kwin/scene_opengl.cpp
Martin Gräßlin 2372e02752 [kwin] Use a QIcon in Client for the icons instead of Pixmaps
Client used to have dedicated methods for different icon sizes instead
of combining all pixmaps into one QIcon. This resulted in various parts
of KWin having different access to the icons:
* effects only got one pixmap of size 32x32
* decorations only got the 16x16 and 32x32 pixmaps combined into a QIcon
* tabbox could request all icon sizes, but only as pixmap

Now all sizes are available in one QIcon allowing to easily access the
best fitting icon in a given UI.
2013-12-06 14:41:23 +01:00

2549 lines
90 KiB
C++

/********************************************************************
KWin - the KDE window manager
This file is part of the KDE project.
Copyright (C) 2006 Lubos Lunak <l.lunak@kde.org>
Copyright (C) 2009, 2010, 2011 Martin Gräßlin <mgraesslin@kde.org>
Based on glcompmgr code by Felix Bellaby.
Using code from Compiz and Beryl.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*********************************************************************/
#include "scene_opengl.h"
#ifdef KWIN_HAVE_EGL
#include "eglonxbackend.h"
// for Wayland
#include "config-workspace.h"
#ifdef WAYLAND_FOUND
#include "egl_wayland_backend.h"
#endif
#endif
#ifndef KWIN_HAVE_OPENGLES
#include "glxbackend.h"
#endif
#include <kwinglcolorcorrection.h>
#include <kwinglplatform.h>
#include "utils.h"
#include "client.h"
#include "composite.h"
#include "deleted.h"
#include "effects.h"
#include "lanczosfilter.h"
#include "overlaywindow.h"
#include "paintredirector.h"
#include "screens.h"
#include "workspace.h"
#include <cmath>
#include <unistd.h>
#include <stddef.h>
// turns on checks for opengl errors in various places (for easier finding of them)
// normally only few of them are enabled
//#define CHECK_GL_ERROR
#include <qpainter.h>
#include <QDBusConnection>
#include <QDBusConnectionInterface>
#include <QDBusInterface>
#include <QGraphicsScale>
#include <QStringList>
#include <QVector2D>
#include <QVector4D>
#include <QMatrix4x4>
#include <KDE/KLocalizedString>
#include <KDE/KNotification>
#include <KProcess>
namespace KWin
{
extern int currentRefreshRate();
//****************************************
// SceneOpenGL
//****************************************
OpenGLBackend::OpenGLBackend()
: m_overlayWindow(new OverlayWindow()) // TODO: maybe create only if needed?
, m_syncsToVBlank(false)
, m_blocksForRetrace(false)
, m_directRendering(false)
, m_failed(false)
{
}
OpenGLBackend::~OpenGLBackend()
{
if (isFailed()) {
m_overlayWindow->destroy();
}
delete m_overlayWindow;
}
void OpenGLBackend::setFailed(const QString &reason)
{
qWarning() << "Creating the OpenGL rendering failed: " << reason;
m_failed = true;
}
void OpenGLBackend::idle()
{
if (hasPendingFlush()) {
effects->makeOpenGLContextCurrent();
present();
}
}
/************************************************
* SceneOpenGL
***********************************************/
SceneOpenGL::SceneOpenGL(Workspace* ws, OpenGLBackend *backend)
: Scene(ws)
, init_ok(true)
, m_backend(backend)
{
if (m_backend->isFailed()) {
init_ok = false;
return;
}
if (!viewportLimitsMatched(QSize(displayWidth(), displayHeight())))
return;
// perform Scene specific checks
GLPlatform *glPlatform = GLPlatform::instance();
#ifndef KWIN_HAVE_OPENGLES
if (!hasGLExtension(QStringLiteral("GL_ARB_texture_non_power_of_two"))
&& !hasGLExtension(QStringLiteral("GL_ARB_texture_rectangle"))) {
qCritical() << "GL_ARB_texture_non_power_of_two and GL_ARB_texture_rectangle missing";
init_ok = false;
return; // error
}
#endif
if (glPlatform->isMesaDriver() && glPlatform->mesaVersion() < kVersionNumber(8, 0)) {
qCritical() << "KWin requires at least Mesa 8.0 for OpenGL compositing.";
init_ok = false;
return;
}
#ifndef KWIN_HAVE_OPENGLES
glDrawBuffer(GL_BACK);
#endif
m_debug = qstrcmp(qgetenv("KWIN_GL_DEBUG"), "1") == 0;
// set strict binding
if (options->isGlStrictBindingFollowsDriver()) {
options->setGlStrictBinding(!glPlatform->supports(LooseBinding));
}
}
SceneOpenGL::~SceneOpenGL()
{
if (init_ok) {
// backend might be still needed for a different scene
delete m_backend;
}
foreach (Window * w, windows) {
delete w;
}
// do cleanup after initBuffer()
SceneOpenGL::EffectFrame::cleanup();
checkGLError("Cleanup");
}
SceneOpenGL *SceneOpenGL::createScene()
{
OpenGLBackend *backend = NULL;
OpenGLPlatformInterface platformInterface = NoOpenGLPlatformInterface;
// should we use glx?
#ifndef KWIN_HAVE_OPENGLES
// on OpenGL we default to glx
platformInterface = GlxPlatformInterface;
#endif
const QByteArray envOpenGLInterface(qgetenv("KWIN_OPENGL_INTERFACE"));
#ifdef KWIN_HAVE_EGL
#ifdef KWIN_HAVE_OPENGLES
// for OpenGL ES we need to use the Egl Backend
platformInterface = EglPlatformInterface;
#else
// check environment variable
if (qstrcmp(envOpenGLInterface, "egl") == 0 ||
qstrcmp(envOpenGLInterface, "egl_wayland") == 0) {
qDebug() << "Forcing EGL native interface through environment variable";
platformInterface = EglPlatformInterface;
}
#endif
#endif
switch (platformInterface) {
case GlxPlatformInterface:
#ifndef KWIN_HAVE_OPENGLES
backend = new GlxBackend();
#endif
break;
case EglPlatformInterface:
#ifdef KWIN_HAVE_EGL
#ifdef WAYLAND_FOUND
if (qstrcmp(envOpenGLInterface, "egl_wayland") == 0) {
backend = new EglWaylandBackend();
} else {
backend = new EglOnXBackend();
}
#else
backend = new EglOnXBackend();
#endif
#endif
break;
default:
// no backend available
return NULL;
}
if (!backend || backend->isFailed()) {
delete backend;
return NULL;
}
SceneOpenGL *scene = NULL;
// first let's try an OpenGL 2 scene
if (SceneOpenGL2::supported(backend)) {
scene = new SceneOpenGL2(backend);
if (scene->initFailed()) {
delete scene;
scene = NULL;
} else {
return scene;
}
}
#ifdef KWIN_HAVE_OPENGL_1
if (SceneOpenGL1::supported(backend)) {
scene = new SceneOpenGL1(backend);
if (scene->initFailed()) {
delete scene;
scene = NULL;
}
}
#endif
if (!scene) {
if (GLPlatform::instance()->recommendedCompositor() == XRenderCompositing) {
qCritical() << "OpenGL driver recommends XRender based compositing. Falling back to XRender.";
qCritical() << "To overwrite the detection use the environment variable KWIN_COMPOSE";
qCritical() << "For more information see http://community.kde.org/KWin/Environment_Variables#KWIN_COMPOSE";
QTimer::singleShot(0, Compositor::self(), SLOT(fallbackToXRenderCompositing()));
}
delete backend;
}
return scene;
}
OverlayWindow *SceneOpenGL::overlayWindow()
{
return m_backend->overlayWindow();
}
bool SceneOpenGL::syncsToVBlank() const
{
return m_backend->syncsToVBlank();
}
bool SceneOpenGL::blocksForRetrace() const
{
return m_backend->blocksForRetrace();
}
void SceneOpenGL::idle()
{
m_backend->idle();
Scene::idle();
}
bool SceneOpenGL::initFailed() const
{
return !init_ok;
}
#ifndef KWIN_HAVE_OPENGLES
void SceneOpenGL::copyPixels(const QRegion &region)
{
foreach (const QRect &r, region.rects()) {
const int x0 = r.x();
const int y0 = displayHeight() - r.y() - r.height();
const int x1 = r.x() + r.width();
const int y1 = displayHeight() - r.y();
glBlitFramebuffer(x0, y0, x1, y1, x0, y0, x1, y1, GL_COLOR_BUFFER_BIT, GL_NEAREST);
}
}
#endif
#ifndef KWIN_HAVE_OPENGLES
# define GL_GUILTY_CONTEXT_RESET_KWIN GL_GUILTY_CONTEXT_RESET_ARB
# define GL_INNOCENT_CONTEXT_RESET_KWIN GL_INNOCENT_CONTEXT_RESET_ARB
# define GL_UNKNOWN_CONTEXT_RESET_KWIN GL_UNKNOWN_CONTEXT_RESET_ARB
#else
# define GL_GUILTY_CONTEXT_RESET_KWIN GL_GUILTY_CONTEXT_RESET_EXT
# define GL_INNOCENT_CONTEXT_RESET_KWIN GL_INNOCENT_CONTEXT_RESET_EXT
# define GL_UNKNOWN_CONTEXT_RESET_KWIN GL_UNKNOWN_CONTEXT_RESET_EXT
#endif
void SceneOpenGL::handleGraphicsReset(GLenum status)
{
switch (status) {
case GL_GUILTY_CONTEXT_RESET_KWIN:
qDebug() << "A graphics reset attributable to the current GL context occurred.";
break;
case GL_INNOCENT_CONTEXT_RESET_KWIN:
qDebug() << "A graphics reset not attributable to the current GL context occurred.";
break;
case GL_UNKNOWN_CONTEXT_RESET_KWIN:
qDebug() << "A graphics reset of an unknown cause occurred.";
break;
default:
break;
}
QElapsedTimer timer;
timer.start();
// Wait until the reset is completed or max 10 seconds
while (timer.elapsed() < 10000 && glGetGraphicsResetStatus() != GL_NO_ERROR)
usleep(50);
qDebug() << "Attempting to reset compositing.";
QMetaObject::invokeMethod(this, "resetCompositing", Qt::QueuedConnection);
KNotification::event(QStringLiteral("graphicsreset"), i18n("Desktop effects were restarted due to a graphics reset"));
}
qint64 SceneOpenGL::paint(QRegion damage, ToplevelList toplevels)
{
// actually paint the frame, flushed with the NEXT frame
foreach (Toplevel * c, toplevels) {
// TODO: cache the stacking_order in case it has not changed
assert(windows.contains(c));
stacking_order.append(windows[ c ]);
}
m_backend->makeCurrent();
m_backend->prepareRenderingFrame();
const GLenum status = glGetGraphicsResetStatus();
if (status != GL_NO_ERROR) {
handleGraphicsReset(status);
return 0;
}
int mask = 0;
#ifdef CHECK_GL_ERROR
checkGLError("Paint1");
#endif
paintScreen(&mask, &damage); // call generic implementation
#ifndef KWIN_HAVE_OPENGLES
const QRegion displayRegion(0, 0, displayWidth(), displayHeight());
// copy dirty parts from front to backbuffer
if (options->glPreferBufferSwap() == Options::CopyFrontBuffer && damage != displayRegion) {
glReadBuffer(GL_FRONT);
copyPixels(displayRegion - damage);
glReadBuffer(GL_BACK);
damage = displayRegion;
}
#endif
#ifdef CHECK_GL_ERROR
checkGLError("Paint2");
#endif
m_backend->endRenderingFrame(damage);
// do cleanup
stacking_order.clear();
checkGLError("PostPaint");
return m_backend->renderTime();
}
QMatrix4x4 SceneOpenGL::transformation(int mask, const ScreenPaintData &data) const
{
QMatrix4x4 matrix;
if (!(mask & PAINT_SCREEN_TRANSFORMED))
return matrix;
matrix.translate(data.translation());
data.scale().applyTo(&matrix);
if (data.rotationAngle() == 0.0)
return matrix;
// Apply the rotation
// cannot use data.rotation->applyTo(&matrix) as QGraphicsRotation uses projectedRotate to map back to 2D
matrix.translate(data.rotationOrigin());
const QVector3D axis = data.rotationAxis();
matrix.rotate(data.rotationAngle(), axis.x(), axis.y(), axis.z());
matrix.translate(-data.rotationOrigin());
return matrix;
}
void SceneOpenGL::paintBackground(QRegion region)
{
PaintClipper pc(region);
if (!PaintClipper::clip()) {
glClearColor(0, 0, 0, 1);
glClear(GL_COLOR_BUFFER_BIT);
return;
}
if (pc.clip() && pc.paintArea().isEmpty())
return; // no background to paint
QVector<float> verts;
for (PaintClipper::Iterator iterator; !iterator.isDone(); iterator.next()) {
QRect r = iterator.boundingRect();
verts << r.x() + r.width() << r.y();
verts << r.x() << r.y();
verts << r.x() << r.y() + r.height();
verts << r.x() << r.y() + r.height();
verts << r.x() + r.width() << r.y() + r.height();
verts << r.x() + r.width() << r.y();
}
doPaintBackground(verts);
}
void SceneOpenGL::extendPaintRegion(QRegion &region, bool opaqueFullscreen)
{
if (options->glPreferBufferSwap() == Options::ExtendDamage) { // only Extend "large" repaints
const QRegion displayRegion(0, 0, displayWidth(), displayHeight());
uint damagedPixels = 0;
const uint fullRepaintLimit = (opaqueFullscreen?0.49f:0.748f)*displayWidth()*displayHeight();
// 16:9 is 75% of 4:3 and 2.55:1 is 49.01% of 5:4
// (5:4 is the most square format and 2.55:1 is Cinemascope55 - the widest ever shot
// movie aspect - two times ;-) It's a Fox format, though, so maybe we want to restrict
// to 2.20:1 - Panavision - which has actually been used for interesting movies ...)
