/******************************************************************** KWin - the KDE window manager This file is part of the KDE project. Copyright (C) 2006 Lubos Lunak Copyright (C) 2009, 2010, 2011 Martin Gräßlin Based on glcompmgr code by Felix Bellaby. Using code from Compiz and Beryl. Explicit command stream synchronization based on the sample implementation by James Jones , Copyright © 2011 NVIDIA Corporation This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . *********************************************************************/ #include "scene_opengl.h" #ifdef KWIN_HAVE_EGL #include "eglonxbackend.h" #endif // KWIN_HAVE_EGL #ifndef KWIN_HAVE_OPENGLES #include "glxbackend.h" #endif // KWIN_HAVE_OPENGLES #if HAVE_WAYLAND #include "abstract_backend.h" #include "wayland_server.h" #endif // HAVE_WAYLAND #include #include #include "utils.h" #include "client.h" #include "composite.h" #include "deleted.h" #include "effects.h" #include "lanczosfilter.h" #include "main.h" #include "overlaywindow.h" #include "screens.h" #include "decorations/decoratedclient.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace KWin { extern int currentRefreshRate(); /** * SyncObject represents a fence used to synchronize operations in * the kwin command stream with operations in the X command stream. */ class SyncObject { public: enum State { Ready, TriggerSent, Waiting, Done, Resetting }; SyncObject(); ~SyncObject(); State state() const { return m_state; } void trigger(); void wait(); bool finish(); void reset(); void finishResetting(); private: State m_state; GLsync m_sync; xcb_sync_fence_t m_fence; xcb_get_input_focus_cookie_t m_reset_cookie; }; SyncObject::SyncObject() { m_state = Ready; xcb_connection_t * const c = connection(); m_fence = xcb_generate_id(c); xcb_sync_create_fence(c, rootWindow(), m_fence, false); xcb_flush(c); m_sync = glImportSyncEXT(GL_SYNC_X11_FENCE_EXT, m_fence, 0); } SyncObject::~SyncObject() { // If glDeleteSync is called before the xcb fence is signalled // the nvidia driver (the only one to implement GL_SYNC_X11_FENCE_EXT) // deadlocks waiting for the fence to be signalled. // To avoid this, make sure the fence is signalled before // deleting the sync. if (m_state == Resetting || m_state == Ready){ trigger(); // The flush is necessary! // The trigger command needs to be sent to the X server. xcb_flush(connection()); } xcb_sync_destroy_fence(connection(), m_fence); glDeleteSync(m_sync); if (m_state == Resetting) xcb_discard_reply(connection(), m_reset_cookie.sequence); } void SyncObject::trigger() { assert(m_state == Ready || m_state == Resetting); // Finish resetting the fence if necessary if (m_state == Resetting) finishResetting(); xcb_sync_trigger_fence(connection(), m_fence); m_state = TriggerSent; } void SyncObject::wait() { if (m_state != TriggerSent) return; glWaitSync(m_sync, 0, GL_TIMEOUT_IGNORED); m_state = Waiting; } bool SyncObject::finish() { if (m_state == Done) return true; // Note: It is possible that we never inserted a wait for the fence. // This can happen if we ended up not rendering the damaged // window because it is fully occluded. assert(m_state == TriggerSent || m_state == Waiting); // Check if the fence is signaled GLint value; glGetSynciv(m_sync, GL_SYNC_STATUS, 1, nullptr, &value); if (value != GL_SIGNALED) { qCDebug(KWIN_CORE) << "Waiting for X fence to finish"; // Wait for the fence to become signaled with a one second timeout const GLenum result = glClientWaitSync(m_sync, 0, 1000000000); switch (result) { case GL_TIMEOUT_EXPIRED: qCWarning(KWIN_CORE) << "Timeout while waiting for X fence"; return false; case GL_WAIT_FAILED: qCWarning(KWIN_CORE) << "glClientWaitSync() failed"; return false; } } m_state = Done; return true; } void SyncObject::reset() { assert(m_state == Done); xcb_connection_t * const c = connection(); // Send the reset request along with a sync request. // We use the cookie to ensure that the server has processed the reset // request before we trigger the fence and call glWaitSync(). // Otherwise there is a race condition between the reset finishing and // the glWaitSync() call. xcb_sync_reset_fence(c, m_fence); m_reset_cookie = xcb_get_input_focus(c); xcb_flush(c); m_state = Resetting; } void SyncObject::finishResetting() { assert(m_state == Resetting); free(xcb_get_input_focus_reply(connection(), m_reset_cookie, nullptr)); m_state = Ready; } // ----------------------------------------------------------------------- /** * SyncManager manages a set of fences used for explicit synchronization * with the X command stream. */ class SyncManager { public: enum { MaxFences = 4 }; SyncManager(); ~SyncManager(); SyncObject *nextFence(); bool updateFences(); private: std::array m_fences; int m_next; }; SyncManager::SyncManager() : m_next(0) { } SyncManager::~SyncManager() { } SyncObject *SyncManager::nextFence() { SyncObject *fence = &m_fences[m_next]; m_next = (m_next + 1) % MaxFences; return fence; } bool SyncManager::updateFences() { for (int i = 0; i < qMin(2, MaxFences - 1); i++) { const int index = (m_next + i) % MaxFences; SyncObject &fence = m_fences[index]; switch (fence.state()) { case SyncObject::Ready: break; case SyncObject::TriggerSent: case SyncObject::Waiting: if (!fence.finish()) return false; fence.reset(); break; // Should not happen in practice since we always reset the fence // after finishing it case SyncObject::Done: fence.reset(); break; case SyncObject::Resetting: fence.finishResetting(); break; } } return true; } // ----------------------------------------------------------------------- //**************************************** // SceneOpenGL //**************************************** OpenGLBackend::OpenGLBackend() : m_syncsToVBlank(false) , m_blocksForRetrace(false) , m_directRendering(false) , m_haveBufferAge(false) , m_failed(false) { } OpenGLBackend::~OpenGLBackend() { } void OpenGLBackend::setFailed(const QString &reason) { qCWarning(KWIN_CORE) << "Creating the OpenGL rendering failed: " << reason; m_failed = true; } void OpenGLBackend::idle() { if (hasPendingFlush()) { effects->makeOpenGLContextCurrent(); present(); } } void OpenGLBackend::addToDamageHistory(const QRegion ®ion) { if (m_damageHistory.count() > 10) m_damageHistory.removeLast(); m_damageHistory.prepend(region); } QRegion OpenGLBackend::accumulatedDamageHistory(int bufferAge) const { QRegion region; // Note: An age of zero means the buffer contents are undefined if (bufferAge > 0 && bufferAge <= m_damageHistory.count()) { for (int i = 0; i < bufferAge - 1; i++) region |= m_damageHistory[i]; } else { const QSize &s = screens()->size(); region = QRegion(0, 0, s.width(), s.height()); } return region; } OverlayWindow* OpenGLBackend::overlayWindow() { return NULL; } QRegion OpenGLBackend::prepareRenderingForScreen(int screenId) { // fallback to repaint complete screen return screens()->geometry(screenId); } void OpenGLBackend::endRenderingFrameForScreen(int screenId, const QRegion &damage, const QRegion &damagedRegion) { Q_UNUSED(screenId) Q_UNUSED(damage) Q_UNUSED(damagedRegion) } bool OpenGLBackend::perScreenRendering() const { return false; } /************************************************ * SceneOpenGL ***********************************************/ SceneOpenGL::SceneOpenGL(OpenGLBackend *backend, QObject *parent) : Scene(parent) , init_ok(true) , m_backend(backend) , m_syncManager(nullptr) , m_currentFence(nullptr) { if (m_backend->isFailed()) { init_ok = false; return; } if (!viewportLimitsMatched(screens()->size())) return; // perform Scene specific checks GLPlatform *glPlatform = GLPlatform::instance(); #ifndef KWIN_HAVE_OPENGLES if (!hasGLExtension(QByteArrayLiteral("GL_ARB_texture_non_power_of_two")) && !hasGLExtension(QByteArrayLiteral("GL_ARB_texture_rectangle"))) { qCCritical(KWIN_CORE) << "GL_ARB_texture_non_power_of_two and GL_ARB_texture_rectangle missing"; init_ok = false; return; // error } #endif if (glPlatform->isMesaDriver() && glPlatform->mesaVersion() < kVersionNumber(8, 0)) { qCCritical(KWIN_CORE) << "KWin requires at least Mesa 8.0 for OpenGL compositing."; init_ok = false; return; } #ifndef KWIN_HAVE_OPENGLES glDrawBuffer(GL_BACK); #endif m_debug = qstrcmp(qgetenv("KWIN_GL_DEBUG"), "1") == 0; initDebugOutput(); // set strict binding if (options->isGlStrictBindingFollowsDriver()) { options->setGlStrictBinding(!glPlatform->supports(LooseBinding)); } bool haveSyncObjects = glPlatform->isGLES() ? hasGLVersion(3, 0) : hasGLVersion(3, 2) || hasGLExtension("GL_ARB_sync"); if (hasGLExtension("GL_EXT_x11_sync_object") && haveSyncObjects) { const QByteArray useExplicitSync = qgetenv("KWIN_EXPLICIT_SYNC"); if (useExplicitSync != "0") { qCDebug(KWIN_CORE) << "Initializing fences for synchronization with the X command stream"; m_syncManager = new SyncManager; } else { qCDebug(KWIN_CORE) << "Explicit synchronization with the X command stream disabled by environment variable"; } } } static SceneOpenGL *gs_debuggedScene = nullptr; SceneOpenGL::~SceneOpenGL() { // do cleanup after initBuffer() gs_debuggedScene = nullptr; SceneOpenGL::EffectFrame::cleanup(); if (init_ok) { delete m_syncManager; // backend might be still needed for a different scene delete m_backend; } } static void scheduleVboReInit() { if (!gs_debuggedScene) return; static QPointer timer; if (!timer) { delete timer; timer = new QTimer(gs_debuggedScene); timer->setSingleShot(true); QObject::connect(timer.data(), &QTimer::timeout, gs_debuggedScene, []() { GLVertexBuffer::cleanup(); GLVertexBuffer::initStatic(); }); } timer->start(250); } void SceneOpenGL::initDebugOutput() { const bool have_KHR_debug = hasGLExtension(QByteArrayLiteral("GL_KHR_debug")); if (!have_KHR_debug && !hasGLExtension(QByteArrayLiteral("GL_ARB_debug_output"))) return; gs_debuggedScene = this; // Set the callback function auto callback = [](GLenum source, GLenum type, GLuint id, GLenum severity, GLsizei length, const GLchar *message, const GLvoid *userParam) { Q_UNUSED(source) Q_UNUSED(severity) Q_UNUSED(userParam) switch (type) { case GL_DEBUG_TYPE_ERROR: case GL_DEBUG_TYPE_UNDEFINED_BEHAVIOR: qCWarning(KWIN_CORE, "%#x: %.*s", id, length, message); break; case GL_DEBUG_TYPE_OTHER: // at least the nvidia driver seems prone to end up with invalid VBOs after // transferring them between system heap and VRAM // so we re-init them whenever this happens (typically when switching VT, resuming // from STR and XRandR events - #344326 if (strstr(message, "Buffer detailed info:") && strstr(message, "has been updated")) scheduleVboReInit(); // fall through! for general message printing case GL_DEBUG_TYPE_DEPRECATED_BEHAVIOR: case GL_DEBUG_TYPE_PORTABILITY: case GL_DEBUG_TYPE_PERFORMANCE: default: qCDebug(KWIN_CORE, "%#x: %.