texcoords << (float)(quad.originalTop() - rect.y()) / height; } else { texcoords << (float)(quad.originalRight() - rect.x()) / width; texcoords << 1.0f - (float)(quad.originalTop() - rect.y()) / height; texcoords << (float)(quad.originalLeft() - rect.x()) / width; texcoords << 1.0f - (float)(quad.originalTop() - rect.y()) / height; texcoords << (float)(quad.originalLeft() - rect.x()) / width; texcoords << 1.0f - (float)(quad.originalBottom() - rect.y()) / height; texcoords << (float)(quad.originalLeft() - rect.x()) / width; texcoords << 1.0f - (float)(quad.originalBottom() - rect.y()) / height; texcoords << (float)(quad.originalRight() - rect.x()) / width; texcoords << 1.0f - (float)(quad.originalBottom() - rect.y()) / height; texcoords << (float)(quad.originalRight() - rect.x()) / width; texcoords << 1.0f - (float)(quad.originalTop() - rect.y()) / height; } } GLVertexBuffer::streamingBuffer()->setData(quads.count() * 6, 2, vertices.data(), texcoords.data()); } void SceneOpenGL::Window::renderQuads(int, const QRegion& region, const WindowQuadList& quads, GLTexture *tex, bool normalized, bool hardwareClipping) { if (quads.isEmpty()) return; // Render geometry float* vertices; float* texcoords; QSizeF size(tex->size()); if (normalized) { size.setWidth(1.0); size.setHeight(1.0); } #ifndef KWIN_HAVE_OPENGLES if (tex->target() == GL_TEXTURE_RECTANGLE_ARB) { size.setWidth(1.0); size.setHeight(1.0); } #endif quads.makeArrays(&vertices, &texcoords, size, tex->isYInverted()); GLVertexBuffer::streamingBuffer()->setData(quads.count() * 6, 2, vertices, texcoords); GLVertexBuffer::streamingBuffer()->render(region, GL_TRIANGLES, hardwareClipping); delete[] vertices; delete[] texcoords; } GLTexture *SceneOpenGL::Window::textureForType(SceneOpenGL::Window::TextureType type) { GLTexture *tex = NULL; PaintRedirector *redirector = NULL; if (type != Content && type != Shadow) { if (toplevel->isClient()) { redirector = static_cast(toplevel)->decorationPaintRedirector(); } else if (toplevel->isDeleted()) { redirector = static_cast(toplevel)->decorationPaintRedirector(); } } switch(type) { case Content: tex = texture; break; case DecorationTop: if (redirector) { tex = redirector->topDecoPixmap(); } break; case DecorationLeft: if (redirector) { tex = redirector->leftDecoPixmap(); } break; case DecorationRight: if (redirector) { tex = redirector->rightDecoPixmap(); } break; case DecorationBottom: if (redirector) { tex = redirector->bottomDecoPixmap(); } break; case Shadow: tex = static_cast(m_shadow)->shadowTexture(); } return tex; } //*************************************** // SceneOpenGL2Window //*************************************** SceneOpenGL2Window::SceneOpenGL2Window(Toplevel *c) : SceneOpenGL::Window(c) , m_blendingEnabled(false) { } SceneOpenGL2Window::~SceneOpenGL2Window() { } void SceneOpenGL2Window::beginRenderWindow(int mask, const WindowPaintData &data) { GLShader *shader = data.shader; if (!shader) { // set the shader for uniform initialising in paint decoration if ((mask & Scene::PAINT_WINDOW_TRANSFORMED) || (mask & Scene::PAINT_SCREEN_TRANSFORMED)) { shader = ShaderManager::instance()->pushShader(ShaderManager::GenericShader); } else { shader = ShaderManager::instance()->pushShader(ShaderManager::SimpleShader); shader->setUniform(GLShader::Offset, QVector2D(x(), y())); } } shader->setUniform(GLShader::WindowTransformation, transformation(mask, data)); } void SceneOpenGL2Window::endRenderWindow(const WindowPaintData &data) { if (!data.shader) { ShaderManager::instance()->popShader(); } } void SceneOpenGL2Window::prepareStates(TextureType type, qreal opacity, qreal brightness, qreal saturation, int screen) { // setup blending of transparent windows bool opaque = isOpaque() && opacity == 1.0; bool alpha = toplevel->hasAlpha() || type != Content; if (type != Content) { if (type == Shadow) { opaque = false; } else { if (opacity == 1.0 && toplevel->isClient()) { opaque = !