// would be 57% of 5/4
foreach (const QRect &r, region.rects()) {
// damagedPixels += r.width() * r.height(); // combined window damage test
damagedPixels = r.width() * r.height(); // experimental single window damage testing
if (damagedPixels > fullRepaintLimit) {
region = displayRegion;
return;
}
}
} else if (options->glPreferBufferSwap() == Options::PaintFullScreen) { // forced full rePaint
region = QRegion(0, 0, displayWidth(), displayHeight());
}
}
void SceneOpenGL::windowAdded(Toplevel* c)
{
assert(!windows.contains(c));
Window *w = createWindow(c);
windows[ c ] = w;
w->setScene(this);
connect(c, SIGNAL(opacityChanged(KWin::Toplevel*,qreal)), SLOT(windowOpacityChanged(KWin::Toplevel*)));
connect(c, SIGNAL(geometryShapeChanged(KWin::Toplevel*,QRect)), SLOT(windowGeometryShapeChanged(KWin::Toplevel*)));
connect(c, SIGNAL(windowClosed(KWin::Toplevel*,KWin::Deleted*)), SLOT(windowClosed(KWin::Toplevel*,KWin::Deleted*)));
c->effectWindow()->setSceneWindow(windows[ c ]);
c->getShadow();
windows[ c ]->updateShadow(c->shadow());
}
void SceneOpenGL::windowClosed(KWin::Toplevel* c, KWin::Deleted* deleted)
{
assert(windows.contains(c));
if (deleted != NULL) {
// replace c with deleted
Window* w = windows.take(c);
w->updateToplevel(deleted);
if (w->shadow()) {
w->shadow()->setToplevel(deleted);
}
windows[ deleted ] = w;
} else {
delete windows.take(c);
c->effectWindow()->setSceneWindow(NULL);
}
}
void SceneOpenGL::windowDeleted(Deleted* c)
{
assert(windows.contains(c));
delete windows.take(c);
c->effectWindow()->setSceneWindow(NULL);
}
void SceneOpenGL::windowGeometryShapeChanged(KWin::Toplevel* c)
{
if (!windows.contains(c)) // this is ok, shape is not valid
return; // by default
Window* w = windows[ c ];
w->discardShape();
}
void SceneOpenGL::windowOpacityChanged(KWin::Toplevel* t)
{
Q_UNUSED(t)
#if 0 // not really needed, windows are painted on every repaint
// and opacity is used when applying texture, not when
// creating it
if (!windows.contains(c)) // this is ok, texture is created
return; // on demand
Window* w = windows[ c ];
w->discardTexture();
#endif
}
SceneOpenGL::Texture *SceneOpenGL::createTexture()
{
return new Texture(m_backend);
}
SceneOpenGL::Texture *SceneOpenGL::createTexture(const QPixmap &pix, GLenum target)
{
return new Texture(m_backend, pix, target);
}
bool SceneOpenGL::viewportLimitsMatched(const QSize &size) const {
GLint limit[2];
glGetIntegerv(GL_MAX_VIEWPORT_DIMS, limit);
if (limit[0] < size.width() || limit[1] < size.height()) {
QMetaObject::invokeMethod(Compositor::self(), "suspend",
Qt::QueuedConnection, Q_ARG(Compositor::SuspendReason, Compositor::AllReasonSuspend));
const QString message = i18n("<h1>OpenGL desktop effects not possible</h1>"
"Your system cannot perform OpenGL Desktop Effects at the "
"current resolution<br><br>"
"You can try to select the XRender backend, but it "
"might be very slow for this resolution as well.<br>"
"Alternatively, lower the combined resolution of all screens "
"to %1x%2 ", limit[0], limit[1]);
const QString details = i18n("The demanded resolution exceeds the GL_MAX_VIEWPORT_DIMS "
"limitation of your GPU and is therefore not compatible "
"with the OpenGL compositor.<br>"
"XRender does not know such limitation, but the performance "
"will usually be impacted by the hardware limitations that "
"restrict the OpenGL viewport size.");
const int oldTimeout = QDBusConnection::sessionBus().interface()->timeout();
QDBusConnection::sessionBus().interface()->setTimeout(500);
if (QDBusConnection::sessionBus().interface()->isServiceRegistered(QStringLiteral("org.kde.kwinCompositingDialog")).value()) {
QDBusInterface dialog( QStringLiteral("org.kde.kwinCompositingDialog"), QStringLiteral("/CompositorSettings"), QStringLiteral("org.kde.kwinCompositingDialog") );
dialog.asyncCall(QStringLiteral("warn"), message, details, QString());
} else {
const QString args = QStringLiteral("warn ") + QString::fromUtf8(message.toLocal8Bit().toBase64()) + QStringLiteral(" details ") + QString::fromUtf8(details.toLocal8Bit().toBase64());
KProcess::startDetached(QStringLiteral("kcmshell4"), QStringList() << QStringLiteral("kwincompositing") << QStringLiteral("--args") << args);
}
QDBusConnection::sessionBus().interface()->setTimeout(oldTimeout);
return false;
}
glGetIntegerv(GL_MAX_TEXTURE_SIZE, limit);
if (limit[0] < size.width() || limit[0] < size.height()) {
KConfig cfg(QStringLiteral("kwin_dialogsrc"));
if (!KConfigGroup(&cfg, "Notification Messages").readEntry("max_tex_warning", true))
return true;
const QString message = i18n("<h1>OpenGL desktop effects might be unusable</h1>"
"OpenGL Desktop Effects at the current resolution are supported "
"but might be exceptionally slow.<br>"
"Also large windows will turn entirely black.<br><br>"
"Consider to suspend compositing, switch to the XRender backend "
"or lower the resolution to %1x%1." , limit[0]);
const QString details = i18n("The demanded resolution exceeds the GL_MAX_TEXTURE_SIZE "
"limitation of your GPU, thus windows of that size cannot be "
"assigned to textures and will be entirely black.<br>"
"Also this limit will often be a performance level barrier despite "
"below GL_MAX_VIEWPORT_DIMS, because the driver might fall back to "
"software rendering in this case.");
const int oldTimeout = QDBusConnection::sessionBus().interface()->timeout();
QDBusConnection::sessionBus().interface()->setTimeout(500);
if (QDBusConnection::sessionBus().interface()->isServiceRegistered(QStringLiteral("org.kde.kwinCompositingDialog")).value()) {
QDBusInterface dialog( QStringLiteral("org.kde.kwinCompositingDialog"), QStringLiteral("/CompositorSettings"), QStringLiteral("org.kde.kwinCompositingDialog") );
dialog.asyncCall(QStringLiteral("warn"), message, details, QStringLiteral("kwin_dialogsrc:max_tex_warning"));
} else {
const QString args = QStringLiteral("warn ") + QString::fromUtf8(message.toLocal8Bit().toBase64()) + QStringLiteral(" details ") +
QString::fromUtf8(details.toLocal8Bit().toBase64()) + QStringLiteral(" dontagain kwin_dialogsrc:max_tex_warning");
KProcess::startDetached(QStringLiteral("kcmshell4"), QStringList() << QStringLiteral("kwincompositing") << QStringLiteral("--args") << args);
}
QDBusConnection::sessionBus().interface()->setTimeout(oldTimeout);
}
return true;
}
void SceneOpenGL::screenGeometryChanged(const QSize &size)
{
if (!viewportLimitsMatched(size))
return;
Scene::screenGeometryChanged(size);
glViewport(0,0, size.width(), size.height());
m_backend->screenGeometryChanged(size);
ShaderManager::instance()->resetAllShaders();
}
void SceneOpenGL::paintDesktop(int desktop, int mask, const QRegion &region, ScreenPaintData &data)
{
const QRect r = region.boundingRect();
glEnable(GL_SCISSOR_TEST);
glScissor(r.x(), displayHeight() - r.y() - r.height(), r.width(), r.height());
KWin::Scene::paintDesktop(desktop, mask, region, data);
glDisable(GL_SCISSOR_TEST);
}
bool SceneOpenGL::makeOpenGLContextCurrent()
{
return m_backend->makeCurrent();
}
void SceneOpenGL::doneOpenGLContextCurrent()
{
m_backend->doneCurrent();
}
//****************************************
// SceneOpenGL2
//****************************************
bool SceneOpenGL2::supported(OpenGLBackend *backend)
{
const QByteArray forceEnv = qgetenv("KWIN_COMPOSE");
if (!forceEnv.isEmpty()) {
if (qstrcmp(forceEnv, "O2") == 0) {
qDebug() << "OpenGL 2 compositing enforced by environment variable";
return true;
} else {
// OpenGL 2 disabled by environment variable
return false;
}
}
if (!backend->isDirectRendering()) {
return false;
}
if (GLPlatform::instance()->recommendedCompositor() < OpenGL2Compositing) {
qDebug() << "Driver does not recommend OpenGL 2 compositing";
#ifndef KWIN_HAVE_OPENGLES
return false;
#endif
}
if (options->isGlLegacy()) {
qDebug() << "OpenGL 2 disabled by config option";
return false;
}
return true;
}
SceneOpenGL2::SceneOpenGL2(OpenGLBackend *backend)
: SceneOpenGL(Workspace::self(), backend)
, m_lanczosFilter(NULL)
, m_colorCorrection()
{
if (!init_ok) {
// base ctor already failed
return;
}
// Initialize color correction before the shaders
slotColorCorrectedChanged(false);
connect(options, SIGNAL(colorCorrectedChanged()), this, SLOT(slotColorCorrectedChanged()), Qt::QueuedConnection);
if (!ShaderManager::instance()->isValid()) {
qDebug() << "No Scene Shaders available";
init_ok = false;
return;
}
// push one shader on the stack so that one is always bound
ShaderManager::instance()->pushShader(ShaderManager::SimpleShader);
if (checkGLError("Init")) {
qCritical() << "OpenGL 2 compositing setup failed";