*s", id, length, message); break; } }; // Expoxy fails to resolve glDebugMessageCallback on GLES if (!glDebugMessageCallback) { return; } glDebugMessageCallback(callback, nullptr); // This state exists only in GL_KHR_debug if (have_KHR_debug) glEnable(GL_DEBUG_OUTPUT); #ifndef NDEBUG // Enable all debug messages glDebugMessageControl(GL_DONT_CARE, GL_DONT_CARE, GL_DONT_CARE, 0, nullptr, GL_TRUE); #else // Enable error messages glDebugMessageControl(GL_DONT_CARE, GL_DEBUG_TYPE_ERROR, GL_DONT_CARE, 0, nullptr, GL_TRUE); glDebugMessageControl(GL_DONT_CARE, GL_DEBUG_TYPE_UNDEFINED_BEHAVIOR, GL_DONT_CARE, 0, nullptr, GL_TRUE); #endif // Insert a test message const QByteArray message = QByteArrayLiteral("OpenGL debug output initialized"); glDebugMessageInsert(GL_DEBUG_SOURCE_APPLICATION, GL_DEBUG_TYPE_OTHER, 0, GL_DEBUG_SEVERITY_LOW, message.length(), message.constData()); } SceneOpenGL *SceneOpenGL::createScene(QObject *parent) { OpenGLBackend *backend = NULL; OpenGLPlatformInterface platformInterface = options->glPlatformInterface(); switch (platformInterface) { case GlxPlatformInterface: #ifndef KWIN_HAVE_OPENGLES backend = new GlxBackend(); #endif break; case EglPlatformInterface: #ifdef KWIN_HAVE_EGL #if HAVE_WAYLAND if (kwinApp()->shouldUseWaylandForCompositing()) { backend = waylandServer()->backend()->createOpenGLBackend(); } else #endif // HAVE_WAYLAND { backend = new EglOnXBackend(); } #endif // KWIN_HAVE_EGL break; default: // no backend available return NULL; } if (!backend || backend->isFailed()) { delete backend; return NULL; } SceneOpenGL *scene = NULL; // first let's try an OpenGL 2 scene if (SceneOpenGL2::supported(backend)) { scene = new SceneOpenGL2(backend, parent); if (scene->initFailed()) { delete scene; scene = NULL; } else { return scene; } } if (!scene) { if (GLPlatform::instance()->recommendedCompositor() == XRenderCompositing) { qCCritical(KWIN_CORE) << "OpenGL driver recommends XRender based compositing. Falling back to XRender."; qCCritical(KWIN_CORE) << "To overwrite the detection use the environment variable KWIN_COMPOSE"; qCCritical(KWIN_CORE) << "For more information see http://community.kde.org/KWin/Environment_Variables#KWIN_COMPOSE"; QTimer::singleShot(0, Compositor::self(), SLOT(fallbackToXRenderCompositing())); } delete backend; } return scene; } OverlayWindow *SceneOpenGL::overlayWindow() { return m_backend->overlayWindow(); } bool SceneOpenGL::syncsToVBlank() const { return m_backend->syncsToVBlank(); } bool SceneOpenGL::blocksForRetrace() const { return m_backend->blocksForRetrace(); } void SceneOpenGL::idle() { m_backend->idle(); Scene::idle(); } bool SceneOpenGL::initFailed() const { return !init_ok; } #ifndef KWIN_HAVE_OPENGLES void SceneOpenGL::copyPixels(const QRegion ®ion) { const int height = screens()->size().height(); foreach (const QRect &r, region.rects()) { const int x0 = r.x(); const int y0 = height - r.y() - r.height(); const int x1 = r.x() + r.width(); const int y1 = height - r.y(); glBlitFramebuffer(x0, y0, x1, y1, x0, y0, x1, y1, GL_COLOR_BUFFER_BIT, GL_NEAREST); } } #endif #ifndef KWIN_HAVE_OPENGLES # define GL_GUILTY_CONTEXT_RESET_KWIN GL_GUILTY_CONTEXT_RESET_ARB # define GL_INNOCENT_CONTEXT_RESET_KWIN GL_INNOCENT_CONTEXT_RESET_ARB # define GL_UNKNOWN_CONTEXT_RESET_KWIN GL_UNKNOWN_CONTEXT_RESET_ARB #else # define GL_GUILTY_CONTEXT_RESET_KWIN GL_GUILTY_CONTEXT_RESET_EXT # define GL_INNOCENT_CONTEXT_RESET_KWIN GL_INNOCENT_CONTEXT_RESET_EXT # define GL_UNKNOWN_CONTEXT_RESET_KWIN GL_UNKNOWN_CONTEXT_RESET_EXT #endif void SceneOpenGL::handleGraphicsReset(GLenum status) { switch (status) { case GL_GUILTY_CONTEXT_RESET_KWIN: qCDebug(KWIN_CORE) << "A graphics reset attributable to the current GL context occurred."; break; case GL_INNOCENT_CONTEXT_RESET_KWIN: qCDebug(KWIN_CORE) << "A graphics reset not attributable to the current GL context occurred."; break; case GL_UNKNOWN_CONTEXT_RESET_KWIN: qCDebug(KWIN_CORE) << "A graphics reset of an unknown cause occurred."; break; default: break; } QElapsedTimer timer; timer.start(); // Wait until the reset is completed or max 10 seconds while (timer.elapsed() < 10000 && glGetGraphicsResetStatus() != GL_NO_ERROR) usleep(50); qCDebug(KWIN_CORE) << "Attempting to reset compositing."; QMetaObject::invokeMethod(this, "resetCompositing", Qt::QueuedConnection); KNotification::event(QStringLiteral("graphicsreset"), i18n("Desktop effects were restarted due to a graphics reset")); } void SceneOpenGL::triggerFence() { if (m_syncManager) { m_currentFence = m_syncManager->nextFence(); m_currentFence->trigger(); } } void SceneOpenGL::insertWait() { if (m_currentFence && m_currentFence->state() != SyncObject::Waiting) { m_currentFence->wait(); } } qint64 SceneOpenGL::paint(QRegion damage, ToplevelList toplevels) { // actually paint the frame, flushed with the NEXT frame createStackingOrder(toplevels); // After this call, updateRegion will contain the damaged region in the // back buffer. This is the region that needs to be posted to repair // the front buffer. It doesn't include the additional damage returned // by prepareRenderingFrame(). validRegion is the region that has been // repainted, and may be larger than updateRegion. QRegion updateRegion, validRegion; if (m_backend->perScreenRendering()) { // trigger start render timer m_backend->prepareRenderingFrame(); for (int i = 0; i < screens()->count(); ++i) { const QRect &geo = screens()->geometry(i); QRegion update; QRegion valid; // prepare rendering makes context current on the output QRegion repaint = m_backend->prepareRenderingForScreen(i); const GLenum status = glGetGraphicsResetStatus(); if (status != GL_NO_ERROR) { handleGraphicsReset(status); return 0; } int mask = 0; paintScreen(&mask, damage.intersected(geo), repaint, &update, &valid); // call generic implementation GLVertexBuffer::streamingBuffer()->endOfFrame(); m_backend->endRenderingFrameForScreen(i, valid, update); GLVertexBuffer::streamingBuffer()->framePosted(); } } else { m_backend->makeCurrent(); QRegion repaint = m_backend->prepareRenderingFrame(); const GLenum status = glGetGraphicsResetStatus(); if (status != GL_NO_ERROR) { handleGraphicsReset(status); return 0; } int mask = 0; paintScreen(&mask, damage, repaint, &updateRegion, &validRegion); // call generic implementation #ifndef KWIN_HAVE_OPENGLES const QSize &screenSize = screens()->size(); const QRegion displayRegion(0, 0, screenSize.width(), screenSize.height()); // copy dirty parts from front to backbuffer if (!m_backend->supportsBufferAge() && options->glPreferBufferSwap() == Options::CopyFrontBuffer && validRegion != displayRegion) { glReadBuffer(GL_FRONT); copyPixels(displayRegion - validRegion); glReadBuffer(GL_BACK); validRegion = displayRegion; } #endif GLVertexBuffer::streamingBuffer()->endOfFrame(); m_backend->endRenderingFrame(validRegion, updateRegion); GLVertexBuffer::streamingBuffer()->framePosted(); } if (m_currentFence) { if (!m_syncManager->updateFences()) { qCDebug(KWIN_CORE) << "Aborting explicit synchronization with the X command stream."; qCDebug(KWIN_CORE) << "Future frames will be rendered unsynchronized."; delete m_syncManager; m_syncManager = nullptr; } m_currentFence = nullptr; } // do cleanup clearStackingOrder(); return m_backend->renderTime(); } QMatrix4x4 SceneOpenGL::transformation(int mask, const ScreenPaintData &data) const { QMatrix4x4 matrix; if (!(mask & PAINT_SCREEN_TRANSFORMED)) return matrix; matrix.translate(data.translation()); data.scale().applyTo(&matrix); if (data.rotationAngle() == 0.0) return matrix; // Apply the rotation // cannot use data.rotation->applyTo(&matrix) as QGraphicsRotation uses projectedRotate to map back to 2D matrix.translate(data.rotationOrigin()); const QVector3D axis = data.rotationAxis(); matrix.rotate(data.rotationAngle(), axis.x(), axis.y(), axis.z()); matrix.translate(-data.rotationOrigin()); return matrix; } void SceneOpenGL::paintBackground(QRegion region) { PaintClipper pc(region); if (!PaintClipper::clip()) { glClearColor(0, 0, 0, 1); glClear(GL_COLOR_BUFFER_BIT); return; } if (pc.clip() && pc.paintArea().isEmpty()) return; // no background to paint QVector verts; for (PaintClipper::Iterator iterator; !iterator.isDone(); iterator.next()) { QRect r = iterator.boundingRect(); verts << r.x() + r.width() << r.y(); verts << r.x() << r.y(); verts << r.x() << r.y() + r.height(); verts << r.x() << r.y() + r.height(); verts << r.x() + r.width() << r.y() + r.height(); verts << r.x() + r.width() << r.y(); } doPaintBackground(verts); } void SceneOpenGL::extendPaintRegion(QRegion ®ion, bool opaqueFullscreen) { if (m_backend->supportsBufferAge()) return; const QSize &screenSize = screens()->size(); if (options->glPreferBufferSwap() == Options::ExtendDamage) { // only Extend "large" repaints const QRegion displayRegion(0, 0, screenSize.width(), screenSize.height()); uint damagedPixels = 0; const uint fullRepaintLimit = (opaqueFullscreen?0.49f:0.748f)*screenSize.width()*screenSize.height(); // 16:9 is 75% of 4:3 and 2.55:1 is 49.01% of 5:4 // (5:4 is the most square format and 2.55:1 is Cinemascope55 - the widest ever shot // movie aspect - two times ;-) It's a Fox format, though, so maybe we want to restrict // to 2.20:1 - Panavision - which has actually been used for interesting movies ...) // would be 57% of 5/4 foreach (const QRect &r, region.rects()) { // damagedPixels += r.width() * r.height(); // combined window damage test damagedPixels = r.width() * r.height(); // experimental single window damage testing if (damagedPixels > fullRepaintLimit) { region = displayRegion; return; } } } else if (options->glPreferBufferSwap() == Options::PaintFullScreen) { // forced full rePaint region = QRegion(0, 0, screenSize.width(), screenSize.height()); } } SceneOpenGL::Texture *SceneOpenGL::createTexture() { return new Texture(m_backend); } bool SceneOpenGL::viewportLimitsMatched(const QSize &size) const { GLint limit[2]; glGetIntegerv(GL_MAX_VIEWPORT_DIMS, limit); if (limit[0] < size.width() || limit[1] < size.height()) { QMetaObject::invokeMethod(Compositor::self(), "suspend", Qt::QueuedConnection, Q_ARG(Compositor::SuspendReason, Compositor::AllReasonSuspend)); const QString message = i18n("

OpenGL desktop effects not possible

" "Your system cannot perform OpenGL Desktop Effects at the " "current resolution

" "You can try to select the XRender backend, but it " "might be very slow for this resolution as well.