(static_cast(toplevel)->decorationHasAlpha()); } else { // TODO: add support in Deleted opaque = false; } } } if (!opaque) { glEnable(GL_BLEND); if (alpha) { glBlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA); } else { glBlendColor((float)opacity, (float)opacity, (float)opacity, (float)opacity); glBlendFunc(GL_ONE, GL_ONE_MINUS_CONSTANT_ALPHA); } } m_blendingEnabled = !opaque; const qreal rgb = brightness * opacity; const qreal a = opacity; GLShader *shader = ShaderManager::instance()->getBoundShader(); shader->setUniform(GLShader::ModulationConstant, QVector4D(rgb, rgb, rgb, a)); shader->setUniform(GLShader::Saturation, saturation); static_cast(m_scene)->colorCorrection()->setupForOutput(screen); } void SceneOpenGL2Window::restoreStates(TextureType type, qreal opacity, qreal brightness, qreal saturation) { Q_UNUSED(type); Q_UNUSED(opacity); Q_UNUSED(brightness); Q_UNUSED(saturation); if (m_blendingEnabled) { glDisable(GL_BLEND); } static_cast(m_scene)->colorCorrection()->setupForOutput(-1); } //*************************************** // SceneOpenGL1Window //*************************************** #ifdef KWIN_HAVE_OPENGL_1 SceneOpenGL1Window::SceneOpenGL1Window(Toplevel *c) : SceneOpenGL::Window(c) { } SceneOpenGL1Window::~SceneOpenGL1Window() { } void SceneOpenGL1Window::beginRenderWindow(int mask, const WindowPaintData &data) { pushMatrix(transformation(mask, data)); } void SceneOpenGL1Window::endRenderWindow(const WindowPaintData &data) { Q_UNUSED(data) popMatrix(); } void SceneOpenGL1Window::prepareStates(TextureType type, qreal opacity, qreal brightness, qreal saturation, int screen) { Q_UNUSED(screen) GLTexture *tex = textureForType(type); bool alpha = false; bool opaque = true; if (type == Content) { alpha = toplevel->hasAlpha(); opaque = isOpaque() && opacity == 1.0; } else { alpha = true; opaque = false; } // setup blending of transparent windows glPushAttrib(GL_ENABLE_BIT); if (!opaque) { glEnable(GL_BLEND); glBlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA); } if (saturation != 1.0 && tex->saturationSupported()) { // First we need to get the color from [0; 1] range to [0.5; 1] range glActiveTexture(GL_TEXTURE0); glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE); glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB, GL_INTERPOLATE); glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB, GL_TEXTURE); glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_RGB, GL_SRC_COLOR); glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_RGB, GL_CONSTANT); glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND1_RGB, GL_SRC_COLOR); glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE2_RGB, GL_CONSTANT); glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND2_RGB, GL_SRC_ALPHA); const float scale_constant[] = { 1.0, 1.0, 1.0, 0.5}; glTexEnvfv(GL_TEXTURE_ENV, GL_TEXTURE_ENV_COLOR, scale_constant); tex->bind(); // Then we take dot product of the result of previous pass and // saturation_constant. This gives us completely unsaturated // (greyscale) image // Note that both operands have to be in range [0.5; 1] since opengl // automatically substracts 0.5 from them glActiveTexture(GL_TEXTURE1); float saturation_constant[] = { 0.5 + 0.5 * 0.30, 0.5 + 0.5 * 0.59, 0.5 + 0.5 * 0.11, static_cast(saturation) }; glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE); glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB, GL_DOT3_RGB); glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB, GL_PREVIOUS); glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_RGB, GL_SRC_COLOR); glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_RGB, GL_CONSTANT); glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND1_RGB, GL_SRC_COLOR); glTexEnvfv(GL_TEXTURE_ENV, GL_TEXTURE_ENV_COLOR, saturation_constant); tex->bind(); // Finally we need to interpolate between the original image and the // greyscale image to get wanted level of saturation glActiveTexture(GL_TEXTURE2); glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE); glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB, GL_INTERPOLATE); glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB, GL_TEXTURE0); glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_RGB, GL_SRC_COLOR); glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_RGB, GL_PREVIOUS); glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND1_RGB, GL_SRC_COLOR); glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE2_RGB, GL_CONSTANT); glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND2_RGB, GL_SRC_ALPHA); glTexEnvfv(GL_TEXTURE_ENV, GL_TEXTURE_ENV_COLOR, saturation_constant); // Also