init_ok = false;
return; // error
}
qDebug() << "OpenGL 2 compositing successfully initialized";
#ifndef KWIN_HAVE_OPENGLES
// It is not legal to not have a vertex array object bound in a core context
if (hasGLExtension(QStringLiteral("GL_ARB_vertex_array_object"))) {
glGenVertexArrays(1, &vao);
glBindVertexArray(vao);
}
#endif
init_ok = true;
}
SceneOpenGL2::~SceneOpenGL2()
{
}
void SceneOpenGL2::paintGenericScreen(int mask, ScreenPaintData data)
{
ShaderBinder binder(ShaderManager::GenericShader);
binder.shader()->setUniform(GLShader::ScreenTransformation, transformation(mask, data));
Scene::paintGenericScreen(mask, data);
}
void SceneOpenGL2::paintDesktop(int desktop, int mask, const QRegion &region, ScreenPaintData &data)
{
ShaderBinder binder(ShaderManager::GenericShader);
GLShader *shader = binder.shader();
QMatrix4x4 screenTransformation = shader->getUniformMatrix4x4("screenTransformation");
KWin::SceneOpenGL::paintDesktop(desktop, mask, region, data);
shader->setUniform(GLShader::ScreenTransformation, screenTransformation);
}
void SceneOpenGL2::doPaintBackground(const QVector< float >& vertices)
{
GLVertexBuffer *vbo = GLVertexBuffer::streamingBuffer();
vbo->reset();
vbo->setUseColor(true);
vbo->setData(vertices.count() / 2, 2, vertices.data(), NULL);
ShaderBinder binder(ShaderManager::ColorShader);
binder.shader()->setUniform(GLShader::Offset, QVector2D(0, 0));
vbo->render(GL_TRIANGLES);
}
SceneOpenGL::Window *SceneOpenGL2::createWindow(Toplevel *t)
{
return new SceneOpenGL2Window(t);
}
void SceneOpenGL2::finalDrawWindow(EffectWindowImpl* w, int mask, QRegion region, WindowPaintData& data)
{
if (!m_colorCorrection.isNull() && m_colorCorrection->isEnabled()) {
// Split the painting for separate screens
const int numScreens = screens()->count();
for (int screen = 0; screen < numScreens; ++ screen) {
QRegion regionForScreen(region);
if (numScreens > 1)
regionForScreen = region.intersected(screens()->geometry(screen));
data.setScreen(screen);
performPaintWindow(w, mask, regionForScreen, data);
}
} else {
performPaintWindow(w, mask, region, data);
}
}
void SceneOpenGL2::performPaintWindow(EffectWindowImpl* w, int mask, QRegion region, WindowPaintData& data)
{
if (mask & PAINT_WINDOW_LANCZOS) {
if (!m_lanczosFilter) {
m_lanczosFilter = new LanczosFilter(this);
// recreate the lanczos filter when the screen gets resized
connect(screens(), SIGNAL(changed()), SLOT(resetLanczosFilter()));
}
m_lanczosFilter->performPaint(w, mask, region, data);
} else
w->sceneWindow()->performPaint(mask, region, data);
}
void SceneOpenGL2::resetLanczosFilter()
{
// TODO: Qt5 - replace by a lambda slot
delete m_lanczosFilter;
m_lanczosFilter = NULL;
}
ColorCorrection *SceneOpenGL2::colorCorrection()
{
return m_colorCorrection.data();
}
void SceneOpenGL2::slotColorCorrectedChanged(bool recreateShaders)
{
qDebug() << "Color correction:" << options->isColorCorrected();
if (options->isColorCorrected() && m_colorCorrection.isNull()) {
m_colorCorrection.reset(new ColorCorrection(this));
if (!m_colorCorrection->setEnabled(true)) {
m_colorCorrection.reset();
return;
}
connect(m_colorCorrection.data(), SIGNAL(changed()), Compositor::self(), SLOT(addRepaintFull()));
connect(m_colorCorrection.data(), SIGNAL(errorOccured()), options, SLOT(setColorCorrected()), Qt::QueuedConnection);
if (recreateShaders) {
// Reload all shaders
ShaderManager::cleanup();
ShaderManager::instance();
}
} else {
m_colorCorrection.reset();
}
Compositor::self()->addRepaintFull();
}
//****************************************
// SceneOpenGL1
//****************************************
#ifdef KWIN_HAVE_OPENGL_1
bool SceneOpenGL1::supported(OpenGLBackend *backend)
{
Q_UNUSED(backend)
const QByteArray forceEnv = qgetenv("KWIN_COMPOSE");
if (!forceEnv.isEmpty()) {
if (qstrcmp(forceEnv, "O1") == 0) {
qDebug() << "OpenGL 1 compositing enforced by environment variable";
return true;
} else {
// OpenGL 1 disabled by environment variable
return false;
}
}
if (GLPlatform::instance()->recommendedCompositor() < OpenGL1Compositing) {
qDebug() << "Driver does not recommend OpenGL 1 compositing";
return false;
}
return true;
}
SceneOpenGL1::SceneOpenGL1(OpenGLBackend *backend)
: SceneOpenGL(Workspace::self(), backend)
, m_resetModelViewProjectionMatrix(true)
{
if (!init_ok) {
// base ctor already failed
return;
}
ShaderManager::disable();
setupModelViewProjectionMatrix();
if (checkGLError("Init")) {
qCritical() << "OpenGL 1 compositing setup failed";
init_ok = false;
return; // error
}
qDebug() << "OpenGL 1 compositing successfully initialized";
}
SceneOpenGL1::~SceneOpenGL1()
{
}
qint64 SceneOpenGL1::paint(QRegion damage, ToplevelList windows)
{
if (m_resetModelViewProjectionMatrix) {
// reset model view projection matrix if required
setupModelViewProjectionMatrix();
}
return SceneOpenGL::paint(damage, windows);
}
void SceneOpenGL1::paintGenericScreen(int mask, ScreenPaintData data)
{
pushMatrix(transformation(mask, data));
Scene::paintGenericScreen(mask, data);
popMatrix();
}
void SceneOpenGL1::doPaintBackground(const QVector< float >& vertices)
{
GLVertexBuffer *vbo = GLVertexBuffer::streamingBuffer();
vbo->reset();
vbo->setUseColor(true);
vbo->setData(vertices.count() / 2, 2, vertices.data(), NULL);
vbo->render(GL_TRIANGLES);
}
void SceneOpenGL1::setupModelViewProjectionMatrix()
{
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
float fovy = 60.0f;
float aspect = 1.0f;
float zNear = 0.1f;
float zFar = 100.0f;
float ymax = zNear * tan(fovy * M_PI / 360.0f);
float ymin = -ymax;
float xmin = ymin * aspect;
float xmax = ymax * aspect;
// swap top and bottom to have OpenGL coordinate system match X system
glFrustum(xmin, xmax, ymin, ymax, zNear, zFar);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
float scaleFactor = 1.1 * tan(fovy * M_PI / 360.0f) / ymax;
glTranslatef(xmin * scaleFactor, ymax * scaleFactor, -1.1);
glScalef((xmax - xmin)*scaleFactor / displayWidth(), -(ymax - ymin)*scaleFactor / displayHeight(), 0.001);
m_resetModelViewProjectionMatrix = false;
}
void SceneOpenGL1::screenGeometryChanged(const QSize &size)
{
SceneOpenGL::screenGeometryChanged(size);
m_resetModelViewProjectionMatrix = true;
}
SceneOpenGL::Window *SceneOpenGL1::createWindow(Toplevel *t)
{
return new SceneOpenGL1Window(t);
}
#endif
//****************************************
// SceneOpenGL::Texture
//****************************************
SceneOpenGL::Texture::Texture(OpenGLBackend *backend)
: GLTexture(*backend->createBackendTexture(this))
{
}
SceneOpenGL::Texture::Texture(OpenGLBackend *backend, const QPixmap &pix, GLenum target)
: GLTexture(*backend->createBackendTexture(this))
{
load(pix, target);
}
SceneOpenGL::Texture::~Texture()
{
}
SceneOpenGL::Texture& SceneOpenGL::Texture::operator = (const SceneOpenGL::Texture& tex)
{
d_ptr = tex.d_ptr;
return *this;
}
void SceneOpenGL::Texture::discard()
{
d_ptr = d_func()->backend()->createBackendTexture(this);
}
bool SceneOpenGL::Texture::load(const Pixmap& pix, const QSize& size,
int depth)
{
if (pix == None)
return false;
return load(pix, size, depth,
QRegion(0, 0, size.width(), size.height()));
}
bool SceneOpenGL::Texture::load(const QImage& image, GLenum target)
{
if (image.isNull())
return false;
return load(QPixmap::fromImage(image), target);
}
bool SceneOpenGL::Texture::load(const QPixmap& pixmap, GLenum target)
{
if (pixmap.isNull())
return false;
return GLTexture::load(pixmap.toImage(), target);
}
void SceneOpenGL::Texture::findTarget()
{
Q_D(Texture);
d->findTarget();
}
bool SceneOpenGL::Texture::load(const Pixmap& pix, const QSize& size,
int depth, QRegion region)
{
Q_UNUSED(region)
// decrease the reference counter for the old texture
d_ptr = d_func()->backend()->createBackendTexture(this); //new TexturePrivate();
Q_D(Texture);
return d->loadTexture(pix, size, depth);
}
bool SceneOpenGL::Texture::update(const QRegion &damage)
{
Q_D(Texture);
return d->update(damage);
}
//****************************************
// SceneOpenGL::Texture
//****************************************
SceneOpenGL::TexturePrivate::TexturePrivate()
{
}
SceneOpenGL::TexturePrivate::~TexturePrivate()
{
}
bool SceneOpenGL::TexturePrivate::update(const QRegion &damage)
{
Q_UNUSED(damage)
return true;
}
//****************************************
// SceneOpenGL::Window
//****************************************
SceneOpenGL::Window::Window(Toplevel* c)
: Scene::Window(c)
, m_scene(NULL)
{
}
SceneOpenGL::Window::~Window()
{
}
static SceneOpenGL::Texture *s_frameTexture = NULL;
// Bind the window pixmap to an OpenGL texture.