" "Alternatively, lower the combined resolution of all screens " "to %1x%2 ", limit[0], limit[1]); const QString details = i18n("The demanded resolution exceeds the GL_MAX_VIEWPORT_DIMS " "limitation of your GPU and is therefore not compatible " "with the OpenGL compositor.
" "XRender does not know such limitation, but the performance " "will usually be impacted by the hardware limitations that " "restrict the OpenGL viewport size."); const int oldTimeout = QDBusConnection::sessionBus().interface()->timeout(); QDBusConnection::sessionBus().interface()->setTimeout(500); if (QDBusConnection::sessionBus().interface()->isServiceRegistered(QStringLiteral("org.kde.kwinCompositingDialog")).value()) { QDBusInterface dialog( QStringLiteral("org.kde.kwinCompositingDialog"), QStringLiteral("/CompositorSettings"), QStringLiteral("org.kde.kwinCompositingDialog") ); dialog.asyncCall(QStringLiteral("warn"), message, details, QString()); } else { const QString args = QStringLiteral("warn ") + QString::fromUtf8(message.toLocal8Bit().toBase64()) + QStringLiteral(" details ") + QString::fromUtf8(details.toLocal8Bit().toBase64()); KProcess::startDetached(QStringLiteral("kcmshell5"), QStringList() << QStringLiteral("kwincompositing") << QStringLiteral("--args") << args); } QDBusConnection::sessionBus().interface()->setTimeout(oldTimeout); return false; } glGetIntegerv(GL_MAX_TEXTURE_SIZE, limit); if (limit[0] < size.width() || limit[0] < size.height()) { KConfig cfg(QStringLiteral("kwin_dialogsrc")); if (!KConfigGroup(&cfg, "Notification Messages").readEntry("max_tex_warning", true)) return true; const QString message = i18n("

OpenGL desktop effects might be unusable

" "OpenGL Desktop Effects at the current resolution are supported " "but might be exceptionally slow.
" "Also large windows will turn entirely black.

" "Consider to suspend compositing, switch to the XRender backend " "or lower the resolution to %1x%1." , limit[0]); const QString details = i18n("The demanded resolution exceeds the GL_MAX_TEXTURE_SIZE " "limitation of your GPU, thus windows of that size cannot be " "assigned to textures and will be entirely black.
" "Also this limit will often be a performance level barrier despite " "below GL_MAX_VIEWPORT_DIMS, because the driver might fall back to " "software rendering in this case."); const int oldTimeout = QDBusConnection::sessionBus().interface()->timeout(); QDBusConnection::sessionBus().interface()->setTimeout(500); if (QDBusConnection::sessionBus().interface()->isServiceRegistered(QStringLiteral("org.kde.kwinCompositingDialog")).value()) { QDBusInterface dialog( QStringLiteral("org.kde.kwinCompositingDialog"), QStringLiteral("/CompositorSettings"), QStringLiteral("org.kde.kwinCompositingDialog") ); dialog.asyncCall(QStringLiteral("warn"), message, details, QStringLiteral("kwin_dialogsrc:max_tex_warning")); } else { const QString args = QStringLiteral("warn ") + QString::fromUtf8(message.toLocal8Bit().toBase64()) + QStringLiteral(" details ") + QString::fromUtf8(details.toLocal8Bit().toBase64()) + QStringLiteral(" dontagain kwin_dialogsrc:max_tex_warning"); KProcess::startDetached(QStringLiteral("kcmshell5"), QStringList() << QStringLiteral("kwincompositing") << QStringLiteral("--args") << args); } QDBusConnection::sessionBus().interface()->setTimeout(oldTimeout); } return true; } void SceneOpenGL::screenGeometryChanged(const QSize &size) { if (!viewportLimitsMatched(size)) return; Scene::screenGeometryChanged(size); glViewport(0,0, size.width(), size.height()); m_backend->screenGeometryChanged(size); ShaderManager::setVirtualScreenSize(size); GLRenderTarget::setVirtualScreenSize(size); GLVertexBuffer::setVirtualScreenSize(size); ShaderManager::instance()->resetAllShaders(); } void SceneOpenGL::paintDesktop(int desktop, int mask, const QRegion ®ion, ScreenPaintData &data) { const QRect r = region.boundingRect(); glEnable(GL_SCISSOR_TEST); glScissor(r.x(), screens()->size().height() - r.y() - r.height(), r.width(), r.height()); KWin::Scene::paintDesktop(desktop, mask, region, data); glDisable(GL_SCISSOR_TEST); } bool SceneOpenGL::makeOpenGLContextCurrent() { return m_backend->makeCurrent(); } void SceneOpenGL::doneOpenGLContextCurrent() { m_backend->doneCurrent(); } Scene::EffectFrame *SceneOpenGL::createEffectFrame(EffectFrameImpl *frame) { return new SceneOpenGL::EffectFrame(frame, this); } Shadow *SceneOpenGL::createShadow(Toplevel *toplevel) { return new SceneOpenGLShadow(toplevel); } Decoration::Renderer *SceneOpenGL::createDecorationRenderer(Decoration::DecoratedClientImpl *impl) { return new SceneOpenGLDecorationRenderer(impl); } //**************************************** // SceneOpenGL2 //**************************************** bool SceneOpenGL2::supported(OpenGLBackend *backend) { const QByteArray forceEnv = qgetenv("KWIN_COMPOSE"); if (!forceEnv.isEmpty()) { if (qstrcmp(forceEnv, "O2") == 0) { qCDebug(KWIN_CORE) << "OpenGL 2 compositing enforced by environment variable"; return true; } else { // OpenGL 2 disabled by environment variable return false; } } if (!backend->isDirectRendering()) { return false; } if (GLPlatform::instance()->recommendedCompositor() < OpenGL2Compositing) { qCDebug(KWIN_CORE) << "Driver does not recommend OpenGL 2 compositing"; #ifndef KWIN_HAVE_OPENGLES return false; #endif } return true; } SceneOpenGL2::SceneOpenGL2(OpenGLBackend *backend, QObject *parent) : SceneOpenGL(backend, parent) , m_lanczosFilter(NULL) , m_colorCorrection() { if (!init_ok) { // base ctor already failed return; } // We only support the OpenGL 2+ shader API, not GL_ARB_shader_objects if (!hasGLVersion(2, 0)) { qDebug() << "OpenGL 2.0 is not supported"; init_ok = false; return; } // Initialize color correction before the shaders slotColorCorrectedChanged(false); connect(options, SIGNAL(colorCorrectedChanged()), this, SLOT(slotColorCorrectedChanged()), Qt::QueuedConnection); const QSize &s = screens()->size(); ShaderManager::setVirtualScreenSize(s); GLRenderTarget::setVirtualScreenSize(s); GLVertexBuffer::setVirtualScreenSize(s); if (!ShaderManager::instance()->isValid()) { qCDebug(KWIN_CORE) << "No Scene Shaders available"; init_ok = false; return; } // push one shader on the stack so that one is always bound ShaderManager::instance()->pushShader(ShaderTrait::MapTexture); if (checkGLError("Init")) { qCCritical(KWIN_CORE) << "OpenGL 2 compositing setup failed"; init_ok = false; return; // error } #ifndef KWIN_HAVE_OPENGLES // It is not legal to not have a vertex array object bound in a core context if (hasGLExtension(QByteArrayLiteral("GL_ARB_vertex_array_object"))) { glGenVertexArrays(1, &vao); glBindVertexArray(vao); } #endif if (!ShaderManager::instance()->selfTest()) { qCCritical(KWIN_CORE) << "ShaderManager self test failed"; init_ok = false; return; } qCDebug(KWIN_CORE) << "OpenGL 2 compositing successfully initialized"; init_ok = true; } SceneOpenGL2::~SceneOpenGL2() { } QMatrix4x4 SceneOpenGL2::createProjectionMatrix() const { // Create a perspective projection with a 60° field-of-view, // and an aspect ratio of 1.0. const float fovY = 60.0f; const float aspect = 1.0f; const float zNear = 0.1f; const float zFar = 100.0f; const float yMax = zNear * std::tan(fovY * M_PI / 360.0f); const float yMin = -yMax; const float xMin = yMin * aspect; const float xMax = yMax * aspect; QMatrix4x4 projection; projection.frustum(xMin, xMax, yMin, yMax, zNear, zFar); // Create a second matrix that transforms screen coordinates // to world coordinates. const float scaleFactor = 1.1 * std::tan(fovY * M_PI / 360.0f) / yMax; const QSize size = screens()->size(); QMatrix4x4 matrix; matrix.translate(xMin * scaleFactor, yMax * scaleFactor, -1.1); matrix.scale( (xMax - xMin) * scaleFactor / size.width(), -(yMax - yMin) * scaleFactor / size.height(), 0.001); // Combine the matrices return projection * matrix; } void SceneOpenGL2::paintSimpleScreen(int mask, QRegion region) { m_projectionMatrix = createProjectionMatrix(); m_screenProjectionMatrix = m_projectionMatrix; Scene::paintSimpleScreen(mask, region); } void SceneOpenGL2::paintGenericScreen(int mask, ScreenPaintData data) { const QMatrix4x4 screenMatrix = transformation(mask, data); const QMatrix4x4 pMatrix = createProjectionMatrix(); m_projectionMatrix = pMatrix; m_screenProjectionMatrix = pMatrix * screenMatrix; // ### Remove the following two lines when there are no more users of the old shader API ShaderBinder binder(ShaderManager::GenericShader); binder.shader()->setUniform(GLShader::ScreenTransformation, screenMatrix); Scene::paintGenericScreen(mask, data); } void