replace alpha by primary color's alpha here glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_ALPHA, GL_REPLACE); glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_ALPHA, GL_PRIMARY_COLOR); glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_ALPHA, GL_SRC_ALPHA); // And make primary color contain the wanted opacity glColor4f(opacity, opacity, opacity, opacity); tex->bind(); if (alpha || brightness != 1.0f) { glActiveTexture(GL_TEXTURE3); glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE); glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB, GL_MODULATE); glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB, GL_PREVIOUS); glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_RGB, GL_SRC_COLOR); glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_RGB, GL_PRIMARY_COLOR); glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND1_RGB, GL_SRC_COLOR); // The color has to be multiplied by both opacity and brightness float opacityByBrightness = opacity * brightness; glColor4f(opacityByBrightness, opacityByBrightness, opacityByBrightness, opacity); if (alpha) { // Multiply original texture's alpha by our opacity glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_ALPHA, GL_MODULATE); glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_ALPHA, GL_TEXTURE0); glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_ALPHA, GL_SRC_ALPHA); glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_ALPHA, GL_PRIMARY_COLOR); glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND1_ALPHA, GL_SRC_ALPHA); } else { // Alpha will be taken from previous stage glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_ALPHA, GL_REPLACE); glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_ALPHA, GL_PREVIOUS); glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_ALPHA, GL_SRC_ALPHA); } tex->bind(); } glActiveTexture(GL_TEXTURE0); } else if (opacity != 1.0 || brightness != 1.0) { // the window is additionally configured to have its opacity adjusted, // do it float opacityByBrightness = opacity * brightness; if (alpha) { glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE); glColor4f(opacityByBrightness, opacityByBrightness, opacityByBrightness, opacity); } else { // Multiply color by brightness and replace alpha by opacity float constant[] = { opacityByBrightness, opacityByBrightness, opacityByBrightness, static_cast(opacity) }; glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE); glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB, GL_MODULATE); glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB, GL_TEXTURE); glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_RGB, GL_SRC_COLOR); glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_RGB, GL_CONSTANT); glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND1_RGB, GL_SRC_COLOR); glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_ALPHA, GL_REPLACE); glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_ALPHA, GL_CONSTANT); glTexEnvfv(GL_TEXTURE_ENV, GL_TEXTURE_ENV_COLOR, constant); } } else if (!alpha && opaque) { float constant[] = { 1.0, 1.0, 1.0, 1.0 }; glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE); glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB, GL_REPLACE); glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB, GL_TEXTURE); glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_ALPHA, GL_REPLACE); glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_ALPHA, GL_CONSTANT); glTexEnvfv(GL_TEXTURE_ENV, GL_TEXTURE_ENV_COLOR, constant); } } void SceneOpenGL1Window::restoreStates(TextureType type, qreal opacity, qreal brightness, qreal saturation) { GLTexture *tex = textureForType(type); if (opacity != 1.0 || saturation != 1.0 || brightness != 1.0f) { if (saturation != 1.0 && tex->saturationSupported()) { glActiveTexture(GL_TEXTURE3); glDisable(tex->target()); glActiveTexture(GL_TEXTURE2); glDisable(tex->target()); glActiveTexture(GL_TEXTURE1); glDisable(tex->target()); glActiveTexture(GL_TEXTURE0); } } glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE); glColor4f(0, 