bool SceneOpenGL::Window::bindTexture()
{
s_frameTexture = NULL;
OpenGLWindowPixmap *pixmap = windowPixmap<OpenGLWindowPixmap>();
if (!pixmap) {
return false;
}
s_frameTexture = pixmap->texture();
if (pixmap->isDiscarded()) {
return !pixmap->texture()->isNull();
}
return pixmap->bind();
}
QMatrix4x4 SceneOpenGL::Window::transformation(int mask, const WindowPaintData &data) const
{
QMatrix4x4 matrix;
matrix.translate(x(), y());
if (!(mask & PAINT_WINDOW_TRANSFORMED))
return matrix;
matrix.translate(data.translation());
data.scale().applyTo(&matrix);
if (data.rotationAngle() == 0.0)
return matrix;
// Apply the rotation
// cannot use data.rotation.applyTo(&matrix) as QGraphicsRotation uses projectedRotate to map back to 2D
matrix.translate(data.rotationOrigin());
const QVector3D axis = data.rotationAxis();
matrix.rotate(data.rotationAngle(), axis.x(), axis.y(), axis.z());
matrix.translate(-data.rotationOrigin());
return matrix;
}
bool SceneOpenGL::Window::beginRenderWindow(int mask, const QRegion &region, WindowPaintData &data)
{
if (region.isEmpty())
return false;
m_hardwareClipping = region != infiniteRegion() && (mask & PAINT_WINDOW_TRANSFORMED) && !(mask & PAINT_SCREEN_TRANSFORMED);
if (region != infiniteRegion() && !m_hardwareClipping) {
WindowQuadList quads;
quads.reserve(data.quads.count());
const QRegion filterRegion = region.translated(-x(), -y());
// split all quads in bounding rect with the actual rects in the region
foreach (const WindowQuad &quad, data.quads) {
foreach (const QRect &r, filterRegion.rects()) {
const QRectF rf(r);
const QRectF quadRect(QPointF(quad.left(), quad.top()), QPointF(quad.right(), quad.bottom()));
const QRectF &intersected = rf.intersected(quadRect);
if (intersected.isValid()) {
if (quadRect == intersected) {
// case 1: completely contains, include and do not check other rects
quads << quad;
break;
}
// case 2: intersection
quads << quad.makeSubQuad(intersected.left(), intersected.top(), intersected.right(), intersected.bottom());
}
}
}
data.quads = quads;
}
if (data.quads.isEmpty())
return false;
if (!bindTexture() || !s_frameTexture) {
return false;
}
if (m_hardwareClipping) {
glEnable(GL_SCISSOR_TEST);
}
// Update the texture filter
if (options->glSmoothScale() != 0 &&
(mask & (PAINT_WINDOW_TRANSFORMED | PAINT_SCREEN_TRANSFORMED)))
filter = ImageFilterGood;
else
filter = ImageFilterFast;
s_frameTexture->setFilter(filter == ImageFilterGood ? GL_LINEAR : GL_NEAREST);
const GLVertexAttrib attribs[] = {
{ VA_Position, 2, GL_FLOAT, offsetof(GLVertex2D, position) },
{ VA_TexCoord, 2, GL_FLOAT, offsetof(GLVertex2D, texcoord) },
};
GLVertexBuffer *vbo = GLVertexBuffer::streamingBuffer();
vbo->reset();
vbo->setAttribLayout(attribs, 2, sizeof(GLVertex2D));
return true;
}
void SceneOpenGL::Window::endRenderWindow()
{
if (m_hardwareClipping) {
glDisable(GL_SCISSOR_TEST);
}
}
OpenGLPaintRedirector *SceneOpenGL::Window::paintRedirector() const
{
if (toplevel->isClient()) {
Client *client = static_cast<Client *>(toplevel);
if (client->noBorder())
return 0;
return static_cast<OpenGLPaintRedirector *>(client->decorationPaintRedirector());
}
if (toplevel->isDeleted()) {
Deleted *deleted = static_cast<Deleted *>(toplevel);
if (deleted->noBorder())
return 0;
return static_cast<OpenGLPaintRedirector *>(deleted->decorationPaintRedirector());
}
return 0;
}
bool SceneOpenGL::Window::getDecorationTextures(GLTexture **textures) const
{
OpenGLPaintRedirector *redirector = paintRedirector();
if (!redirector)
return false;
redirector->ensurePixmapsPainted();
textures[0] = redirector->leftRightTexture();
textures[1] = redirector->topBottomTexture();
redirector->markAsRepainted();
return true;
}
void SceneOpenGL::Window::paintDecorations(const WindowPaintData &data, const QRegion &region)
{
GLTexture *textures[2];
if (!getDecorationTextures(textures))
return;
WindowQuadList quads[2]; // left-right, top-bottom
// Split the quads into two lists
foreach (const WindowQuad &quad, data.quads) {
switch (quad.type()) {
case WindowQuadDecorationLeftRight:
quads[0].append(quad);
continue;
case WindowQuadDecorationTopBottom:
quads[1].append(quad);
continue;
default:
continue;
}
}
TextureType type[] = { DecorationLeftRight, DecorationTopBottom };
for (int i = 0; i < 2; i++)
paintDecoration(textures[i], type[i], region, data, quads[i]);
}
void SceneOpenGL::Window::paintDecoration(GLTexture *texture, TextureType type,
const QRegion &region, const WindowPaintData &data,
const WindowQuadList &quads)
{
if (!texture || quads.isEmpty())
return;
if (filter == ImageFilterGood)
texture->setFilter(GL_LINEAR);
else
texture->setFilter(GL_NEAREST);
texture->setWrapMode(GL_CLAMP_TO_EDGE);
texture->bind();
prepareStates(type, data.opacity() * data.decorationOpacity(), data.brightness(), data.saturation(), data.screen());
renderQuads(0, region, quads, texture, false);
restoreStates(type, data.opacity() * data.decorationOpacity(), data.brightness(), data.saturation());
texture->unbind();
#ifndef KWIN_HAVE_OPENGLES
if (m_scene && m_scene->debug()) {
glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
GLVertexBuffer::streamingBuffer()->render(region, GL_TRIANGLES, m_hardwareClipping);
glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
}
#endif
}
void SceneOpenGL::Window::paintShadow(const QRegion &region, const WindowPaintData &data)
{
WindowQuadList quads;
foreach (const WindowQuad &quad, data.quads) {
switch (quad.type()) {
case WindowQuadShadowTopLeft:
case WindowQuadShadowTop:
case WindowQuadShadowTopRight:
case WindowQuadShadowLeft:
case WindowQuadShadowRight:
case WindowQuadShadowBottomLeft:
case WindowQuadShadowBottom:
case WindowQuadShadowBottomRight:
quads.append(quad);
break;
default:
break;
}
}
if (quads.isEmpty())
return;
GLTexture *texture = static_cast<SceneOpenGLShadow*>(m_shadow)->shadowTexture();
if (!texture) {
return;
}
if (filter == ImageFilterGood)
texture->setFilter(GL_LINEAR);
else
texture->setFilter(GL_NEAREST);
texture->setWrapMode(GL_CLAMP_TO_EDGE);
texture->bind();
prepareStates(Shadow, data.opacity(), data.brightness(), data.saturation(), data.screen());
renderQuads(0, region, quads, texture, true);
restoreStates(Shadow, data.opacity(), data.brightness(), data.saturation());
texture->unbind();
#ifndef KWIN_HAVE_OPENGLES
if (m_scene && m_scene->debug()) {
glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
renderQuads(0, region, quads, texture, true);
glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
}
#endif
}
void SceneOpenGL::Window::renderQuads(int, const QRegion& region, const WindowQuadList& quads,
GLTexture *tex, bool normalized)
{
if (quads.isEmpty())
return;
const QMatrix4x4 matrix = tex->matrix(normalized ? NormalizedCoordinates : UnnormalizedCoordinates);
// Render geometry
GLenum primitiveType;
int primcount;
if (GLVertexBuffer::supportsIndexedQuads()) {
primitiveType = GL_QUADS_KWIN;
primcount = quads.count() * 4;
} else {
primitiveType = GL_TRIANGLES;
primcount = quads.count() * 6;
}
GLVertexBuffer *vbo = GLVertexBuffer::streamingBuffer();
vbo->setVertexCount(primcount);
GLVertex2D *map = (GLVertex2D *) vbo->map(primcount * sizeof(GLVertex2D));
quads.makeInterleavedArrays(primitiveType, map, matrix);
vbo->unmap();
vbo->render(region, primitiveType, m_hardwareClipping);
}
GLTexture *SceneOpenGL::Window::textureForType(SceneOpenGL::Window::TextureType type)
{
GLTexture *tex = NULL;
OpenGLPaintRedirector *redirector = NULL;
if (type != Content && type != Shadow) {
if (toplevel->isClient()) {
Client *client = static_cast<Client*>(toplevel);
redirector = static_cast<OpenGLPaintRedirector*>(client->decorationPaintRedirector());
} else if (toplevel->isDeleted()) {
Deleted *deleted = static_cast<Deleted*>(toplevel);
redirector = static_cast<OpenGLPaintRedirector*>(deleted->decorationPaintRedirector());
}
}
switch(type) {
case Content:
tex = s_frameTexture;
break;
case DecorationLeftRight:
tex = redirector ? redirector->leftRightTexture() : 0;
break;
case DecorationTopBottom:
tex = redirector ? redirector->topBottomTexture() : 0;
break;
case Shadow:
tex = static_cast<SceneOpenGLShadow*>(m_shadow)->shadowTexture();
}
return tex;
}
WindowPixmap* SceneOpenGL::Window::createWindowPixmap()
{
return new OpenGLWindowPixmap(this, m_scene);
}
//***************************************
// SceneOpenGL2Window
//***************************************
SceneOpenGL2Window::SceneOpenGL2Window(Toplevel *c)
: SceneOpenGL::Window(c)
, m_blendingEnabled(false)
{
}
SceneOpenGL2Window::~SceneOpenGL2Window()
{
}
QVector4D SceneOpenGL2Window::modulate(float opacity, float brightness) const
{
const float a = opacity;
const float rgb = opacity * brightness;
return QVector4D(rgb, rgb, rgb, a);
}
void SceneOpenGL2Window::setBlendEnabled(bool enabled)
{
if (enabled && !m_blendingEnabled)
glEnable(GL_BLEND);
else if (!enabled && m_blendingEnabled)
glDisable(GL_BLEND);
m_blendingEnabled = enabled;
}
void SceneOpenGL2Window::setupLeafNodes(LeafNode *nodes, const WindowQuadList *quads, const WindowPaintData &data)
{
if (!quads[ShadowLeaf].isEmpty()) {
nodes[ShadowLeaf].texture = static_cast<SceneOpenGLShadow *>(m_shadow)->shadowTexture();
nodes[ShadowLeaf].opacity = data.opacity();
nodes[ShadowLeaf].hasAlpha = true;
nodes[ShadowLeaf].coordinateType = NormalizedCoordinates;
}
if (!quads[LeftRightLeaf].isEmpty() || !quads[TopBottomLeaf].isEmpty()) {
GLTexture *textures[2];
getDecorationTextures(textures);
nodes[LeftRightLeaf].texture = textures[0];
nodes[LeftRightLeaf].opacity = data.opacity();
nodes[LeftRightLeaf].hasAlpha = true;
nodes[LeftRightLeaf].coordinateType = UnnormalizedCoordinates;
nodes[TopBottomLeaf].texture = textures[1];
nodes[TopBottomLeaf].opacity = data.opacity();
nodes[TopBottomLeaf].hasAlpha = true;
nodes[TopBottomLeaf].coordinateType = UnnormalizedCoordinates;
}
nodes[ContentLeaf].texture = s_frameTexture;
nodes[ContentLeaf].hasAlpha = !isOpaque();
// TODO: ARGB crsoofading is atm. a hack, playing on opacities for two dumb SrcOver operations
// Should be a shader
if (data.crossFadeProgress() != 1.0 && (data.opacity() < 0.95 || toplevel->hasAlpha())) {
const float opacity = 1.0 - data.crossFadeProgress();
nodes[ContentLeaf].opacity = data.opacity() * (1 - pow(opacity, 1.0f + 2.0f * data.opacity()));
} else {
nodes[ContentLeaf].opacity = data.opacity();
}
nodes[ContentLeaf].coordinateType = UnnormalizedCoordinates;
if (data.crossFadeProgress() != 1.0) {
OpenGLWindowPixmap *previous = previousWindowPixmap<OpenGLWindowPixmap>();
nodes[PreviousContentLeaf].texture = previous ? previous->texture() : NULL;
nodes[PreviousContentLeaf].hasAlpha = !isOpaque();
nodes[PreviousContentLeaf].opacity = data.opacity() * (1.0 - data.crossFadeProgress());
nodes[PreviousContentLeaf].coordinateType = NormalizedCoordinates;
}
}
void SceneOpenGL2Window::performPaint(int mask, QRegion region, WindowPaintData data)
{
if (!beginRenderWindow(mask, region, data))
return;
GLShader *shader = data.shader;
if (!shader) {
if ((mask & Scene::PAINT_WINDOW_TRANSFORMED) || (mask & Scene::PAINT_SCREEN_TRANSFORMED)) {
shader = ShaderManager::instance()->pushShader(ShaderManager::GenericShader);
} else {
shader = ShaderManager::instance()->pushShader(ShaderManager::SimpleShader);
shader->setUniform(GLShader::Offset, QVector2D(x(), y()));
}
}
if (ColorCorrection *cc = static_cast<SceneOpenGL2*>(m_scene)->colorCorrection()) {
cc->setupForOutput(data.screen());
}
shader->setUniform(GLShader::WindowTransformation, transformation(mask, data));
shader->setUniform(GLShader::Saturation, data.saturation());
const GLenum filter = (mask & (Effect::PAINT_WINDOW_TRANSFORMED | Effect::PAINT_SCREEN_TRANSFORMED))
&& options->glSmoothScale() != 0 ? GL_LINEAR : GL_NEAREST;
WindowQuadList quads[LeafCount];
// Split the quads into separate lists for each type
foreach (const WindowQuad &quad, data.quads) {
switch (quad.type()) {
case WindowQuadDecorationLeftRight:
quads[LeftRightLeaf].append(quad);
continue;
case WindowQuadDecorationTopBottom:
quads[TopBottomLeaf].append(quad);
continue;
case WindowQuadContents:
quads[ContentLeaf].append(quad);
continue;
case WindowQuadShadowTopLeft:
case WindowQuadShadowTop:
case WindowQuadShadowTopRight:
case WindowQuadShadowLeft:
case WindowQuadShadowRight:
case WindowQuadShadowBottomLeft:
case WindowQuadShadowBottom:
case WindowQuadShadowBottomRight:
quads[ShadowLeaf].append(quad);
continue;
default:
continue;
}
}
if (data.crossFadeProgress() != 1.0) {
OpenGLWindowPixmap *previous = previousWindowPixmap<OpenGLWindowPixmap>();
if (previous) {
const QRect &oldGeometry = previous->contentsRect();
Q_FOREACH (const WindowQuad &quad, quads[ContentLeaf]) {
// we need to create new window quads with normalize texture coordinates
// normal quads divide the x/y position by width/height. This would not work as the texture
// is larger than the visible content in case of a decorated Client resulting in garbage being shown.