SceneOpenGL2::paintDesktop(int desktop, int mask, const QRegion ®ion, ScreenPaintData &data) { ShaderBinder binder(ShaderManager::GenericShader); GLShader *shader = binder.shader(); QMatrix4x4 screenTransformation = shader->getUniformMatrix4x4("screenTransformation"); KWin::SceneOpenGL::paintDesktop(desktop, mask, region, data); shader->setUniform(GLShader::ScreenTransformation, screenTransformation); } void SceneOpenGL2::doPaintBackground(const QVector< float >& vertices) { GLVertexBuffer *vbo = GLVertexBuffer::streamingBuffer(); vbo->reset(); vbo->setUseColor(true); vbo->setData(vertices.count() / 2, 2, vertices.data(), NULL); ShaderBinder binder(ShaderManager::ColorShader); binder.shader()->setUniform(GLShader::Offset, QVector2D(0, 0)); vbo->render(GL_TRIANGLES); } Scene::Window *SceneOpenGL2::createWindow(Toplevel *t) { SceneOpenGL2Window *w = new SceneOpenGL2Window(t); w->setScene(this); return w; } void SceneOpenGL2::finalDrawWindow(EffectWindowImpl* w, int mask, QRegion region, WindowPaintData& data) { if (!m_colorCorrection.isNull() && m_colorCorrection->isEnabled()) { // Split the painting for separate screens const int numScreens = screens()->count(); for (int screen = 0; screen < numScreens; ++ screen) { QRegion regionForScreen(region); if (numScreens > 1) regionForScreen = region.intersected(screens()->geometry(screen)); data.setScreen(screen); performPaintWindow(w, mask, regionForScreen, data); } } else { performPaintWindow(w, mask, region, data); } } void SceneOpenGL2::performPaintWindow(EffectWindowImpl* w, int mask, QRegion region, WindowPaintData& data) { if (mask & PAINT_WINDOW_LANCZOS) { if (!m_lanczosFilter) { m_lanczosFilter = new LanczosFilter(this); // recreate the lanczos filter when the screen gets resized connect(screens(), SIGNAL(changed()), SLOT(resetLanczosFilter())); } m_lanczosFilter->performPaint(w, mask, region, data); } else w->sceneWindow()->performPaint(mask, region, data); } void SceneOpenGL2::resetLanczosFilter() { // TODO: Qt5 - replace by a lambda slot delete m_lanczosFilter; m_lanczosFilter = NULL; } ColorCorrection *SceneOpenGL2::colorCorrection() { return m_colorCorrection.data(); } void SceneOpenGL2::slotColorCorrectedChanged(bool recreateShaders) { qCDebug(KWIN_CORE) << "Color correction:" << options->isColorCorrected(); if (options->isColorCorrected() && m_colorCorrection.isNull()) { m_colorCorrection.reset(new ColorCorrection(this)); if (!m_colorCorrection->setEnabled(true)) { m_colorCorrection.reset(); return; } connect(m_colorCorrection.data(), SIGNAL(changed()), Compositor::self(), SLOT(addRepaintFull())); connect(m_colorCorrection.data(), SIGNAL(errorOccured()), options, SLOT(setColorCorrected()), Qt::QueuedConnection); if (recreateShaders) { // Reload all shaders ShaderManager::cleanup(); ShaderManager::instance(); } } else { m_colorCorrection.reset(); } Compositor::self()->addRepaintFull(); } //**************************************** // SceneOpenGL::Texture //**************************************** SceneOpenGL::Texture::Texture(OpenGLBackend *backend) : GLTexture(*backend->createBackendTexture(this)) { } SceneOpenGL::Texture::~Texture() { } SceneOpenGL::Texture& SceneOpenGL::Texture::operator = (const SceneOpenGL::Texture& tex) { d_ptr = tex.d_ptr; return *this; } void SceneOpenGL::Texture::discard() { d_ptr = d_func()->backend()->createBackendTexture(this); } bool SceneOpenGL::Texture::load(WindowPixmap *pixmap) { if (!pixmap->isValid()) { return false; } // decrease the reference counter for the old texture d_ptr = d_func()->backend()->createBackendTexture(this); //new TexturePrivate(); Q_D(Texture); return d->loadTexture(pixmap); } void SceneOpenGL::Texture::updateFromPixmap(WindowPixmap *pixmap) { Q_D(Texture); d->updateTexture(pixmap); } //**************************************** // SceneOpenGL::Texture //**************************************** SceneOpenGL::TexturePrivate::TexturePrivate() { } SceneOpenGL::TexturePrivate::~TexturePrivate() { } void SceneOpenGL::TexturePrivate::updateTexture(WindowPixmap *pixmap) { Q_UNUSED(pixmap) } //**************************************** // SceneOpenGL::Window //**************************************** SceneOpenGL::Window::Window(Toplevel* c) : Scene::Window(c) , m_scene(NULL) { } SceneOpenGL::Window::~Window() { } static SceneOpenGL::Texture *s_frameTexture = NULL; // Bind the window pixmap to an OpenGL texture. bool SceneOpenGL::Window::bindTexture() { s_frameTexture = NULL; OpenGLWindowPixmap *pixmap = windowPixmap(); if (!pixmap) { return false; } s_frameTexture = pixmap->texture(); if (pixmap->isDiscarded()) { return !pixmap->texture()->isNull(); } if (!window()->damage().isEmpty()) m_scene->insertWait(); return pixmap->bind(); } QMatrix4x4 SceneOpenGL::Window::transformation(int mask, const WindowPaintData &data) const { QMatrix4x4 matrix; matrix.translate(x(), y()); if (!(mask & PAINT_WINDOW_TRANSFORMED)) return matrix; matrix.translate(data.translation()); data.scale().applyTo(&matrix); if (data.rotationAngle() == 0.0) return matrix; // Apply the rotation // cannot use data.rotation.applyTo(&matrix) as QGraphicsRotation uses projectedRotate to map back to 2D matrix.translate(data.rotationOrigin()); const QVector3D axis = data.rotationAxis(); matrix.rotate(data.rotationAngle(), axis.x(), axis.y(), axis.z()); matrix.translate(-data.rotationOrigin()); return matrix; } bool SceneOpenGL::Window::beginRenderWindow(int mask, const QRegion ®ion, WindowPaintData &data) { if (region.isEmpty()) return false; m_hardwareClipping = region != infiniteRegion() && (mask & PAINT_WINDOW_TRANSFORMED) && !(mask & PAINT_SCREEN_TRANSFORMED); if (region != infiniteRegion() && !m_hardwareClipping) { WindowQuadList quads; quads.reserve(data.quads.count()); const QRegion filterRegion = region.translated(-x(), -y()); // split all quads in bounding rect with the actual rects in the region foreach (const WindowQuad &quad, data.quads) { foreach (const QRect &r, filterRegion.rects()) { const QRectF rf(r); const QRectF quadRect(QPointF(quad.left(), quad.top()), QPointF(quad.right(), quad.bottom())); const QRectF &intersected = rf.intersected(quadRect); if (intersected.isValid()) { if (quadRect == intersected) { // case 1: completely contains, include and do not check other rects quads << quad; break; } // case 2: intersection quads << quad.makeSubQuad(intersected.left(), intersected.top(), intersected.right(), intersected.bottom()); } } } data.quads = quads; } if (data.quads.isEmpty()) return false; if (!bindTexture() || !s_frameTexture) { return false; } if (m_hardwareClipping) { glEnable(GL_SCISSOR_TEST); } // Update the texture filter if (options->glSmoothScale() != 0 && (mask & (PAINT_WINDOW_TRANSFORMED | PAINT_SCREEN_TRANSFORMED))) filter = ImageFilterGood; else filter = ImageFilterFast; s_frameTexture->setFilter(filter == ImageFilterGood ? GL_LINEAR : GL_NEAREST); const GLVertexAttrib attribs[] = { { VA_Position, 2, GL_FLOAT, offsetof(GLVertex2D, position) }, { VA_TexCoord, 2, GL_FLOAT, offsetof(GLVertex2D, texcoord) }, }; GLVertexBuffer *vbo = GLVertexBuffer::streamingBuffer(); vbo->reset(); vbo->setAttribLayout(attribs, 2, sizeof(GLVertex2D)); return true; } void SceneOpenGL::Window::endRenderWindow() { if (m_hardwareClipping) { glDisable(GL_SCISSOR_TEST); } } GLTexture *SceneOpenGL::Window::getDecorationTexture() const { if (toplevel->isClient()) { Client *client = static_cast(toplevel); if (client->noBorder()) { return nullptr; } if (!client->isDecorated()) { return nullptr; } if (SceneOpenGLDecorationRenderer *renderer = static_cast(client->decoratedClient()->renderer())) { renderer->render(); return renderer->texture(); } } else if (toplevel->isDeleted()) { Deleted *deleted = static_cast(toplevel); if (!deleted->wasClient() || deleted->noBorder()) { return nullptr; } if (const SceneOpenGLDecorationRenderer *renderer = static_cast(deleted->decorationRenderer())) { return renderer->texture(); } } return nullptr; } WindowPixmap* SceneOpenGL::Window::createWindowPixmap() { return new OpenGLWindowPixmap(this, m_scene); } //*************************************** // SceneOpenGL2Window //*************************************** SceneOpenGL2Window::SceneOpenGL2Window(Toplevel *c) : SceneOpenGL::Window(c) , m_blendingEnabled(false) { } SceneOpenGL2Window::~SceneOpenGL2Window() { } QVector4D SceneOpenGL2Window::modulate(float opacity, float brightness) const { const float a = opacity; const float rgb = opacity * brightness; return QVector4D(rgb, rgb, rgb, a); } void