0, 0, 0); glPopAttrib(); // ENABLE_BIT } #endif //**************************************** // SceneOpenGL::EffectFrame //**************************************** GLTexture* SceneOpenGL::EffectFrame::m_unstyledTexture = NULL; QPixmap* SceneOpenGL::EffectFrame::m_unstyledPixmap = NULL; SceneOpenGL::EffectFrame::EffectFrame(EffectFrameImpl* frame, SceneOpenGL *scene) : Scene::EffectFrame(frame) , m_texture(NULL) , m_textTexture(NULL) , m_oldTextTexture(NULL) , m_textPixmap(NULL) , m_iconTexture(NULL) , m_oldIconTexture(NULL) , m_selectionTexture(NULL) , m_unstyledVBO(NULL) , m_scene(scene) { if (m_effectFrame->style() == EffectFrameUnstyled && !m_unstyledTexture) { updateUnstyledTexture(); } } SceneOpenGL::EffectFrame::~EffectFrame() { delete m_texture; delete m_textTexture; delete m_textPixmap; delete m_oldTextTexture; delete m_iconTexture; delete m_oldIconTexture; delete m_selectionTexture; delete m_unstyledVBO; } void SceneOpenGL::EffectFrame::free() { glFlush(); delete m_texture; m_texture = NULL; delete m_textTexture; m_textTexture = NULL; delete m_textPixmap; m_textPixmap = NULL; delete m_iconTexture; m_iconTexture = NULL; delete m_selectionTexture; m_selectionTexture = NULL; delete m_unstyledVBO; m_unstyledVBO = NULL; delete m_oldIconTexture; m_oldIconTexture = NULL; delete m_oldTextTexture; m_oldTextTexture = NULL; } void SceneOpenGL::EffectFrame::freeIconFrame() { delete m_iconTexture; m_iconTexture = NULL; } void SceneOpenGL::EffectFrame::freeTextFrame() { delete m_textTexture; m_textTexture = NULL; delete m_textPixmap; m_textPixmap = NULL; } void SceneOpenGL::EffectFrame::freeSelection() { delete m_selectionTexture; m_selectionTexture = NULL; } void SceneOpenGL::EffectFrame::crossFadeIcon() { delete m_oldIconTexture; m_oldIconTexture = m_iconTexture; m_iconTexture = NULL; } void SceneOpenGL::EffectFrame::crossFadeText() { delete m_oldTextTexture; m_oldTextTexture = m_textTexture; m_textTexture = NULL; } void SceneOpenGL::EffectFrame::render(QRegion region, double opacity, double frameOpacity) { if (m_effectFrame->geometry().isEmpty()) return; // Nothing to display region = infiniteRegion(); // TODO: Old region doesn't seem to work with OpenGL GLShader* shader = m_effectFrame->shader(); bool sceneShader = false; if (!shader && ShaderManager::instance()->isValid()) { shader = ShaderManager::instance()->pushShader(ShaderManager::SimpleShader); sceneShader = true; } else if (shader) { ShaderManager::instance()->pushShader(shader); } if (shader) { if (sceneShader) shader->setUniform(GLShader::Offset, QVector2D(0, 0)); shader->setUniform(GLShader::ModulationConstant, QVector4D(1.0, 1.0, 1.0, 1.0)); shader->setUniform(GLShader::Saturation, 1.0f); } glEnable(GL_BLEND); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); #ifdef KWIN_HAVE_OPENGL_1 if (!shader) glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE); #endif // Render the actual frame if (m_effectFrame->style() == EffectFrameUnstyled) { if (!m_unstyledVBO) { m_unstyledVBO = new GLVertexBuffer(GLVertexBuffer::Static); QRect area = m_effectFrame->geometry(); area.moveTo(0, 0); area.adjust(-5, -5, 5, 5); const int roundness = 5; QVector verts, texCoords; verts.reserve(84); texCoords.reserve(84); // top left verts << area.left() << area.top(); texCoords << 0.0f << 0.0f; verts << area.left() << area.top() + roundness; texCoords << 0.0f << 0.5f; verts << area.left() + roundness << area.top(); texCoords << 0.5f << 0.0f; verts << area.left() + roundness << area.top() + roundness; texCoords << 0.5f << 0.5f; verts << area.left() << area.top() + roundness; texCoords << 0.0f << 0.5f; verts << area.left() + roundness << area.top(); texCoords << 0.5f << 0.0f; // top verts << area.left() + roundness << area.top(); texCoords << 0.5f << 0.0f; verts << area.left() + roundness << area.top() + roundness; texCoords << 0.5f << 0.5f; verts << area.right() - roundness << area.top(); texCoords << 0.5f << 0.0f; verts << area.left() + roundness << area.top() + roundness; texCoords << 0.5f << 0.5f; verts << area.right() - roundness << area.top() + roundness; texCoords << 0.5f << 0.5f; verts << area.right() - roundness << area.top(); texCoords << 0.5f << 0.0f; // top right verts << area.right() - roundness << area.top(); texCoords << 0.5f << 0.0f; verts << area.right() - roundness << area.top() + roundness; texCoords << 0.5f << 0.5f; verts << area.right() << area.top(); texCoords << 1.0f << 0.0f; verts << area.right() - roundness << area.top() + roundness; texCoords << 0.5f << 0.5f; verts << area.right() << area.top() + roundness; texCoords << 1.0f << 0.5f; verts << area.right() << area.top(); texCoords << 1.0f << 0.0f; // bottom left verts << area.left() << area.bottom() - roundness; texCoords << 0.0f << 0.5f; verts << area.left() << area.bottom(); texCoords << 0.0f << 1.0f; verts << area.left() + roundness << area.bottom() - roundness; texCoords << 0.5f << 0.5f; verts << area.left() + roundness << area.bottom(); texCoords << 0.5f << 1.0f; verts << area.left() << area.bottom(); texCoords << 0.0f << 1.0f; verts << area.left() + roundness << area.bottom() - roundness; texCoords << 0.5f << 0.5f; // bottom verts << area.left() + roundness << area.bottom() - roundness; texCoords << 0.5f << 0.5f; verts << area.left() + roundness << area.bottom(); texCoords << 0.5f << 1.0f; verts << area.right() - roundness << area.bottom() - roundness; texCoords << 0.5f << 0.5f; verts << area.left() + roundness << area.bottom(); texCoords << 0.5f << 1.0f; verts << area.right() - roundness << area.bottom(); texCoords << 0.5f << 1.0f; verts << area.right() - roundness << area.bottom() - roundness; texCoords << 0.5f << 0.5f; // bottom right verts << area.right() - roundness << area.bottom() - roundness; texCoords << 0.5f << 0.5f; verts << area.right() - roundness << area.bottom(); texCoords << 0.5f << 1.0f; verts << area.right() << area.bottom() - roundness; texCoords << 1.0f << 0.5f; verts << area.right() - roundness << area.bottom(); texCoords << 0.5f << 1.0f; verts << area.right() << area.bottom(); texCoords << 1.0f << 1.0f; verts << area.right() << area.bottom() - roundness; texCoords << 1.0f << 0.5f; // center verts << area.left() << area.top() + roundness; texCoords << 0.0f << 0.5f; verts << area.left() << area.bottom() - roundness; texCoords << 0.0f << 0.5f; verts << area.right() << area.top() + roundness; texCoords << 1.0f << 0.5f; verts << area.left() << area.bottom() - roundness; texCoords << 0.0f << 0.5f; verts << area.right() << area.bottom() - roundness; texCoords << 1.0f << 0.5f; verts << area.right() << area.top() + roundness; texCoords << 1.0f << 0.5f; m_unstyledVBO->setData(verts.count() / 2, 2, verts.data(), texCoords.data()); } if (shader) { const float a = opacity * frameOpacity; shader->setUniform(GLShader::ModulationConstant, QVector4D(a, a, a, a)); } #ifdef KWIN_HAVE_OPENGL_1 else glColor4f(0.0, 0.0, 0.0, opacity * frameOpacity); #endif m_unstyledTexture->bind(); const QPoint pt = m_effectFrame->geometry().topLeft(); if (sceneShader) { shader->setUniform(GLShader::Offset, QVector2D(pt.x(), pt.y())); } else { QMatrix4x4 translation; translation.translate(pt.x(), pt.y()); if (shader) { shader->setUniform(GLShader::WindowTransformation, translation); } else { pushMatrix(translation); } } m_unstyledVBO->render(region, GL_TRIANGLES); if (!sceneShader) { if (shader) { shader->setUniform(GLShader::WindowTransformation, QMatrix4x4()); } else { popMatrix(); } } m_unstyledTexture->unbind(); } else if (m_effectFrame->style() == EffectFrameStyled) { if (!m_texture) // Lazy creation updateTexture(); if (shader) { const float a = opacity * frameOpacity; shader->setUniform(GLShader::ModulationConstant, QVector4D(a, a, a, a)); } #ifdef KWIN_HAVE_OPENGL_1 else glColor4f(1.0, 1.0, 1.0, opacity * frameOpacity); #endif m_texture->bind(); qreal left, top, right, bottom; m_effectFrame->frame().getMargins(left, top, right, bottom); // m_geometry is the inner geometry m_texture->render(region, m_effectFrame->geometry().adjusted(-left, -top, right, bottom)); m_texture->unbind(); } if (!m_effectFrame->selection().isNull()) { if (!m_selectionTexture) { // Lazy creation QPixmap pixmap = m_effectFrame->selectionFrame().framePixmap(); if (!pixmap.isNull()) m_selectionTexture = m_scene->createTexture(pixmap); } if (m_selectionTexture) { if (shader) { const float a = opacity * frameOpacity; shader->setUniform(GLShader::ModulationConstant, QVector4D(a, a, a, a)); } #ifdef