// So we calculate the normalized texture coordinate in the Client's new content space and map it to
// the previous Client's content space.
WindowQuad newQuad(WindowQuadContents);
for (int i = 0; i < 4; ++i) {
const qreal xFactor = qreal(quad[i].textureX() - toplevel->clientPos().x())/qreal(toplevel->clientSize().width());
const qreal yFactor = qreal(quad[i].textureY() - toplevel->clientPos().y())/qreal(toplevel->clientSize().height());
WindowVertex vertex(quad[i].x(), quad[i].y(),
(xFactor * oldGeometry.width() + oldGeometry.x())/qreal(previous->size().width()),
(yFactor * oldGeometry.height() + oldGeometry.y())/qreal(previous->size().height()));
newQuad[i] = vertex;
}
quads[PreviousContentLeaf].append(newQuad);
}
}
}
const bool indexedQuads = GLVertexBuffer::supportsIndexedQuads();
const GLenum primitiveType = indexedQuads ? GL_QUADS_KWIN : GL_TRIANGLES;
const int verticesPerQuad = indexedQuads ? 4 : 6;
const size_t size = verticesPerQuad *
(quads[0].count() + quads[1].count() + quads[2].count() + quads[3].count() + quads[4].count()) * sizeof(GLVertex2D);
GLVertexBuffer *vbo = GLVertexBuffer::streamingBuffer();
GLVertex2D *map = (GLVertex2D *) vbo->map(size);
LeafNode nodes[LeafCount];
setupLeafNodes(nodes, quads, data);
for (int i = 0, v = 0; i < LeafCount; i++) {
if (quads[i].isEmpty() || !nodes[i].texture)
continue;
nodes[i].firstVertex = v;
nodes[i].vertexCount = quads[i].count() * verticesPerQuad;
const QMatrix4x4 matrix = nodes[i].texture->matrix(nodes[i].coordinateType);
quads[i].makeInterleavedArrays(primitiveType, &map[v], matrix);
v += quads[i].count() * verticesPerQuad;
}
vbo->unmap();
vbo->bindArrays();
// Make sure the blend function is set up correctly in case we will be doing blending
glBlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
float opacity = -1.0;
for (int i = 0; i < LeafCount; i++) {
if (nodes[i].vertexCount == 0)
continue;
setBlendEnabled(nodes[i].hasAlpha || nodes[i].opacity < 1.0);
if (opacity != nodes[i].opacity) {
shader->setUniform(GLShader::ModulationConstant,
modulate(nodes[i].opacity, data.brightness()));
opacity = nodes[i].opacity;
}
nodes[i].texture->setFilter(filter);
nodes[i].texture->setWrapMode(GL_CLAMP_TO_EDGE);
nodes[i].texture->bind();
vbo->draw(region, primitiveType, nodes[i].firstVertex, nodes[i].vertexCount, m_hardwareClipping);
}
vbo->unbindArrays();
setBlendEnabled(false);
if (!data.shader)
ShaderManager::instance()->popShader();
endRenderWindow();
}
void SceneOpenGL2Window::prepareStates(TextureType type, qreal opacity, qreal brightness, qreal saturation, int screen)
{
// setup blending of transparent windows
bool opaque = isOpaque() && opacity == 1.0;
bool alpha = toplevel->hasAlpha() || type != Content;
if (type != Content) {
if (type == Shadow) {
opaque = false;
} else {
if (opacity == 1.0 && toplevel->isClient()) {
opaque = !(static_cast<Client*>(toplevel)->decorationHasAlpha());
} else {
// TODO: add support in Deleted
opaque = false;
}
}
}
if (!opaque) {
glEnable(GL_BLEND);
if (alpha) {
glBlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
} else {
glBlendColor((float)opacity, (float)opacity, (float)opacity, (float)opacity);
glBlendFunc(GL_ONE, GL_ONE_MINUS_CONSTANT_ALPHA);
}
}
m_blendingEnabled = !opaque;
const qreal rgb = brightness * opacity;
const qreal a = opacity;
GLShader *shader = ShaderManager::instance()->getBoundShader();
shader->setUniform(GLShader::ModulationConstant, QVector4D(rgb, rgb, rgb, a));
shader->setUniform(GLShader::Saturation, saturation);
if (ColorCorrection *cc = static_cast<SceneOpenGL2*>(m_scene)->colorCorrection()) {
cc->setupForOutput(screen);
}
}
void SceneOpenGL2Window::restoreStates(TextureType type, qreal opacity, qreal brightness, qreal saturation)
{
Q_UNUSED(type);
Q_UNUSED(opacity);
Q_UNUSED(brightness);
Q_UNUSED(saturation);
if (m_blendingEnabled) {
glDisable(GL_BLEND);
}
if (ColorCorrection *cc = static_cast<SceneOpenGL2*>(m_scene)->colorCorrection()) {
cc->setupForOutput(-1);
}
}
//***************************************
// SceneOpenGL1Window
//***************************************
#ifdef KWIN_HAVE_OPENGL_1
SceneOpenGL1Window::SceneOpenGL1Window(Toplevel *c)
: SceneOpenGL::Window(c)
{
}
SceneOpenGL1Window::~SceneOpenGL1Window()
{
}
// paint the window
void SceneOpenGL1Window::performPaint(int mask, QRegion region, WindowPaintData data)
{
if (!beginRenderWindow(mask, region, data))
return;
pushMatrix(transformation(mask, data));
// shadow
if (m_shadow) {
paintShadow(region, data);
}
// decorations
paintDecorations(data, region);
// paint the content
OpenGLWindowPixmap *previous = previousWindowPixmap<OpenGLWindowPixmap>();
const WindowQuadList contentQuads = data.quads.select(WindowQuadContents);
if (previous && data.crossFadeProgress() != 1.0) {
// TODO: ARGB crsoofading is atm. a hack, playing on opacities for two dumb SrcOver operations
// Will require a caching texture or sth. else 1.2 compliant
float opacity = data.opacity();
if (opacity < 0.95f || toplevel->hasAlpha()) {
opacity = 1 - data.crossFadeProgress();
opacity = data.opacity() * (1 - pow(opacity, 1.0f + 2.0f * data.opacity()));
}
paintContent(s_frameTexture, region, mask, opacity, data, contentQuads, false);
previous->texture()->setFilter(filter == Scene::ImageFilterGood ? GL_LINEAR : GL_NEAREST);
WindowQuadList oldContents;
const QRect &oldGeometry = previous->contentsRect();
Q_FOREACH (const WindowQuad &quad, contentQuads) {
// we need to create new window quads with normalize texture coordinates
// normal quads divide the x/y position by width/height. This would not work as the texture
// is larger than the visible content in case of a decorated Client resulting in garbage being shown.
// So we calculate the normalized texture coordinate in the Client's new content space and map it to
// the previous Client's content space.