SceneOpenGL2Window::setBlendEnabled(bool enabled) { if (enabled && !m_blendingEnabled) glEnable(GL_BLEND); else if (!enabled && m_blendingEnabled) glDisable(GL_BLEND); m_blendingEnabled = enabled; } void SceneOpenGL2Window::setupLeafNodes(LeafNode *nodes, const WindowQuadList *quads, const WindowPaintData &data) { if (!quads[ShadowLeaf].isEmpty()) { nodes[ShadowLeaf].texture = static_cast(m_shadow)->shadowTexture(); nodes[ShadowLeaf].opacity = data.opacity(); nodes[ShadowLeaf].hasAlpha = true; nodes[ShadowLeaf].coordinateType = NormalizedCoordinates; } if (!quads[DecorationLeaf].isEmpty()) { nodes[DecorationLeaf].texture = getDecorationTexture(); nodes[DecorationLeaf].opacity = data.opacity(); nodes[DecorationLeaf].hasAlpha = true; nodes[DecorationLeaf].coordinateType = UnnormalizedCoordinates; } nodes[ContentLeaf].texture = s_frameTexture; nodes[ContentLeaf].hasAlpha = !isOpaque(); // TODO: ARGB crsoofading is atm. a hack, playing on opacities for two dumb SrcOver operations // Should be a shader if (data.crossFadeProgress() != 1.0 && (data.opacity() < 0.95 || toplevel->hasAlpha())) { const float opacity = 1.0 - data.crossFadeProgress(); nodes[ContentLeaf].opacity = data.opacity() * (1 - pow(opacity, 1.0f + 2.0f * data.opacity())); } else { nodes[ContentLeaf].opacity = data.opacity(); } nodes[ContentLeaf].coordinateType = UnnormalizedCoordinates; if (data.crossFadeProgress() != 1.0) { OpenGLWindowPixmap *previous = previousWindowPixmap(); nodes[PreviousContentLeaf].texture = previous ? previous->texture() : NULL; nodes[PreviousContentLeaf].hasAlpha = !isOpaque(); nodes[PreviousContentLeaf].opacity = data.opacity() * (1.0 - data.crossFadeProgress()); nodes[PreviousContentLeaf].coordinateType = NormalizedCoordinates; } } QMatrix4x4 SceneOpenGL2Window::modelViewProjectionMatrix(int mask, const WindowPaintData &data) const { SceneOpenGL2 *scene = static_cast(m_scene); const QMatrix4x4 pMatrix = data.projectionMatrix(); const QMatrix4x4 mvMatrix = data.modelViewMatrix(); // An effect may want to override the default projection matrix in some cases, // such as when it is rendering a window on a render target that doesn't have // the same dimensions as the default framebuffer. // // Note that the screen transformation is not applied here. if (!pMatrix.isIdentity()) return pMatrix * mvMatrix; // If an effect has specified a model-view matrix, we multiply that matrix // with the default projection matrix. If the effect hasn't specified a // model-view matrix, mvMatrix will be the identity matrix. if (mask & Scene::PAINT_SCREEN_TRANSFORMED) return scene->screenProjectionMatrix() * mvMatrix; return scene->projectionMatrix() * mvMatrix; } void SceneOpenGL2Window::performPaint(int mask, QRegion region, WindowPaintData data) { if (!beginRenderWindow(mask, region, data)) return; SceneOpenGL2 *scene = static_cast(m_scene); const QMatrix4x4 windowMatrix = transformation(mask, data); const QMatrix4x4 mvpMatrix = modelViewProjectionMatrix(mask, data) * windowMatrix; GLShader *shader = data.shader; if (!shader) { ShaderTraits traits = ShaderTrait::MapTexture; if (data.opacity() != 1.0 || data.brightness() != 1.0 || data.crossFadeProgress() != 1.0) traits |= ShaderTrait::Modulate; if (data.saturation() != 1.0) traits |= ShaderTrait::AdjustSaturation; shader = ShaderManager::instance()->pushShader(traits); shader->setUniform(GLShader::ModelViewProjectionMatrix, mvpMatrix); } if (ColorCorrection *cc = scene->colorCorrection()) { cc->setupForOutput(data.screen()); } // ### Remove the following line when there are no more users of the old shader API shader->setUniform(GLShader::WindowTransformation, windowMatrix); shader->setUniform(GLShader::Saturation, data.saturation()); const GLenum filter = (mask & (Effect::PAINT_WINDOW_TRANSFORMED | Effect::PAINT_SCREEN_TRANSFORMED)) && options->glSmoothScale() != 0 ? GL_LINEAR : GL_NEAREST; WindowQuadList quads[LeafCount]; // Split the quads into separate lists for each type foreach (const WindowQuad &quad, data.quads) { switch (quad.type()) { case WindowQuadDecoration: quads[DecorationLeaf].append(quad); continue; case WindowQuadContents: quads[ContentLeaf].append(quad); continue; case WindowQuadShadow: quads[ShadowLeaf].append(quad); continue; default: continue; } } if (data.crossFadeProgress() != 1.0) { OpenGLWindowPixmap *previous = previousWindowPixmap(); if (previous) { const QRect &oldGeometry = previous->contentsRect(); for (const WindowQuad &quad : quads[ContentLeaf]) { // we need to create new window quads with normalize texture coordinates // normal quads divide the x/y position by width/height. This would not work as the texture // is larger than the visible content in case of a decorated Client resulting in garbage being shown. // So we calculate the normalized texture coordinate in the Client's new content space and map it to // the previous Client's content space. WindowQuad newQuad(WindowQuadContents); for (int i = 0; i < 4; ++i) { const qreal xFactor = qreal(quad[i].textureX() - toplevel->clientPos().x())/qreal(toplevel->clientSize().width()); const qreal yFactor = qreal(quad[i].textureY() - toplevel->clientPos().y())/qreal(toplevel->clientSize().height()); WindowVertex vertex(quad[i].x(), quad[i].y(), (xFactor * oldGeometry.width() + oldGeometry.x())/qreal(previous->size().width()), (yFactor * oldGeometry.height() + oldGeometry.y())/qreal(previous->size().height())); newQuad[i] = vertex; } quads[PreviousContentLeaf].append(newQuad); } } } const bool indexedQuads = GLVertexBuffer::supportsIndexedQuads(); const GLenum primitiveType = indexedQuads ? GL_QUADS : GL_TRIANGLES; const int verticesPerQuad = indexedQuads ? 4 : 6; const size_t size = verticesPerQuad * (quads[0].count() + quads[1].count() + quads[2].count() + quads[3].count()) * sizeof(GLVertex2D); GLVertexBuffer *vbo = GLVertexBuffer::streamingBuffer(); GLVertex2D *map = (GLVertex2D *) vbo->map(size); LeafNode nodes[LeafCount]; setupLeafNodes(nodes, quads, data); for (int i = 0, v = 0; i < LeafCount; i++) { if (quads[i].isEmpty() || !nodes[i].texture) continue; nodes[i].firstVertex = v; nodes[i].vertexCount = quads[i].count() * verticesPerQuad; const QMatrix4x4 matrix = nodes[i].texture->matrix(nodes[i].coordinateType); quads[i].makeInterleavedArrays(primitiveType, &map[v], matrix); v += quads[i].count() * verticesPerQuad; } vbo->unmap(); vbo->bindArrays(); // Make sure the blend function is set up correctly in case we will be doing blending glBlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA); float opacity = -1.0; for (int i = 0; i < LeafCount; i++) { if (nodes[i].vertexCount == 0) continue; setBlendEnabled(nodes[i].hasAlpha || nodes[i].opacity < 1.0); if (opacity != nodes[i].opacity) { shader->setUniform(GLShader::ModulationConstant, modulate(nodes[i].opacity, data.brightness())); opacity = nodes[i].opacity; } nodes[i].texture->setFilter(filter); nodes[i].texture->setWrapMode(GL_CLAMP_TO_EDGE); nodes[i].texture->bind(); vbo->draw(region, primitiveType, nodes[i].firstVertex, nodes[i].vertexCount, m_hardwareClipping); } vbo->unbindArrays(); setBlendEnabled(false); if (!data.shader) ShaderManager::instance()->popShader(); endRenderWindow(); } //**************************************** // OpenGLWindowPixmap //**************************************** OpenGLWindowPixmap::OpenGLWindowPixmap(Scene::Window *window, SceneOpenGL* scene) : WindowPixmap(window) , m_texture(scene->createTexture()) { } OpenGLWindowPixmap::~OpenGLWindowPixmap() { } bool OpenGLWindowPixmap::bind() { if (!m_texture->isNull()) { if (!toplevel()->damage().isEmpty()) { #if HAVE_WAYLAND updateBuffer(); m_texture->updateFromPixmap(this); #endif // mipmaps need to be updated m_texture->setDirty(); toplevel()->resetDamage(); } return true; } if (!isValid()) { return false; } bool success = m_texture->load(this); if (success) toplevel()->resetDamage(); else qCDebug(KWIN_CORE) << "Failed to bind window"; return success; } //**************************************** // SceneOpenGL::EffectFrame //**************************************** GLTexture* SceneOpenGL::EffectFrame::m_unstyledTexture = NULL; QPixmap* SceneOpenGL::EffectFrame::m_unstyledPixmap = NULL; SceneOpenGL::EffectFrame::EffectFrame(EffectFrameImpl* frame, SceneOpenGL *scene) : Scene::EffectFrame(frame) , m_texture(NULL) , m_textTexture(NULL) , m_oldTextTexture(NULL) , m_textPixmap(NULL) , m_iconTexture(NULL) , m_oldIconTexture(NULL) , m_selectionTexture(NULL) , m_unstyledVBO(NULL) , m_scene(scene) { if (m_effectFrame->style() == EffectFrameUnstyled && !m_unstyledTexture) { updateUnstyledTexture(); } } SceneOpenGL::EffectFrame::~EffectFrame() { delete m_texture; delete m_textTexture; delete m_textPixmap; delete m_oldTextTexture; delete m_iconTexture; delete m_oldIconTexture; delete m_selectionTexture; delete m_unstyledVBO; } void SceneOpenGL::EffectFrame::free() { glFlush(); delete m_texture; m_texture = NULL; delete m_textTexture; m_textTexture = NULL; delete m_textPixmap; m_textPixmap = NULL; delete m_iconTexture; m_iconTexture = NULL; delete m_selectionTexture; m_selectionTexture = NULL; delete m_unstyledVBO; m_unstyledVBO = NULL; delete m_oldIconTexture; m_oldIconTexture = NULL; delete m_oldTextTexture; m_oldTextTexture = NULL; } void SceneOpenGL::EffectFrame::freeIconFrame() { delete m_iconTexture; m_iconTexture = NULL; } void SceneOpenGL::EffectFrame::freeTextFrame() { delete m_textTexture; m_textTexture = NULL; delete m_textPixmap; m_textPixmap = NULL; } void SceneOpenGL::EffectFrame::freeSelection() { delete m_selectionTexture; m_selectionTexture = NULL; } void SceneOpenGL::EffectFrame::crossFadeIcon() { delete m_oldIconTexture; m_oldIconTexture = m_iconTexture; m_iconTexture = NULL; } void SceneOpenGL::EffectFrame::crossFadeText() { delete m_oldTextTexture; m_oldTextTexture = m_textTexture; m_textTexture = NULL; } void SceneOpenGL::EffectFrame::render(QRegion region, double opacity, double frameOpacity) { if (m_effectFrame->geometry().isEmpty()) return; // Nothing to display region = infiniteRegion(); // TODO: Old region doesn't seem to work with OpenGL GLShader* shader = m_effectFrame->shader(); bool sceneShader = false; if (!shader) { shader = ShaderManager::instance()->pushShader(ShaderManager::SimpleShader); sceneShader = true; } else if (shader) { ShaderManager::instance()->pushShader(shader); } if (shader) { if (sceneShader) shader->setUniform(GLShader::Offset, QVector2D(0, 0)); shader->setUniform(GLShader::ModulationConstant, QVector4D(1.0, 1.0, 1.0, 1.0)); shader->setUniform(GLShader::Saturation, 1.0f); } glEnable(GL_BLEND); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); // Render the actual frame if (m_effectFrame->style() == EffectFrameUnstyled) { if (!m_unstyledVBO) { m_unstyledVBO = new GLVertexBuffer(GLVertexBuffer::Static); QRect area = m_effectFrame->geometry(); area.moveTo(0, 0); area.adjust(-5, -5, 5, 5); const int roundness = 5; QVector verts, texCoords; verts.reserve(84); texCoords.reserve(84); // top left verts << area.left() << area.top(); texCoords << 0.0f << 0.0f; verts << area.left() << area.top() + roundness; texCoords << 0.0f << 0.5f; verts << area.left() + roundness << area.top(); texCoords << 0.5f << 0.0f; verts << area.left() + roundness << area.top() + roundness; texCoords << 0.5f << 0.5f; verts << area.left() << area.top() + roundness; texCoords << 0.0f << 0.5f; verts << area.left() + roundness << area.top(); texCoords << 0.5f << 0.0f; // top verts << area.left() + roundness << area.top(); texCoords << 0.5f << 0.0f; verts << area.left() + roundness << area.top() + roundness; texCoords << 0.5f << 0.5f; verts << area.right() - roundness << area.top(); texCoords << 0.5f << 0.0f; verts << area.left() + roundness << area.top() + roundness; texCoords << 0.5f << 0.5f; verts << area.right() - roundness << area.top() + roundness; texCoords << 0.5f << 0.5f; verts << area.right() - roundness << area.top(); texCoords << 0.5f << 0.0f; // top right verts << area.right() - roundness << area.top(); texCoords << 0.5f << 0.0f; verts << area.right() - roundness << area.top() + roundness; texCoords << 0.5f << 0.5f; verts << area.right() << area.top(); texCoords << 1.0f << 0.0f; verts << area.right() - roundness << area.top() + roundness; texCoords << 0.5f << 0.5f; verts << area.right() << area.top() + roundness; texCoords << 1.0f << 0.5f; verts << area.right() << area.top(); texCoords << 1.0f << 0.0f; // bottom left verts << area.left() << area.bottom() - roundness; texCoords << 0.0f << 0.5f; verts << area.left() << area.bottom(); texCoords << 0.0f << 1.0f; verts << area.left() + roundness << area.bottom() - roundness; texCoords << 0.5f << 0.5f; verts << area.left() + roundness << area.bottom(); texCoords << 0.5f << 1.0f; verts << area.left() << area.bottom(); texCoords << 0.0f << 1.0f; verts << area.left() + roundness << area.bottom() - roundness; texCoords << 0.5f << 0.5f; // bottom verts << area.left() + roundness << area.bottom() - roundness; texCoords << 0.5f << 0.5f; verts << area.left() + roundness << area.bottom(); texCoords << 0.5f << 1.0f; verts << area.right() - roundness << area.bottom() - roundness; texCoords << 0.5f << 0.5f; verts << area.left() + roundness << area.bottom(); texCoords << 0.5f << 1.0f; verts << area.right() - roundness << area.bottom(); texCoords << 0.5f << 1.0f; verts << area.right() - roundness << area.bottom() - roundness; texCoords << 0.5f << 0.5f; // bottom right verts << area.right() - roundness << area.bottom() - roundness; texCoords << 0.5f << 0.5f; verts << area.right() - roundness << area.bottom(); texCoords << 0.5f << 1.0f; verts << area.right() << area.bottom() - roundness; texCoords << 1.0f << 0.5f; verts << area.right() - roundness << area.bottom(); texCoords << 0.5f << 1.0f; verts << area.right() << area.bottom(); texCoords << 1.0f << 1.0f; verts << area.right() << area.bottom() - roundness; texCoords << 1.0f << 0.5f; // center verts << area.left() << area.top() + roundness; texCoords << 0.0f << 0.5f; verts << area.left() << area.bottom() - roundness; texCoords << 0.0f << 0.5f; verts << area.right() << area.top() + roundness; texCoords << 1.0f << 0.5f; verts << area.left() << area.bottom() - roundness; texCoords << 0.0f << 0.5f; verts << area.right() << area.bottom() - roundness; texCoords << 1.0f << 0.5f; verts << area.right() << area.top() + roundness; texCoords << 1.0f << 0.5f; m_unstyledVBO->setData(verts.count() / 2, 2, verts.data(), texCoords.data()); } if (shader) { const float a = opacity * frameOpacity; shader->setUniform(GLShader::ModulationConstant, QVector4D(a, a, a, a)); } m_unstyledTexture->bind(); const QPoint pt = m_effectFrame->geometry().topLeft(); if (sceneShader) { shader->setUniform(GLShader::Offset, QVector2D(pt.x(), pt.y())); } else { QMatrix4x4 translation; translation.translate(pt.x(), pt.y()); if (shader) { shader->setUniform(GLShader::WindowTransformation, translation); } } m_unstyledVBO->render(region, GL_TRIANGLES); if (!sceneShader) { if (shader) { shader->setUniform(GLShader::WindowTransformation, QMatrix4x4()); } } m_unstyledTexture->unbind(); } else if (m_effectFrame->style() == EffectFrameStyled) { if (!m_texture) // Lazy creation updateTexture(); if (shader) { const float a = opacity * frameOpacity; shader->setUniform(GLShader::ModulationConstant, QVector4D(a, a, a, a)); } m_texture->bind(); qreal left, top, right, bottom; m_effectFrame->frame().getMargins(left, top, right, bottom); // m_geometry is the inner geometry m_texture->render(region, m_effectFrame->geometry().adjusted(-left, -top, right, bottom)); m_texture->unbind(); } if (!m_effectFrame->selection().isNull()) { if (!m_selectionTexture) { // Lazy creation QPixmap pixmap = m_effectFrame->selectionFrame().framePixmap(); if (!pixmap.isNull()) m_selectionTexture = new GLTexture(pixmap); } if (m_selectionTexture) { if (shader) { const float a = opacity * frameOpacity; shader->setUniform(GLShader::ModulationConstant, QVector4D(a, a, a, a)); } glBlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA); m_selectionTexture->bind(); m_selectionTexture->render(region, m_effectFrame->selection()); m_selectionTexture->unbind(); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); } } // Render icon if (!m_effectFrame->icon().isNull() && !m_effectFrame->iconSize().isEmpty()) { QPoint topLeft(m_effectFrame->geometry().x(), m_effectFrame->geometry().center().y() - m_effectFrame->iconSize().height() / 2); if (m_effectFrame->isCrossFade() && m_oldIconTexture) { if (shader) { const float a = opacity * (1.0 - m_effectFrame->crossFadeProgress()); shader->setUniform(GLShader::ModulationConstant, QVector4D(a, a, a, a)); } m_oldIconTexture->bind(); m_oldIconTexture->render(region, QRect(topLeft, m_effectFrame->iconSize())); m_oldIconTexture->unbind(); if (shader) { const float a = opacity * m_effectFrame->crossFadeProgress(); shader->setUniform(GLShader::ModulationConstant, QVector4D(a, a, a, a)); } } else { if (shader) { const QVector4D constant(opacity, opacity, opacity, opacity); shader->setUniform(GLShader::ModulationConstant, constant); } } if (!m_iconTexture) { // lazy