KWIN_HAVE_OPENGL_1 else glColor4f(1.0, 1.0, 1.0, opacity * frameOpacity); #endif glBlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA); m_selectionTexture->bind(); m_selectionTexture->render(region, m_effectFrame->selection()); m_selectionTexture->unbind(); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); } } // Render icon if (!m_effectFrame->icon().isNull() && !m_effectFrame->iconSize().isEmpty()) { QPoint topLeft(m_effectFrame->geometry().x(), m_effectFrame->geometry().center().y() - m_effectFrame->iconSize().height() / 2); if (m_effectFrame->isCrossFade() && m_oldIconTexture) { if (shader) { const float a = opacity * (1.0 - m_effectFrame->crossFadeProgress()); shader->setUniform(GLShader::ModulationConstant, QVector4D(a, a, a, a)); } #ifdef KWIN_HAVE_OPENGL_1 else glColor4f(1.0, 1.0, 1.0, opacity * (1.0 - m_effectFrame->crossFadeProgress())); #endif m_oldIconTexture->bind(); m_oldIconTexture->render(region, QRect(topLeft, m_effectFrame->iconSize())); m_oldIconTexture->unbind(); if (shader) { const float a = opacity * m_effectFrame->crossFadeProgress(); shader->setUniform(GLShader::ModulationConstant, QVector4D(a, a, a, a)); } #ifdef KWIN_HAVE_OPENGL_1 else glColor4f(1.0, 1.0, 1.0, opacity * m_effectFrame->crossFadeProgress()); #endif } else { if (shader) { const QVector4D constant(opacity, opacity, opacity, opacity); shader->setUniform(GLShader::ModulationConstant, constant); } #ifdef KWIN_HAVE_OPENGL_1 else glColor4f(1.0, 1.0, 1.0, opacity); #endif } if (!m_iconTexture) { // lazy creation m_iconTexture = m_scene->createTexture(m_effectFrame->icon()); } m_iconTexture->bind(); m_iconTexture->render(region, QRect(topLeft, m_effectFrame->iconSize())); m_iconTexture->unbind(); } // Render text if (!m_effectFrame->text().isEmpty()) { if (m_effectFrame->isCrossFade() && m_oldTextTexture) { if (shader) { const float a = opacity * (1.0 - m_effectFrame->crossFadeProgress()); shader->setUniform(GLShader::ModulationConstant, QVector4D(a, a, a, a)); } #ifdef KWIN_HAVE_OPENGL_1 else glColor4f(1.0, 1.0, 1.0, opacity *(1.0 - m_effectFrame->crossFadeProgress())); #endif m_oldTextTexture->bind(); m_oldTextTexture->render(region, m_effectFrame->geometry()); m_oldTextTexture->unbind(); if (shader) { const float a = opacity * m_effectFrame->crossFadeProgress(); shader->setUniform(GLShader::ModulationConstant, QVector4D(a, a, a, a)); } #ifdef KWIN_HAVE_OPENGL_1 else glColor4f(1.0, 1.0, 1.0, opacity * m_effectFrame->crossFadeProgress()); #endif } else { if (shader) { const QVector4D constant(opacity, opacity, opacity, opacity); shader->setUniform(GLShader::ModulationConstant, constant); } #ifdef KWIN_HAVE_OPENGL_1 else glColor4f(1.0, 1.0, 1.0, opacity); #endif } if (!m_textTexture) // Lazy creation updateTextTexture(); m_textTexture->bind(); m_textTexture->render(region, m_effectFrame->geometry()); m_textTexture->unbind(); } if (shader) { ShaderManager::instance()->popShader(); } glDisable(GL_BLEND); } void SceneOpenGL::EffectFrame::updateTexture() { delete m_texture; m_texture = 0L; if (m_effectFrame->style() == EffectFrameStyled) { QPixmap pixmap = m_effectFrame->frame().framePixmap(); m_texture = m_scene->createTexture(pixmap); } } void SceneOpenGL::EffectFrame::updateTextTexture() { delete m_textTexture; m_textTexture = 0L; delete m_textPixmap; m_textPixmap = 0L; if (m_effectFrame->text().isEmpty()) return; // Determine position on texture to paint text QRect rect(QPoint(0, 0), m_effectFrame->geometry().size()); if (!m_effectFrame->icon().isNull() && !m_effectFrame->iconSize().isEmpty()) rect.setLeft(m_effectFrame->iconSize().width()); // If static size elide text as required QString text = m_effectFrame->text(); if (m_effectFrame->isStatic()) { QFontMetrics metrics(m_effectFrame->font()); text = metrics.elidedText(text, Qt::ElideRight, rect.width()); } m_textPixmap = new QPixmap(m_effectFrame->geometry().size()); m_textPixmap->fill(Qt::transparent); QPainter p(m_textPixmap); p.setFont(m_effectFrame->font()); if (m_effectFrame->style() == EffectFrameStyled) p.setPen(m_effectFrame->styledTextColor()); else // TODO: What about no frame? Custom color setting required p.setPen(Qt::white); p.drawText(rect, m_effectFrame->alignment(), text); p.end(); m_textTexture = m_scene->createTexture(*m_textPixmap); } void SceneOpenGL::EffectFrame::updateUnstyledTexture() { delete m_unstyledTexture; m_unstyledTexture = 0L; delete m_unstyledPixmap; m_unstyledPixmap = 0L; // Based off circle() from kwinxrenderutils.cpp #define CS 8 m_unstyledPixmap = new QPixmap(2 * CS, 2 * CS); m_unstyledPixmap->fill(Qt::transparent); QPainter p(m_unstyledPixmap); p.setRenderHint(QPainter::Antialiasing); p.setPen(Qt::NoPen); p.setBrush(Qt::black); p.drawEllipse(m_unstyledPixmap->rect()); p.end(); #undef CS m_unstyledTexture = new GLTexture(*m_unstyledPixmap); } void SceneOpenGL::EffectFrame::cleanup() { delete m_unstyledTexture; m_unstyledTexture = NULL; delete m_unstyledPixmap; m_unstyledPixmap = NULL; } //**************************************** // SceneOpenGL::Shadow //**************************************** SceneOpenGLShadow::SceneOpenGLShadow(Toplevel *toplevel) : Shadow(toplevel) , m_texture(NULL) { } SceneOpenGLShadow::~SceneOpenGLShadow() { delete m_texture; } void SceneOpenGLShadow::buildQuads() { // prepare window quads m_shadowQuads.clear(); const QSizeF top(shadowPixmap(ShadowElementTop).size()); const QSizeF topRight(shadowPixmap(ShadowElementTopRight).size()); const QSizeF right(shadowPixmap(ShadowElementRight).size()); const QSizeF bottomRight(shadowPixmap(ShadowElementBottomRight).size()); const QSizeF bottom(shadowPixmap(ShadowElementBottom).size()); const QSizeF bottomLeft(shadowPixmap(ShadowElementBottomLeft).size()); const QSizeF left(shadowPixmap(ShadowElementLeft).size()); const QSizeF topLeft(shadowPixmap(ShadowElementTopLeft).size()); if ((left.width() - leftOffset() > topLevel()->width()) || (right.width() - rightOffset() > topLevel()->width()) || (top.height() - topOffset() > topLevel()->height()) || (bottom.height() - bottomOffset() > topLevel()->height())) { // if our shadow is bigger than the window, we don't render the shadow setShadowRegion(QRegion()); return; } const QRectF outerRect(QPointF(-leftOffset(), -topOffset()), QPointF(topLevel()->width() + rightOffset(), topLevel()->height() + bottomOffset())); const qreal width = topLeft.width() + top.width() + topRight.width(); const qreal height = topLeft.height() + left.height() + bottomLeft.height(); qreal tx1(0.0), tx2(0.0), ty1(0.0), ty2(0.0); tx2 = topLeft.width()/width; ty2 = topLeft.height()/height; WindowQuad topLeftQuad(WindowQuadShadowTopLeft); topLeftQuad[ 0 ] = WindowVertex(outerRect.x(), outerRect.y(), tx1, ty1); topLeftQuad[ 1 ] = WindowVertex(outerRect.x() + topLeft.width(), outerRect.y(), tx2, ty1); topLeftQuad[ 2 ] = WindowVertex(outerRect.x() + topLeft.width(), outerRect.y() + topLeft.height(), tx2, ty2); topLeftQuad[ 3 ] = WindowVertex(outerRect.x(), outerRect.y() + topLeft.height(), tx1, ty2); m_shadowQuads.append(topLeftQuad); tx1 = tx2; tx2 = (topLeft.width() + top.width())/width; ty2 = top.height()/height; WindowQuad topQuad(WindowQuadShadowTop); topQuad[ 0 ] = WindowVertex(outerRect.x() + topLeft.width(), outerRect.y(), tx1, ty1); topQuad[ 1 ] = WindowVertex(outerRect.right() - topRight.width(), outerRect.y(), tx2, ty1); topQuad[ 2 ] = WindowVertex(outerRect.right() - topRight.width(), outerRect.y() + top.height(),tx2, ty2); topQuad[ 3 ] = WindowVertex(outerRect.x() + topLeft.width(), outerRect.y() + top.height(), tx1, ty2); m_shadowQuads.append(topQuad); tx1 = tx2; tx2 = 1.0; ty2 = topRight.height()/height; WindowQuad topRightQuad(WindowQuadShadowTopRight); topRightQuad[ 0 ] = WindowVertex(outerRect.right() - topRight.width(), outerRect.y(), tx1, ty1); topRightQuad[ 1 ] = WindowVertex(outerRect.right(), outerRect.y(), tx2, ty1); topRightQuad[ 2 ] = WindowVertex(outerRect.right(), outerRect.y() + topRight.height(), tx2, ty2); topRightQuad[ 3 ] = WindowVertex(outerRect.right() - topRight.width(), outerRect.y() + topRight.height(), tx1, ty2); m_shadowQuads.append(topRightQuad); tx1 = (width - right.width())/width; ty1 = topRight.height()/height; ty2 = (topRight.height() + right.height())/height; WindowQuad rightQuad(WindowQuadShadowRight); rightQuad[ 0 ] = WindowVertex(outerRect.right() - right.width(), outerRect.y() + topRight.height(), tx1, ty1); rightQuad[ 1 ] = WindowVertex(outerRect.right(), outerRect.y() + topRight.height(), tx2, ty1); rightQuad[ 2 ] = WindowVertex(outerRect.right(), outerRect.bottom() - bottomRight.height(), tx2, ty2); rightQuad[ 3 ] = WindowVertex(outerRect.right() - right.width(), outerRect.bottom() - bottomRight.height(), tx1, ty2); m_shadowQuads.append(rightQuad); tx1 = (width - bottomRight.width())/width; ty1 = ty2; ty2 = 1.0; WindowQuad bottomRightQuad(WindowQuadShadowBottomRight); bottomRightQuad[ 0 ] = WindowVertex(outerRect.right() - bottomRight.width(), outerRect.bottom() - bottomRight.height(), tx1, ty1); bottomRightQuad[ 1 ] = WindowVertex(outerRect.right(), outerRect.bottom() - bottomRight.height(), tx2, ty1); bottomRightQuad[ 2 ] = WindowVertex(outerRect.right(), outerRect.bottom(), tx2, ty2); bottomRightQuad[ 3 ] = WindowVertex(outerRect.right() - bottomRight.width(), outerRect.bottom(), tx1, ty2); m_shadowQuads.append(bottomRightQuad); tx2 = tx1; tx1 = bottomLeft.width()/width; ty1 = (height - bottom.height())/height; WindowQuad bottomQuad(WindowQuadShadowBottom); bottomQuad[ 0 ] = WindowVertex(outerRect.x() + bottomLeft.width(), outerRect.bottom() - bottom.height(), tx1, ty1); bottomQuad[ 1 ] = WindowVertex(outerRect.right() - bottomRight.width(), outerRect.bottom() - bottom.height(), tx2, ty1); bottomQuad[ 2 ] = WindowVertex(outerRect.right() - bottomRight.width(), outerRect.bottom(), tx2, ty2); bottomQuad[ 3 ] = WindowVertex(outerRect.x() + bottomLeft.width(), outerRect.bottom(), tx1, ty2); m_shadowQuads.append(bottomQuad); tx1 = 0.0; tx2 = bottomLeft.width()/width; ty1 = (height - bottomLeft.height())/height; WindowQuad bottomLeftQuad(WindowQuadShadowBottomLeft); bottomLeftQuad[ 0 ] = WindowVertex(outerRect.x(), outerRect.bottom() - bottomLeft.height(), tx1, ty1); bottomLeftQuad[ 1 ] = WindowVertex(outerRect.x() + bottomLeft.width(), outerRect.bottom() - bottomLeft.height(), tx2, ty1); bottomLeftQuad[ 2 ] = WindowVertex(outerRect.x() + bottomLeft.width(), outerRect.bottom(), tx2, ty2); bottomLeftQuad[ 3 ] = WindowVertex(outerRect.x(), outerRect.bottom(), tx1, ty2); m_shadowQuads.append(bottomLeftQuad); tx2 = left.width()/width; ty2 = ty1; ty1 = topLeft.height()/height; WindowQuad leftQuad(WindowQuadShadowLeft); leftQuad[ 0 ] = WindowVertex(outerRect.x(), outerRect.y() + topLeft.height(), tx1, ty1); leftQuad[ 1 ] = WindowVertex(outerRect.x() + left.width(), outerRect.y() + topLeft.height(), tx2, ty1); leftQuad[ 2 ] = WindowVertex(outerRect.x() + left.width(), outerRect.bottom() - bottomLeft.height(), tx2, ty2); leftQuad[ 3 ] = WindowVertex(outerRect.x(), outerRect.bottom() - bottomLeft.height(), tx1, ty2); m_shadowQuads.append(leftQuad); } bool SceneOpenGLShadow::prepareBackend() { const QSize top(shadowPixmap(ShadowElementTop).size()); const QSize topRight(shadowPixmap(ShadowElementTopRight).size()); const QSize right(shadowPixmap(ShadowElementRight).size()); const QSize bottomRight(shadowPixmap(ShadowElementBottomRight).size()); const QSize bottom(shadowPixmap(ShadowElementBottom).size()); const QSize bottomLeft(shadowPixmap(ShadowElementBottomLeft).size()); const QSize left(shadowPixmap(ShadowElementLeft).size()); const QSize topLeft(shadowPixmap(ShadowElementTopLeft).size()); const int width = topLeft.width() + top.width() + topRight.width(); const int height = topLeft.height() + left.height() + bottomLeft.height(); QImage image(width, height, QImage::Format_ARGB32); image.fill(Qt::transparent); QPainter p; p.begin(&image); p.drawPixmap(0, 0, shadowPixmap(ShadowElementTopLeft)); p.drawPixmap(topLeft.width(), 0, shadowPixmap(ShadowElementTop)); p.drawPixmap(topLeft.width() + top.width(), 0, shadowPixmap(ShadowElementTopRight)); p.drawPixmap(0, topLeft.height(), shadowPixmap(ShadowElementLeft)); p.drawPixmap(width - right.width(), topRight.height(), shadowPixmap(ShadowElementRight)); p.drawPixmap(0, topLeft.height() + left.height(), shadowPixmap(ShadowElementBottomLeft)); p.drawPixmap(bottomLeft.width(), height - bottom.height(), shadowPixmap(ShadowElementBottom)); p.drawPixmap(bottomLeft.width() + bottom.width(), topRight.height() + right.height(), shadowPixmap(ShadowElementBottomRight)); p.end(); delete m_texture; m_texture = new GLTexture(image); return true; } } // namespace