WindowQuad newQuad(WindowQuadContents);
for (int i = 0; i < 4; ++i) {
const qreal xFactor = qreal(quad[i].textureX() - toplevel->clientPos().x())/qreal(toplevel->clientSize().width());
const qreal yFactor = qreal(quad[i].textureY() - toplevel->clientPos().y())/qreal(toplevel->clientSize().height());
WindowVertex vertex(quad[i].x(), quad[i].y(),
(xFactor * oldGeometry.width() + oldGeometry.x())/qreal(previous->size().width()),
(yFactor * oldGeometry.height() + oldGeometry.y())/qreal(previous->size().height()));
newQuad[i] = vertex;
}
oldContents.append(newQuad);
}
opacity = data.opacity() * (1.0 - data.crossFadeProgress());
paintContent(previous->texture(), region, mask, opacity, data, oldContents, true);
} else {
paintContent(s_frameTexture, region, mask, data.opacity(), data, contentQuads, false);
}
popMatrix();
endRenderWindow();
}
void SceneOpenGL1Window::paintContent(SceneOpenGL::Texture* content, const QRegion& region, int mask,
qreal opacity, const WindowPaintData& data, const WindowQuadList &contentQuads, bool normalized)
{
if (contentQuads.isEmpty()) {
return;
}
content->bind();
prepareStates(Content, opacity, data.brightness(), data.saturation(), data.screen());
renderQuads(mask, region, contentQuads, content, normalized);
restoreStates(Content, opacity, data.brightness(), data.saturation());
content->unbind();
#ifndef KWIN_HAVE_OPENGLES
if (m_scene && m_scene->debug()) {
glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
renderQuads(mask, region, contentQuads, content, normalized);
glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
}
#endif
}
void SceneOpenGL1Window::prepareStates(TextureType type, qreal opacity, qreal brightness, qreal saturation, int screen)
{
Q_UNUSED(screen)
GLTexture *tex = textureForType(type);
bool alpha = false;
bool opaque = true;
if (type == Content) {
alpha = toplevel->hasAlpha();
opaque = isOpaque() && opacity == 1.0;
} else {
alpha = true;
opaque = false;
}
// setup blending of transparent windows
glPushAttrib(GL_ENABLE_BIT);
if (!opaque) {
glEnable(GL_BLEND);
glBlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
}
if (saturation != 1.0 && tex->saturationSupported()) {
// First we need to get the color from [0; 1] range to [0.5; 1] range
glActiveTexture(GL_TEXTURE0);
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE);
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB, GL_INTERPOLATE);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB, GL_TEXTURE);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_RGB, GL_SRC_COLOR);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_RGB, GL_CONSTANT);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND1_RGB, GL_SRC_COLOR);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE2_RGB, GL_CONSTANT);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND2_RGB, GL_SRC_ALPHA);
const float scale_constant[] = { 1.0, 1.0, 1.0, 0.5};
glTexEnvfv(GL_TEXTURE_ENV, GL_TEXTURE_ENV_COLOR, scale_constant);
tex->bind();
// Then we take dot product of the result of previous pass and
// saturation_constant. This gives us completely unsaturated
// (greyscale) image
// Note that both operands have to be in range [0.5; 1] since opengl
// automatically substracts 0.5 from them
glActiveTexture(GL_TEXTURE1);
float saturation_constant[] = { 0.5 + 0.5 * 0.30, 0.5 + 0.5 * 0.59, 0.5 + 0.5 * 0.11,
static_cast<float>(saturation) };
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE);
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB, GL_DOT3_RGB);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB, GL_PREVIOUS);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_RGB, GL_SRC_COLOR);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_RGB, GL_CONSTANT);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND1_RGB, GL_SRC_COLOR);
glTexEnvfv(GL_TEXTURE_ENV, GL_TEXTURE_ENV_COLOR, saturation_constant);
tex->bind();
// Finally we need to interpolate between the original image and the
// greyscale image to get wanted level of saturation
glActiveTexture(GL_TEXTURE2);
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE);
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB, GL_INTERPOLATE);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB, GL_TEXTURE0);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_RGB, GL_SRC_COLOR);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_RGB, GL_PREVIOUS);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND1_RGB, GL_SRC_COLOR);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE2_RGB, GL_CONSTANT);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND2_RGB, GL_SRC_ALPHA);
glTexEnvfv(GL_TEXTURE_ENV, GL_TEXTURE_ENV_COLOR, saturation_constant);
// Also replace alpha by primary color's alpha here
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_ALPHA, GL_REPLACE);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_ALPHA, GL_PRIMARY_COLOR);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_ALPHA, GL_SRC_ALPHA);
// And make primary color contain the wanted opacity
glColor4f(opacity, opacity, opacity, opacity);
tex->bind();
if (alpha || !opaque || brightness != 1.0f) {
glActiveTexture(GL_TEXTURE3);
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE);
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB, GL_MODULATE);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB, GL_PREVIOUS);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_RGB, GL_SRC_COLOR);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_RGB, GL_PRIMARY_COLOR);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND1_RGB, GL_SRC_COLOR);
// The color has to be multiplied by both opacity and brightness
float opacityByBrightness = opacity * brightness;
glColor4f(opacityByBrightness, opacityByBrightness, opacityByBrightness, opacity);
if (alpha) {
// Multiply original texture's alpha by our opacity
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_ALPHA, GL_MODULATE);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_ALPHA, GL_TEXTURE0);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_ALPHA, GL_SRC_ALPHA);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_ALPHA, GL_PRIMARY_COLOR);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND1_ALPHA, GL_SRC_ALPHA);
} else {
// Alpha will be taken from previous stage
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_ALPHA, GL_REPLACE);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_ALPHA, GL_PREVIOUS);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_ALPHA, GL_SRC_ALPHA);
}
tex->bind();
}
glActiveTexture(GL_TEXTURE0);
} else if (opacity != 1.0 || brightness != 1.0) {
// the window is additionally configured to have its opacity adjusted,
// do it
float opacityByBrightness = opacity * brightness;
if (alpha) {
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
glColor4f(opacityByBrightness, opacityByBrightness, opacityByBrightness,
opacity);
} else {
// Multiply color by brightness and replace alpha by opacity
float constant[] = { opacityByBrightness, opacityByBrightness, opacityByBrightness,
static_cast<float>(opacity) };
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE);
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB, GL_MODULATE);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB, GL_TEXTURE);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_RGB, GL_SRC_COLOR);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_RGB, GL_CONSTANT);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND1_RGB, GL_SRC_COLOR);
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_ALPHA, GL_REPLACE);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_ALPHA, GL_CONSTANT);
glTexEnvfv(GL_TEXTURE_ENV, GL_TEXTURE_ENV_COLOR, constant);
}
} else if (!alpha && opaque) {
float constant[] = { 1.0, 1.0, 1.0, 1.0 };
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE);
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB, GL_REPLACE);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB, GL_TEXTURE);
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_ALPHA, GL_REPLACE);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_ALPHA, GL_CONSTANT);
glTexEnvfv(GL_TEXTURE_ENV, GL_TEXTURE_ENV_COLOR, constant);
}
}
void SceneOpenGL1Window::restoreStates(TextureType type, qreal opacity, qreal brightness, qreal saturation)
{
GLTexture *tex = textureForType(type);
if (opacity != 1.0 || saturation != 1.0 || brightness != 1.0f) {
if (saturation != 1.0 && tex->saturationSupported()) {
glActiveTexture(GL_TEXTURE3);
glDisable(tex->target());
glActiveTexture(GL_TEXTURE2);
glDisable(tex->target());
glActiveTexture(GL_TEXTURE1);
glDisable(tex->target());
glActiveTexture(GL_TEXTURE0);
}
}
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);
glColor4f(0, 0, 0, 0);
glPopAttrib(); // ENABLE_BIT
}
#endif
//****************************************
// OpenGLWindowPixmap
//****************************************
OpenGLWindowPixmap::OpenGLWindowPixmap(Scene::Window *window, SceneOpenGL* scene)
: WindowPixmap(window)
, m_scene(scene)
, m_texture(scene->createTexture())
{
}
OpenGLWindowPixmap::~OpenGLWindowPixmap()
{
}
bool OpenGLWindowPixmap::bind()
{
if (!m_texture->isNull()) {
if (!toplevel()->damage().isEmpty()) {
const bool success = m_texture->update(toplevel()->damage());
// mipmaps need to be updated
m_texture->setDirty();
toplevel()->resetDamage();
return success;
}
return true;
}
if (!isValid()) {
return false;
}
bool success = m_texture->load(pixmap(), toplevel()->size(), toplevel()->depth(), toplevel()->damage());
if (success)
toplevel()->resetDamage();
else
qDebug() << "Failed to bind window";
return success;
}
//****************************************
// SceneOpenGL::EffectFrame
//****************************************
GLTexture* SceneOpenGL::EffectFrame::m_unstyledTexture = NULL;
QPixmap* SceneOpenGL::EffectFrame::m_unstyledPixmap = NULL;
SceneOpenGL::EffectFrame::EffectFrame(EffectFrameImpl* frame, SceneOpenGL *scene)
: Scene::EffectFrame(frame)
, m_texture(NULL)
, m_textTexture(NULL)
, m_oldTextTexture(NULL)
, m_textPixmap(NULL)
, m_iconTexture(NULL)
, m_oldIconTexture(NULL)
, m_selectionTexture(NULL)
, m_unstyledVBO(NULL)
, m_scene(scene)
{
if (m_effectFrame->style() == EffectFrameUnstyled && !m_unstyledTexture) {
updateUnstyledTexture();
}
}
SceneOpenGL::EffectFrame::~EffectFrame()
{
delete m_texture;
delete m_textTexture;
delete m_textPixmap;
delete m_oldTextTexture;
delete m_iconTexture;
delete m_oldIconTexture;
delete m_selectionTexture;
delete m_unstyledVBO;
}
void SceneOpenGL::EffectFrame::free()