creation m_iconTexture = new GLTexture(m_effectFrame->icon().pixmap(m_effectFrame->iconSize())); } m_iconTexture->bind(); m_iconTexture->render(region, QRect(topLeft, m_effectFrame->iconSize())); m_iconTexture->unbind(); } // Render text if (!m_effectFrame->text().isEmpty()) { if (m_effectFrame->isCrossFade() && m_oldTextTexture) { if (shader) { const float a = opacity * (1.0 - m_effectFrame->crossFadeProgress()); shader->setUniform(GLShader::ModulationConstant, QVector4D(a, a, a, a)); } m_oldTextTexture->bind(); m_oldTextTexture->render(region, m_effectFrame->geometry()); m_oldTextTexture->unbind(); if (shader) { const float a = opacity * m_effectFrame->crossFadeProgress(); shader->setUniform(GLShader::ModulationConstant, QVector4D(a, a, a, a)); } } else { if (shader) { const QVector4D constant(opacity, opacity, opacity, opacity); shader->setUniform(GLShader::ModulationConstant, constant); } } if (!m_textTexture) // Lazy creation updateTextTexture(); m_textTexture->bind(); m_textTexture->render(region, m_effectFrame->geometry()); m_textTexture->unbind(); } if (shader) { ShaderManager::instance()->popShader(); } glDisable(GL_BLEND); } void SceneOpenGL::EffectFrame::updateTexture() { delete m_texture; m_texture = 0L; if (m_effectFrame->style() == EffectFrameStyled) { QPixmap pixmap = m_effectFrame->frame().framePixmap(); m_texture = new GLTexture(pixmap); } } void SceneOpenGL::EffectFrame::updateTextTexture() { delete m_textTexture; m_textTexture = 0L; delete m_textPixmap; m_textPixmap = 0L; if (m_effectFrame->text().isEmpty()) return; // Determine position on texture to paint text QRect rect(QPoint(0, 0), m_effectFrame->geometry().size()); if (!m_effectFrame->icon().isNull() && !m_effectFrame->iconSize().isEmpty()) rect.setLeft(m_effectFrame->iconSize().width()); // If static size elide text as required QString text = m_effectFrame->text(); if (m_effectFrame->isStatic()) { QFontMetrics metrics(m_effectFrame->font()); text = metrics.elidedText(text, Qt::ElideRight, rect.width()); } m_textPixmap = new QPixmap(m_effectFrame->geometry().size()); m_textPixmap->fill(Qt::transparent); QPainter p(m_textPixmap); p.setFont(m_effectFrame->font()); if (m_effectFrame->style() == EffectFrameStyled) p.setPen(m_effectFrame->styledTextColor()); else // TODO: What about no frame? Custom color setting required p.setPen(Qt::white); p.drawText(rect, m_effectFrame->alignment(), text); p.end(); m_textTexture = new GLTexture(*m_textPixmap); } void SceneOpenGL::EffectFrame::updateUnstyledTexture() { delete m_unstyledTexture; m_unstyledTexture = 0L; delete m_unstyledPixmap; m_unstyledPixmap = 0L; // Based off circle() from kwinxrenderutils.cpp #define CS 8 m_unstyledPixmap = new QPixmap(2 * CS, 2 * CS); m_unstyledPixmap->fill(Qt::transparent); QPainter p(m_unstyledPixmap); p.setRenderHint(QPainter::Antialiasing); p.setPen(Qt::NoPen); p.setBrush(Qt::black); p.drawEllipse(m_unstyledPixmap->rect()); p.end(); #undef CS m_unstyledTexture = new GLTexture(*m_unstyledPixmap); } void SceneOpenGL::EffectFrame::cleanup() { delete m_unstyledTexture; m_unstyledTexture = NULL; delete m_unstyledPixmap; m_unstyledPixmap = NULL; } //**************************************** // SceneOpenGL::Shadow //**************************************** class DecorationShadowTextureCache { public: ~DecorationShadowTextureCache(); DecorationShadowTextureCache(const DecorationShadowTextureCache&) = delete; static DecorationShadowTextureCache &instance(); void unregister(SceneOpenGLShadow *shadow); QSharedPointer getTexture(SceneOpenGLShadow *shadow); private: DecorationShadowTextureCache() = default; struct Data { QSharedPointer texture; QVector shadows; }; QHash m_cache; }; DecorationShadowTextureCache &DecorationShadowTextureCache::instance() { static DecorationShadowTextureCache s_instance; return s_instance; } DecorationShadowTextureCache::~DecorationShadowTextureCache() { Q_ASSERT(m_cache.isEmpty()); } void DecorationShadowTextureCache::unregister(SceneOpenGLShadow *shadow) { auto it = m_cache.begin(); while (it != m_cache.end()) { auto &d = it.value(); // check whether the Vector of Shadows contains our shadow and remove all of them auto glIt = d.shadows.begin(); while (glIt != d.shadows.end()) { if (*glIt == shadow) { glIt = d.shadows.erase(glIt); } else { glIt++; } } // if there are no shadows any more we can erase the cache entry if (d.shadows.isEmpty()) { it = m_cache.erase(it); } else { it++; } } } QSharedPointer DecorationShadowTextureCache::getTexture(SceneOpenGLShadow *shadow) { Q_ASSERT(shadow->hasDecorationShadow()); unregister(shadow); const auto &decoShadow = shadow->decorationShadow(); Q_ASSERT(!decoShadow.isNull()); auto it = m_cache.find(decoShadow.data()); if (it != m_cache.end()) { Q_ASSERT(!it.value().shadows.contains(shadow)); it.value().shadows << shadow; return it.value().texture; } Data d; d.shadows << shadow; d.texture = QSharedPointer::create(shadow->decorationShadowImage()); m_cache.insert(decoShadow.data(), d); return d.texture; } SceneOpenGLShadow::SceneOpenGLShadow(Toplevel *toplevel) : Shadow(toplevel) { } SceneOpenGLShadow::~SceneOpenGLShadow() { effects->makeOpenGLContextCurrent(); DecorationShadowTextureCache::instance().unregister(this); m_texture.reset(); } void SceneOpenGLShadow::buildQuads() { // prepare window quads m_shadowQuads.clear(); const QSizeF top(elementSize(ShadowElementTop)); const QSizeF topRight(elementSize(ShadowElementTopRight)); const QSizeF right(elementSize(ShadowElementRight)); const QSizeF bottomRight(elementSize(ShadowElementBottomRight)); const QSizeF bottom(elementSize(ShadowElementBottom)); const QSizeF bottomLeft(elementSize(ShadowElementBottomLeft)); const QSizeF left(elementSize(ShadowElementLeft)); const QSizeF topLeft(elementSize(ShadowElementTopLeft)); if ((left.width() - leftOffset() > topLevel()->width()) || (right.width() - rightOffset() > topLevel()->width()) || (top.height() - topOffset() > topLevel()->height()) || (bottom.height() - bottomOffset() > topLevel()->height())) { // if our shadow is bigger than the window, we don't render the shadow setShadowRegion(QRegion()); return; } const QRectF outerRect(QPointF(-leftOffset(), -topOffset()), QPointF(topLevel()->width() + rightOffset(), topLevel()->height() + bottomOffset())); const qreal width = topLeft.width() + top.width() + topRight.width(); const qreal height = topLeft.height() + left.height() + bottomLeft.height(); qreal tx1(0.0), tx2(0.0), ty1(0.0), ty2(0.0); tx2 = topLeft.width()/width; ty2 = topLeft.height()/height; WindowQuad topLeftQuad(WindowQuadShadow); topLeftQuad[ 0 ] = WindowVertex(outerRect.x(), outerRect.y(), tx1, ty1); topLeftQuad[ 1 ] = WindowVertex(outerRect.x() + topLeft.width(), outerRect.y(), tx2, ty1); topLeftQuad[ 2 ] = WindowVertex(outerRect.x() + topLeft.width(), outerRect.y() + topLeft.height(), tx2, ty2); topLeftQuad[ 3 ] = WindowVertex(outerRect.x(), outerRect.y() + topLeft.height(), tx1, ty2); m_shadowQuads.append(topLeftQuad); tx1 = tx2; tx2 = (topLeft.width() + top.width())/width; ty2 = top.height()/height; WindowQuad topQuad(WindowQuadShadow); topQuad[ 0 ] = WindowVertex(outerRect.x() + topLeft.width(), outerRect.y(), tx1, ty1); topQuad[ 1 ] = WindowVertex(outerRect.right() - topRight.width(), outerRect.y(), tx2, ty1); topQuad[ 2 ] = WindowVertex(outerRect.right() - topRight.width(), outerRect.y() + top.height(),tx2, ty2); topQuad[ 3 ] = WindowVertex(outerRect.x() + topLeft.width(), outerRect.y() + top.height(), tx1, ty2); m_shadowQuads.append(topQuad); tx1 = tx2; tx2 = 1.0; ty2 = topRight.height()/height; WindowQuad topRightQuad(WindowQuadShadow); topRightQuad[ 0 ] = WindowVertex(outerRect.right() - topRight.width(), outerRect.y(), tx1, ty1); topRightQuad[ 1 ] = WindowVertex(outerRect.right(), outerRect.y(), tx2, ty1); topRightQuad[ 2 ] = WindowVertex(outerRect.right(), outerRect.y() + topRight.height(), tx2, ty2); topRightQuad[ 3 ] = WindowVertex(outerRect.right() - topRight.width(), outerRect.y() + topRight.height(), tx1, ty2); m_shadowQuads.append(topRightQuad); tx1 = (width - right.width())/width; ty1 = topRight.height()/height; ty2 = (topRight.height() + right.height())/height; WindowQuad rightQuad(WindowQuadShadow); rightQuad[ 0 ] = WindowVertex(outerRect.right() - right.width(), outerRect.y() + topRight.height(), tx1, ty1); rightQuad[ 1 ] = WindowVertex(outerRect.right(), outerRect.y() + topRight.height(), tx2, ty1); rightQuad[ 2 ] = WindowVertex(outerRect.right(), outerRect.bottom() - bottomRight.height(), tx2, ty2); rightQuad[ 3 ] = WindowVertex(outerRect.right() - right.width(), outerRect.bottom() - bottomRight.height(), tx1, ty2); m_shadowQuads.append(rightQuad); tx1 = (width - bottomRight.width())/width; ty1 = ty2; ty2 = 1.0; WindowQuad bottomRightQuad(WindowQuadShadow); bottomRightQuad[ 0 ] = WindowVertex(outerRect.right() - bottomRight.width(), outerRect.bottom() - bottomRight.height(), tx1, ty1); bottomRightQuad[ 1 ] = WindowVertex(outerRect.right(), outerRect.bottom() - bottomRight.height(), tx2, ty1); bottomRightQuad[ 2 ] = WindowVertex(outerRect.right(), outerRect.bottom(), tx2, ty2); bottomRightQuad[ 3 ] = WindowVertex(outerRect.right() - bottomRight.width(), outerRect.bottom(), tx1, ty2); m_shadowQuads.append(bottomRightQuad); tx2 = tx1; tx1 = bottomLeft.width()/width; ty1 = (height - bottom.height())/height; WindowQuad bottomQuad(WindowQuadShadow); bottomQuad[ 0 ] = WindowVertex(outerRect.x() + bottomLeft.width(), outerRect.bottom() - bottom.height(), tx1, ty1); bottomQuad[ 1 ] = WindowVertex(outerRect.right() - bottomRight.width(), outerRect.bottom() - bottom.height(), tx2, ty1); bottomQuad[ 2 ] = WindowVertex(outerRect.right() - bottomRight.width(), outerRect.bottom(), tx2, ty2); bottomQuad[ 3 ] = WindowVertex(outerRect.x() + bottomLeft.width(), outerRect.bottom(), tx1, ty2); m_shadowQuads.append(bottomQuad); tx1 = 0.0; tx2 = bottomLeft.width()/width; ty1 = (height - bottomLeft.height())/height; WindowQuad bottomLeftQuad(WindowQuadShadow); bottomLeftQuad[ 0 ] = WindowVertex(outerRect.x(), outerRect.bottom() - bottomLeft.height(), tx1, ty1); bottomLeftQuad[ 1 ] = WindowVertex(outerRect.x() + bottomLeft.width(), outerRect.bottom() - bottomLeft.height(), tx2, ty1); bottomLeftQuad[ 2 ] = WindowVertex(outerRect.x() + bottomLeft.width(), outerRect.bottom(), tx2, ty2); bottomLeftQuad[ 3 ] = WindowVertex(outerRect.x(), outerRect.bottom(), tx1, ty2); m_shadowQuads.append(bottomLeftQuad); tx2 = left.width()/width; ty2 = ty1; ty1 = topLeft.height()/height; WindowQuad leftQuad(WindowQuadShadow); leftQuad[ 0 ] = WindowVertex(outerRect.x(), outerRect.y() + topLeft.height(), tx1, ty1); leftQuad[ 1 ] = WindowVertex(outerRect.x() + left.width(), outerRect.y() + topLeft.height(), tx2, ty1); leftQuad[ 2 ] = WindowVertex(outerRect.x() + left.width(), outerRect.bottom() - bottomLeft.height(), tx2, ty2); leftQuad[ 3 ] = WindowVertex(outerRect.x(), outerRect.bottom() - bottomLeft.height(), tx1, ty2); m_shadowQuads.append(leftQuad); } bool SceneOpenGLShadow::prepareBackend() { if (hasDecorationShadow()) { // simplifies a lot by going directly to effects->makeOpenGLContextCurrent(); m_texture = DecorationShadowTextureCache::instance().getTexture(this); return true; } const QSize top(shadowPixmap(ShadowElementTop).size()); const QSize topRight(shadowPixmap(ShadowElementTopRight).size()); const QSize right(shadowPixmap(ShadowElementRight).size()); const QSize bottom(shadowPixmap(ShadowElementBottom).size()); const QSize bottomLeft(shadowPixmap(ShadowElementBottomLeft).size()); const QSize left(shadowPixmap(ShadowElementLeft).size()); const QSize topLeft(shadowPixmap(ShadowElementTopLeft).size()); const int width = topLeft.width() + top.width() + topRight.width(); const int height = topLeft.height() + left.height() + bottomLeft.height(); QImage image(width, height, QImage::Format_ARGB32); image.fill(Qt::transparent); QPainter p; p.begin(&image); p.drawPixmap(0, 0, shadowPixmap(ShadowElementTopLeft)); p.drawPixmap(topLeft.width(), 0, shadowPixmap(ShadowElementTop)); p.drawPixmap(topLeft.width() + top.width(), 0, shadowPixmap(ShadowElementTopRight)); p.drawPixmap(0, topLeft.height(), shadowPixmap(ShadowElementLeft)); p.drawPixmap(width - right.width(), topRight.height(), shadowPixmap(ShadowElementRight)); p.drawPixmap(0, topLeft.height() + left.height(), shadowPixmap(ShadowElementBottomLeft)); p.drawPixmap(bottomLeft.width(), height - bottom.height(), shadowPixmap(ShadowElementBottom)); p.drawPixmap(bottomLeft.width() + bottom.width(), topRight.height() + right.height(), shadowPixmap(ShadowElementBottomRight)); p.end(); // Check if the image is alpha-only in practice, and if so convert it to an 8-bpp format if (!GLPlatform::instance()->isGLES() && GLTexture::supportsSwizzle() && GLTexture::supportsFormatRG()) { QImage alphaImage(image.size(), QImage::Format_Indexed8); // Change to Format_Alpha8 w/ Qt 5.5 bool alphaOnly = true; for (ptrdiff_t y = 0; alphaOnly && y < image.height(); y++) { const uint32_t * const src = reinterpret_cast(image.scanLine(y)); uint8_t * const dst = reinterpret_cast(alphaImage.scanLine(y)); for (ptrdiff_t x = 0; x < image.width(); x++) { if (src[x] & 0x00ffffff) alphaOnly = false; dst[x] = qAlpha(src[x]); } } if (alphaOnly) { image = alphaImage; } } effects->makeOpenGLContextCurrent(); m_texture = QSharedPointer::create(image); if (m_texture->internalFormat() == GL_R8) { // Swizzle red to alpha and all other channels to zero m_texture->bind(); m_texture->setSwizzle(GL_ZERO, GL_ZERO, GL_ZERO, GL_RED); } return true; } SwapProfiler::SwapProfiler() { init(); } void SwapProfiler::init() { m_time = 2 * 1000*1000; // we start with a long time mean of 2ms ... m_counter = 0; } void SwapProfiler::begin() { m_timer.start(); } char SwapProfiler::end() { // .. and blend in actual values. // this way we prevent extremes from killing our long time mean m_time = (10*m_time + m_timer.nsecsElapsed())/11; if (++m_counter > 500) { const bool blocks = m_time > 1000 * 1000; // 1ms, i get ~250µs and ~7ms w/o triple buffering... qCDebug(KWIN_CORE) << "Triple buffering detection:" << QString(blocks ? QStringLiteral("NOT available") : QStringLiteral("Available")) << " - Mean block time:" << m_time/(1000.0*1000.0) << "ms"; return blocks ? 'd' : 't'; } return 0; } SceneOpenGLDecorationRenderer::SceneOpenGLDecorationRenderer(Decoration::DecoratedClientImpl *client) : Renderer(client) , m_texture() { connect(this, &Renderer::renderScheduled, client->client(), static_cast(&Client::addRepaint)); } SceneOpenGLDecorationRenderer::~SceneOpenGLDecorationRenderer() = default; // Rotates the given source rect 90° counter-clockwise, // and flips it vertically static QImage rotate(const QImage &srcImage, const QRect &srcRect) { QImage image(srcRect.height(), srcRect.width(), srcImage.format()); const uint32_t *src = reinterpret_cast(srcImage.bits()); uint32_t *dst = reinterpret_cast(image.bits()); for (int x = 0; x < image.width(); x++) { const uint32_t *s = src + (srcRect.y() + x) * srcImage.width() + srcRect.x(); uint32_t *d = dst + x; for (int y = 0; y < image.height(); y++) { *d = s[y]; d += image.width(); } } return image; } void SceneOpenGLDecorationRenderer::render() { const QRegion scheduled = getScheduled(); if (scheduled.isEmpty()) { return; } if (areImageSizesDirty()) { resizeTexture(); resetImageSizesDirty(); } QRect left, top, right, bottom; client()->client()->layoutDecorationRects(left, top, right, bottom); const QRect geometry = scheduled.boundingRect(); auto renderPart = [this](const QRect &geo, const QRect &partRect, const QPoint &offset, bool rotated = false) { if (geo.isNull()) { return; } QImage image = renderToImage(geo); if (rotated) { // TODO: get this done directly when rendering to the image image = rotate(image, QRect(geo.topLeft() - partRect.topLeft(), geo.size())); } m_texture->update(image, geo.topLeft() - partRect.topLeft() + offset); }; renderPart(left.intersected(geometry), left, QPoint(0, top.height() + bottom.height() + 2), true); renderPart(top.intersected(geometry), top, QPoint(0, 0)); renderPart(right.intersected(geometry), right, QPoint(0, top.height() + bottom.height() + left.width() + 3), true); renderPart(bottom.intersected(geometry), bottom, QPoint(0, top.height() + 1)); } static int align(int value, int align) { return (value + align - 1) & ~(align - 1); } void SceneOpenGLDecorationRenderer::resizeTexture() { QRect left, top, right, bottom; client()->client()->layoutDecorationRects(left, top, right, bottom); QSize size; size.rwidth() = qMax(qMax(top.width(), bottom.width()), qMax(left.height(), right.height())); size.rheight() = top.height() + bottom.height() + left.width() + right.width() + 3; size.rwidth() = align(size.width(), 128); if (m_texture && m_texture->size() == size) return; if (!size.isEmpty()) { m_texture.reset(new GLTexture(GL_RGBA8, size.width(), size.height())); m_texture->setYInverted(true); m_texture->setWrapMode(GL_CLAMP_TO_EDGE); m_texture->clear(); } else { m_texture.reset(); } } void SceneOpenGLDecorationRenderer::reparent(Deleted *deleted) { render(); Renderer::reparent(deleted); } } // namespace