{
glFlush();
delete m_texture;
m_texture = NULL;
delete m_textTexture;
m_textTexture = NULL;
delete m_textPixmap;
m_textPixmap = NULL;
delete m_iconTexture;
m_iconTexture = NULL;
delete m_selectionTexture;
m_selectionTexture = NULL;
delete m_unstyledVBO;
m_unstyledVBO = NULL;
delete m_oldIconTexture;
m_oldIconTexture = NULL;
delete m_oldTextTexture;
m_oldTextTexture = NULL;
}
void SceneOpenGL::EffectFrame::freeIconFrame()
{
delete m_iconTexture;
m_iconTexture = NULL;
}
void SceneOpenGL::EffectFrame::freeTextFrame()
{
delete m_textTexture;
m_textTexture = NULL;
delete m_textPixmap;
m_textPixmap = NULL;
}
void SceneOpenGL::EffectFrame::freeSelection()
{
delete m_selectionTexture;
m_selectionTexture = NULL;
}
void SceneOpenGL::EffectFrame::crossFadeIcon()
{
delete m_oldIconTexture;
m_oldIconTexture = m_iconTexture;
m_iconTexture = NULL;
}
void SceneOpenGL::EffectFrame::crossFadeText()
{
delete m_oldTextTexture;
m_oldTextTexture = m_textTexture;
m_textTexture = NULL;
}
void SceneOpenGL::EffectFrame::render(QRegion region, double opacity, double frameOpacity)
{
if (m_effectFrame->geometry().isEmpty())
return; // Nothing to display
region = infiniteRegion(); // TODO: Old region doesn't seem to work with OpenGL
GLShader* shader = m_effectFrame->shader();
bool sceneShader = false;
if (!shader && ShaderManager::instance()->isValid()) {
shader = ShaderManager::instance()->pushShader(ShaderManager::SimpleShader);
sceneShader = true;
} else if (shader) {
ShaderManager::instance()->pushShader(shader);
}
if (shader) {
if (sceneShader)
shader->setUniform(GLShader::Offset, QVector2D(0, 0));
shader->setUniform(GLShader::ModulationConstant, QVector4D(1.0, 1.0, 1.0, 1.0));
shader->setUniform(GLShader::Saturation, 1.0f);
}
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
#ifdef KWIN_HAVE_OPENGL_1
if (!shader)
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
#endif
// Render the actual frame
if (m_effectFrame->style() == EffectFrameUnstyled) {
if (!m_unstyledVBO) {
m_unstyledVBO = new GLVertexBuffer(GLVertexBuffer::Static);
QRect area = m_effectFrame->geometry();
area.moveTo(0, 0);
area.adjust(-5, -5, 5, 5);
const int roundness = 5;
QVector<float> verts, texCoords;
verts.reserve(84);
texCoords.reserve(84);
// top left
verts << area.left() << area.top();
texCoords << 0.0f << 0.0f;
verts << area.left() << area.top() + roundness;
texCoords << 0.0f << 0.5f;
verts << area.left() + roundness << area.top();
texCoords << 0.5f << 0.0f;
verts << area.left() + roundness << area.top() + roundness;
texCoords << 0.5f << 0.5f;
verts << area.left() << area.top() + roundness;
texCoords << 0.0f << 0.5f;
verts << area.left() + roundness << area.top();
texCoords << 0.5f << 0.0f;
// top
verts << area.left() + roundness << area.top();
texCoords << 0.5f << 0.0f;
verts << area.left() + roundness << area.top() + roundness;
texCoords << 0.5f << 0.5f;
verts << area.right() - roundness << area.top();
texCoords << 0.5f << 0.0f;
verts << area.left() + roundness << area.top() + roundness;
texCoords << 0.5f << 0.5f;
verts << area.right() - roundness << area.top() + roundness;
texCoords << 0.5f << 0.5f;
verts << area.right() - roundness << area.top();
texCoords << 0.5f << 0.0f;
// top right
verts << area.right() - roundness << area.top();
texCoords << 0.5f << 0.0f;
verts << area.right() - roundness << area.top() + roundness;
texCoords << 0.5f << 0.5f;
verts << area.right() << area.top();
texCoords << 1.0f << 0.0f;
verts << area.right() - roundness << area.top() + roundness;
texCoords << 0.5f << 0.5f;
verts << area.right() << area.top() + roundness;
texCoords << 1.0f << 0.5f;
verts << area.right() << area.top();
texCoords << 1.0f << 0.0f;
// bottom left
verts << area.left() << area.bottom() - roundness;
texCoords << 0.0f << 0.5f;
verts << area.left() << area.bottom();
texCoords << 0.0f << 1.0f;
verts << area.left() + roundness << area.bottom() - roundness;
texCoords << 0.5f << 0.5f;
verts << area.left() + roundness << area.bottom();
texCoords << 0.5f << 1.0f;
verts << area.left() << area.bottom();
texCoords << 0.0f << 1.0f;
verts << area.left() + roundness << area.bottom() - roundness;
texCoords << 0.5f << 0.5f;
// bottom
verts << area.left() + roundness << area.bottom() - roundness;
texCoords << 0.5f << 0.5f;
verts << area.left() + roundness << area.bottom();
texCoords << 0.5f << 1.0f;
verts << area.right() - roundness << area.bottom() - roundness;
texCoords << 0.5f << 0.5f;
verts << area.left() + roundness << area.bottom();
texCoords << 0.5f << 1.0f;
verts << area.right() - roundness << area.bottom();
texCoords << 0.5f << 1.0f;
verts << area.right() - roundness << area.bottom() - roundness;
texCoords << 0.5f << 0.5f;
// bottom right
verts << area.right() - roundness << area.bottom() - roundness;
texCoords << 0.5f << 0.5f;
verts << area.right() - roundness << area.bottom();
texCoords << 0.5f << 1.0f;
verts << area.right() << area.bottom() - roundness;
texCoords << 1.0f << 0.5f;
verts << area.right() - roundness << area.bottom();
texCoords << 0.5f << 1.0f;
verts << area.right() << area.bottom();
texCoords << 1.0f << 1.0f;
verts << area.right() << area.bottom() - roundness;
texCoords << 1.0f << 0.5f;
// center
verts << area.left() << area.top() + roundness;
texCoords << 0.0f << 0.5f;
verts << area.left() << area.bottom() - roundness;
texCoords << 0.0f << 0.5f;
verts << area.right() << area.top() + roundness;
texCoords << 1.0f << 0.5f;
verts << area.left() << area.bottom() - roundness;
texCoords << 0.0f << 0.5f;
verts << area.right() << area.bottom() - roundness;
texCoords << 1.0f << 0.5f;
verts << area.right() << area.top() + roundness;
texCoords << 1.0f << 0.5f;
m_unstyledVBO->setData(verts.count() / 2, 2, verts.data(), texCoords.data());
}
if (shader) {
const float a = opacity * frameOpacity;
shader->setUniform(GLShader::ModulationConstant, QVector4D(a, a, a, a));
}
#ifdef KWIN_HAVE_OPENGL_1
else
glColor4f(0.0, 0.0, 0.0, opacity * frameOpacity);
#endif
m_unstyledTexture->bind();
const QPoint pt = m_effectFrame->geometry().topLeft();
if (sceneShader) {
shader->setUniform(GLShader::Offset, QVector2D(pt.x(), pt.y()));
} else {
QMatrix4x4 translation;
translation.translate(pt.x(), pt.y());
if (shader) {
shader->setUniform(GLShader::WindowTransformation, translation);
} else {
pushMatrix(translation);
}
}
m_unstyledVBO->render(region, GL_TRIANGLES);
if (!sceneShader) {
if (shader) {
shader->setUniform(GLShader::WindowTransformation, QMatrix4x4());
} else {
popMatrix();
}
}
m_unstyledTexture->unbind();
} else if (m_effectFrame->style() == EffectFrameStyled) {
if (!m_texture) // Lazy creation
updateTexture();
if (shader) {
const float a = opacity * frameOpacity;
shader->setUniform(GLShader::ModulationConstant, QVector4D(a, a, a, a));
}
#ifdef KWIN_HAVE_OPENGL_1
else
glColor4f(1.0, 1.0, 1.0, opacity * frameOpacity);
#endif
m_texture->bind();
qreal left, top, right, bottom;
m_effectFrame->frame().getMargins(left, top, right, bottom); // m_geometry is the inner geometry
m_texture->render(region, m_effectFrame->geometry().adjusted(-left, -top, right, bottom));
m_texture->unbind();
}
if (!m_effectFrame->selection().isNull()) {
if (!m_selectionTexture) { // Lazy creation
QPixmap pixmap = m_effectFrame->selectionFrame().framePixmap();
if (!pixmap.isNull())
m_selectionTexture = m_scene->createTexture(pixmap);
}
if (m_selectionTexture) {
if (shader) {
const float a = opacity * frameOpacity;
shader->setUniform(GLShader::ModulationConstant, QVector4D(a, a, a, a));
}
#ifdef KWIN_HAVE_OPENGL_1
else
glColor4f(1.0, 1.0, 1.0, opacity * frameOpacity);
#endif
glBlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
m_selectionTexture->bind();
m_selectionTexture->render(region, m_effectFrame->selection());
m_selectionTexture->unbind();
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
}
}
// Render icon
if (!m_effectFrame->icon().isNull() && !m_effectFrame->iconSize().isEmpty()) {
QPoint topLeft(m_effectFrame->geometry().x(),
m_effectFrame->geometry().center().y() - m_effectFrame->iconSize().height() / 2);
if (m_effectFrame->isCrossFade() && m_oldIconTexture) {
if (shader) {
const float a = opacity * (1.0 - m_effectFrame->crossFadeProgress());
shader->setUniform(GLShader::ModulationConstant, QVector4D(a, a, a, a));
}
#ifdef KWIN_HAVE_OPENGL_1
else
glColor4f(1.0, 1.0, 1.0, opacity * (1.0 - m_effectFrame->crossFadeProgress()));
#endif
m_oldIconTexture->bind();
m_oldIconTexture->render(region, QRect(topLeft, m_effectFrame->iconSize()));
m_oldIconTexture->unbind();
if (shader) {
const float a = opacity * m_effectFrame->crossFadeProgress();
shader->setUniform(GLShader::ModulationConstant, QVector4D(a, a, a, a));
}
#ifdef KWIN_HAVE_OPENGL_1
else
glColor4f(1.0, 1.0, 1.0, opacity * m_effectFrame->crossFadeProgress());
#endif
} else {
if (shader) {
const QVector4D constant(opacity, opacity, opacity, opacity);
shader->setUniform(GLShader::ModulationConstant, constant);
}
#ifdef KWIN_HAVE_OPENGL_1
else
glColor4f(1.0, 1.0, 1.0, opacity);
#endif
}
if (!m_iconTexture) { // lazy creation
m_iconTexture = m_scene->createTexture(m_effectFrame->icon().pixmap(m_effectFrame->iconSize()));
}
m_iconTexture->bind();
m_iconTexture->render(region, QRect(topLeft, m_effectFrame->iconSize()));
m_iconTexture->unbind();
}
// Render text
if (!m_effectFrame->text().isEmpty()) {
if (m_effectFrame->isCrossFade() && m_oldTextTexture) {
if (shader) {
const float a = opacity * (1.0 - m_effectFrame->crossFadeProgress());
shader->setUniform(GLShader::ModulationConstant, QVector4D(a, a, a, a));
}
#ifdef KWIN_HAVE_OPENGL_1
else
glColor4f(1.0, 1.0, 1.0, opacity *(1.0 - m_effectFrame->crossFadeProgress()));
#endif
m_oldTextTexture->bind();
m_oldTextTexture->render(region, m_effectFrame->geometry());
m_oldTextTexture->unbind();
if (shader) {
const float a = opacity * m_effectFrame->crossFadeProgress();
shader->setUniform(GLShader::ModulationConstant, QVector4D(a, a, a, a));
}
#ifdef KWIN_HAVE_OPENGL_1
else
glColor4f(1.0, 1.0, 1.0, opacity * m_effectFrame->crossFadeProgress());
#endif
} else {
if (shader) {
const QVector4D constant(opacity, opacity, opacity, opacity);
shader->setUniform(GLShader::ModulationConstant, constant);
}
#ifdef KWIN_HAVE_OPENGL_1
else
glColor4f(1.0, 1.0, 1.0, opacity);
#endif
}
if (!m_textTexture) // Lazy creation
updateTextTexture();
m_textTexture->bind();
m_textTexture->render(region, m_effectFrame->geometry());
m_textTexture->unbind();
}
if (shader) {
ShaderManager::instance()->popShader();
}
glDisable(GL_BLEND);
}
void SceneOpenGL::EffectFrame::updateTexture()
{
delete m_texture;
m_texture = 0L;
if (m_effectFrame->style() == EffectFrameStyled) {
QPixmap pixmap = m_effectFrame->frame().framePixmap();
m_texture = m_scene->createTexture(pixmap);
}
}
void SceneOpenGL::EffectFrame::updateTextTexture()
{
delete m_textTexture;
m_textTexture = 0L;
delete m_textPixmap;
m_textPixmap = 0L;
if (m_effectFrame->text().isEmpty())
return;
// Determine position on texture to paint text
QRect rect(QPoint(0, 0), m_effectFrame->geometry().size());
if (!m_effectFrame->icon().isNull() && !m_effectFrame->iconSize().isEmpty())
rect.setLeft(m_effectFrame->iconSize().width());
// If static size elide text as required
QString text = m_effectFrame->text();
if (m_effectFrame->isStatic()) {
QFontMetrics metrics(m_effectFrame->font());
text = metrics.elidedText(text, Qt::ElideRight, rect.width());
}
m_textPixmap = new QPixmap(m_effectFrame->geometry().size());
m_textPixmap->fill(Qt::transparent);
QPainter p(m_textPixmap);
p.setFont(m_effectFrame->font());
if (m_effectFrame->style() == EffectFrameStyled)
p.setPen(m_effectFrame->styledTextColor());
else // TODO: What about no frame? Custom color setting required
p.setPen(Qt::white);
p.drawText(rect, m_effectFrame->alignment(), text);
p.end();
m_textTexture = m_scene->createTexture(*m_textPixmap);
}
void SceneOpenGL::EffectFrame::updateUnstyledTexture()
{
delete m_unstyledTexture;
m_unstyledTexture = 0L;
delete m_unstyledPixmap;
m_unstyledPixmap = 0L;
// Based off circle() from kwinxrenderutils.cpp
#define CS 8
m_unstyledPixmap = new QPixmap(2 * CS, 2 * CS);
m_unstyledPixmap->fill(Qt::transparent);
QPainter p(m_unstyledPixmap);
p.setRenderHint(QPainter::Antialiasing);
p.setPen(Qt::NoPen);
p.setBrush(Qt::black);
p.drawEllipse(m_unstyledPixmap->rect());
p.end();
#undef CS
m_unstyledTexture = new GLTexture(*m_unstyledPixmap);
}
void SceneOpenGL::EffectFrame::cleanup()
{
delete m_unstyledTexture;
m_unstyledTexture = NULL;
delete m_unstyledPixmap;
m_unstyledPixmap = NULL;
}
//****************************************
// SceneOpenGL::Shadow
//****************************************
SceneOpenGLShadow::SceneOpenGLShadow(Toplevel *toplevel)
: Shadow(toplevel)
, m_texture(NULL)
{
}
SceneOpenGLShadow::~SceneOpenGLShadow()
{
effects->makeOpenGLContextCurrent();
delete m_texture;
}
void SceneOpenGLShadow::buildQuads()
{
// prepare window quads
m_shadowQuads.clear();
const QSizeF top(shadowPixmap(ShadowElementTop).size());
const QSizeF topRight(shadowPixmap(ShadowElementTopRight).size());
const QSizeF right(shadowPixmap(ShadowElementRight).size());
const QSizeF bottomRight(shadowPixmap(ShadowElementBottomRight).size());
const QSizeF bottom(shadowPixmap(ShadowElementBottom).size());
const QSizeF bottomLeft(shadowPixmap(ShadowElementBottomLeft).size());
const QSizeF left(shadowPixmap(ShadowElementLeft).size());
const QSizeF topLeft(shadowPixmap(ShadowElementTopLeft).size());
if ((left.width() - leftOffset() > topLevel()->width()) ||
(right.width() - rightOffset() > topLevel()->width()) ||
(top.height() - topOffset() > topLevel()->height()) ||
(bottom.height() - bottomOffset() > topLevel()->height())) {
// if our shadow is bigger than the window, we don't render the shadow
setShadowRegion(QRegion());
return;
}
const QRectF outerRect(QPointF(-leftOffset(), -topOffset()),
QPointF(topLevel()->width() + rightOffset(), topLevel()->height() + bottomOffset()));
const qreal width = topLeft.width() + top.width() + topRight.width();
const qreal height = topLeft.height() + left.height() + bottomLeft.height();
qreal tx1(0.0), tx2(0.0), ty1(0.0), ty2(0.0);
tx2 = topLeft.width()/width;
ty2 = topLeft.height()/height;
WindowQuad topLeftQuad(WindowQuadShadowTopLeft);
topLeftQuad[ 0 ] = WindowVertex(outerRect.x(), outerRect.y(), tx1, ty1);
topLeftQuad[ 1 ] = WindowVertex(outerRect.x() + topLeft.width(), outerRect.y(), tx2, ty1);
topLeftQuad[ 2 ] = WindowVertex(outerRect.x() + topLeft.width(), outerRect.y() + topLeft.height(), tx2, ty2);
topLeftQuad[ 3 ] = WindowVertex(outerRect.x(), outerRect.y() + topLeft.height(), tx1, ty2);
m_shadowQuads.append(topLeftQuad);
tx1 = tx2;
tx2 = (topLeft.width() + top.width())/width;
ty2 = top.height()/height;
WindowQuad topQuad(WindowQuadShadowTop);
topQuad[ 0 ] = WindowVertex(outerRect.x() + topLeft.width(), outerRect.y(), tx1, ty1);
topQuad[ 1 ] = WindowVertex(outerRect.right() - topRight.width(), outerRect.y(), tx2, ty1);
topQuad[ 2 ] = WindowVertex(outerRect.right() - topRight.width(), outerRect.y() + top.height(),tx2, ty2);
topQuad[ 3 ] = WindowVertex(outerRect.x() + topLeft.width(), outerRect.y() + top.height(), tx1, ty2);
m_shadowQuads.append(topQuad);
tx1 = tx2;
tx2 = 1.0;
ty2 = topRight.height()/height;
WindowQuad topRightQuad(WindowQuadShadowTopRight);
topRightQuad[ 0 ] = WindowVertex(outerRect.right() - topRight.width(), outerRect.y(), tx1, ty1);
topRightQuad[ 1 ] = WindowVertex(outerRect.right(), outerRect.y(), tx2, ty1);
topRightQuad[ 2 ] = WindowVertex(outerRect.right(), outerRect.y() + topRight.height(), tx2, ty2);
topRightQuad[ 3 ] = WindowVertex(outerRect.right() - topRight.width(), outerRect.y() + topRight.height(), tx1, ty2);
m_shadowQuads.append(topRightQuad);
tx1 = (width - right.width())/width;
ty1 = topRight.height()/height;
ty2 = (topRight.height() + right.height())/height;
WindowQuad rightQuad(WindowQuadShadowRight);
rightQuad[ 0 ] = WindowVertex(outerRect.right() - right.width(), outerRect.y() + topRight.height(), tx1, ty1);
rightQuad[ 1 ] = WindowVertex(outerRect.right(), outerRect.y() + topRight.height(), tx2, ty1);
rightQuad[ 2 ] = WindowVertex(outerRect.right(), outerRect.bottom() - bottomRight.height(), tx2, ty2);
rightQuad[ 3 ] = WindowVertex(outerRect.right() - right.width(), outerRect.bottom() - bottomRight.height(), tx1, ty2);
m_shadowQuads.append(rightQuad);
tx1 = (width - bottomRight.width())/width;
ty1 = ty2;
ty2 = 1.0;
WindowQuad bottomRightQuad(WindowQuadShadowBottomRight);
bottomRightQuad[ 0 ] = WindowVertex(outerRect.right() - bottomRight.width(), outerRect.bottom() - bottomRight.height(), tx1, ty1);
bottomRightQuad[ 1 ] = WindowVertex(outerRect.right(), outerRect.bottom() - bottomRight.height(), tx2, ty1);
bottomRightQuad[ 2 ] = WindowVertex(outerRect.right(), outerRect.bottom(), tx2, ty2);
bottomRightQuad[ 3 ] = WindowVertex(outerRect.right() - bottomRight.width(), outerRect.bottom(), tx1, ty2);
m_shadowQuads.append(bottomRightQuad);
tx2 = tx1;
tx1 = bottomLeft.width()/width;
ty1 = (height - bottom.height())/height;
WindowQuad bottomQuad(WindowQuadShadowBottom);
bottomQuad[ 0 ] = WindowVertex(outerRect.x() + bottomLeft.width(), outerRect.bottom() - bottom.height(), tx1, ty1);
bottomQuad[ 1 ] = WindowVertex(outerRect.right() - bottomRight.width(), outerRect.bottom() - bottom.height(), tx2, ty1);
bottomQuad[ 2 ] = WindowVertex(outerRect.right() - bottomRight.width(), outerRect.bottom(), tx2, ty2);
bottomQuad[ 3 ] = WindowVertex(outerRect.x() + bottomLeft.width(), outerRect.bottom(), tx1, ty2);
m_shadowQuads.append(bottomQuad);
tx1 = 0.0;
tx2 = bottomLeft.width()/width;
ty1 = (height - bottomLeft.height())/height;
WindowQuad bottomLeftQuad(WindowQuadShadowBottomLeft);
bottomLeftQuad[ 0 ] = WindowVertex(outerRect.x(), outerRect.bottom() - bottomLeft.height(), tx1, ty1);
bottomLeftQuad[ 1 ] = WindowVertex(outerRect.x() + bottomLeft.width(), outerRect.bottom() - bottomLeft.height(), tx2, ty1);
bottomLeftQuad[ 2 ] = WindowVertex(outerRect.x() + bottomLeft.width(), outerRect.bottom(), tx2, ty2);
bottomLeftQuad[ 3 ] = WindowVertex(outerRect.x(), outerRect.bottom(), tx1, ty2);
m_shadowQuads.append(bottomLeftQuad);
tx2 = left.width()/width;
ty2 = ty1;
ty1 = topLeft.height()/height;
WindowQuad leftQuad(WindowQuadShadowLeft);
leftQuad[ 0 ] = WindowVertex(outerRect.x(), outerRect.y() + topLeft.height(), tx1, ty1);
leftQuad[ 1 ] = WindowVertex(outerRect.x() + left.width(), outerRect.y() + topLeft.height(), tx2, ty1);
leftQuad[ 2 ] = WindowVertex(outerRect.x() + left.width(), outerRect.bottom() - bottomLeft.height(), tx2, ty2);
leftQuad[ 3 ] = WindowVertex(outerRect.x(), outerRect.bottom() - bottomLeft.height(), tx1, ty2);
m_shadowQuads.append(leftQuad);
}
bool SceneOpenGLShadow::prepareBackend()
{
const QSize top(shadowPixmap(ShadowElementTop).size());
const QSize topRight(shadowPixmap(ShadowElementTopRight).size());
const QSize right(shadowPixmap(ShadowElementRight).size());
const QSize bottomRight(shadowPixmap(ShadowElementBottomRight).size());
const QSize bottom(shadowPixmap(ShadowElementBottom).size());
const QSize bottomLeft(shadowPixmap(ShadowElementBottomLeft).size());
const QSize left(shadowPixmap(ShadowElementLeft).size());
const QSize topLeft(shadowPixmap(ShadowElementTopLeft).size());
const int width = topLeft.width() + top.width() + topRight.width();
const int height = topLeft.height() + left.height() + bottomLeft.height();
QImage image(width, height, QImage::Format_ARGB32);
image.fill(Qt::transparent);
QPainter p;
p.begin(&image);
p.drawPixmap(0, 0, shadowPixmap(ShadowElementTopLeft));
p.drawPixmap(topLeft.width(), 0, shadowPixmap(ShadowElementTop));
p.drawPixmap(topLeft.width() + top.width(), 0, shadowPixmap(ShadowElementTopRight));
p.drawPixmap(0, topLeft.height(), shadowPixmap(ShadowElementLeft));
p.drawPixmap(width - right.width(), topRight.height(), shadowPixmap(ShadowElementRight));
p.drawPixmap(0, topLeft.height() + left.height(), shadowPixmap(ShadowElementBottomLeft));
p.drawPixmap(bottomLeft.width(), height - bottom.height(), shadowPixmap(ShadowElementBottom));
p.drawPixmap(bottomLeft.width() + bottom.width(), topRight.height() + right.height(), shadowPixmap(ShadowElementBottomRight));
p.end();
effects->makeOpenGLContextCurrent();
delete m_texture;
m_texture = new GLTexture(image);
return true;
}
SwapProfiler::SwapProfiler()
{
init();
}
void SwapProfiler::init()
{
m_time = 2 * 1000*1000; // we start with a long time mean of 2ms ...
m_counter = 0;
}
void SwapProfiler::begin()
{
m_timer.start();
}
char SwapProfiler::end()
{
// .. and blend in actual values.
// this way we prevent extremes from killing our long time mean
m_time = (10*m_time + m_timer.nsecsElapsed())/11;
if (++m_counter > 500) {
const bool blocks = m_time > 1000 * 1000; // 1ms, i get ~250µs and ~7ms w/o triple buffering...
qDebug() << "Triple buffering detection:" << QString(blocks ? QStringLiteral("NOT available") : QStringLiteral("Available")) <<
" - Mean block time:" << m_time/(1000.0*1000.0) << "ms";
return blocks ? 'd' : 't';
}
return 0;
}
} // namespace