kwin/src/scene.cpp
Vlad Zahorodnii fa78de6219 kwineffects: Strip ScreenPaintData of transforms
ScreenPaintData provides a way to transform the painted screen, e.g.
scale or translate. From API point of view, it's great. It allows
fullscreen effects to transform the workspace in various ways.

On the other hand, such effects end up fighting the default scene
painting algorithm. For example, just have a look at the slide effect!
With fullscreen effects, it's better to leave to them the decision how
the screen should be painted. For example, such approach is taken in
some wayland compositors, e.g. wayfire, and our qtquick effects already
operate in similar fashion.

Given that, strip the ScreenPaintData of all available transforms. The
main motivation behind this change is to improve encapsulation of item
painting code and simplify model-view-projection code in kwin. It will
also make the job of extracting item code for sharing purposes easier.
2022-07-06 11:10:54 +00:00

641 lines
19 KiB
C++

/*
KWin - the KDE window manager
This file is part of the KDE project.
SPDX-FileCopyrightText: 2006 Lubos Lunak <l.lunak@kde.org>
SPDX-License-Identifier: GPL-2.0-or-later
*/
/*
Design:
When compositing is turned on, XComposite extension is used to redirect
drawing of windows to pixmaps and XDamage extension is used to get informed
about damage (changes) to window contents. This code is mostly in composite.cpp .
Compositor::performCompositing() starts one painting pass. Painting is done
by painting the screen, which in turn paints every window. Painting can be affected
using effects, which are chained. E.g. painting a screen means that actually
paintScreen() of the first effect is called, which possibly does modifications
and calls next effect's paintScreen() and so on, until Scene::finalPaintScreen()
is called.
There are 3 phases of every paint (not necessarily done together):
The pre-paint phase, the paint phase and the post-paint phase.
The pre-paint phase is used to find out about how the painting will be actually
done (i.e. what the effects will do). For example when only a part of the screen
needs to be updated and no effect will do any transformation it is possible to use
an optimized paint function. How the painting will be done is controlled
by the mask argument, see PAINT_WINDOW_* and PAINT_SCREEN_* flags in scene.h .
For example an effect that decides to paint a normal windows as translucent
will need to modify the mask in its prePaintWindow() to include
the PAINT_WINDOW_TRANSLUCENT flag. The paintWindow() function will then get
the mask with this flag turned on and will also paint using transparency.
The paint pass does the actual painting, based on the information collected
using the pre-paint pass. After running through the effects' paintScreen()
either paintGenericScreen() or optimized paintSimpleScreen() are called.
Those call paintWindow() on windows (not necessarily all), possibly using
clipping to optimize performance and calling paintWindow() first with only
PAINT_WINDOW_OPAQUE to paint the opaque parts and then later
with PAINT_WINDOW_TRANSLUCENT to paint the transparent parts. Function
paintWindow() again goes through effects' paintWindow() until
finalPaintWindow() is called, which calls the window's performPaint() to
do the actual painting.
The post-paint can be used for cleanups and is also used for scheduling
repaints during the next painting pass for animations. Effects wanting to
repaint certain parts can manually damage them during post-paint and repaint
of these parts will be done during the next paint pass.
*/
#include "scene.h"
#include "composite.h"
#include "deleted.h"
#include "effects.h"
#include "internalwindow.h"
#include "output.h"
#include "platform.h"
#include "renderlayer.h"
#include "renderloop.h"
#include "shadow.h"
#include "shadowitem.h"
#include "surfaceitem.h"
#include "unmanaged.h"
#include "wayland/surface_interface.h"
#include "wayland_server.h"
#include "waylandwindow.h"
#include "windowitem.h"
#include "workspace.h"
#include "x11window.h"
#include <QtMath>
namespace KWin
{
SceneDelegate::SceneDelegate(Scene *scene, QObject *parent)
: RenderLayerDelegate(parent)
, m_scene(scene)
{
m_scene->addDelegate(this);
}
SceneDelegate::SceneDelegate(Scene *scene, Output *output, QObject *parent)
: RenderLayerDelegate(parent)
, m_scene(scene)
, m_output(output)
{
m_scene->addDelegate(this);
}
SceneDelegate::~SceneDelegate()
{
m_scene->removeDelegate(this);
}
QRegion SceneDelegate::repaints() const
{
return m_scene->damage().translated(-viewport().topLeft());
}
SurfaceItem *SceneDelegate::scanoutCandidate() const
{
return m_scene->scanoutCandidate();
}
void SceneDelegate::prePaint()
{
m_scene->prePaint(m_output);
}
void SceneDelegate::postPaint()
{
m_scene->postPaint();
}
void SceneDelegate::paint(RenderTarget *renderTarget, const QRegion &region)
{
m_scene->paint(renderTarget, region.translated(viewport().topLeft()));
}
QRect SceneDelegate::viewport() const
{
return m_output ? m_output->geometry() : m_scene->geometry();
}
//****************************************
// Scene
//****************************************
Scene::Scene(QObject *parent)
: QObject(parent)
{
}
Scene::~Scene()
{
}
void Scene::initialize()
{
connect(workspace(), &Workspace::stackingOrderChanged, this, &Scene::addRepaintFull);
setGeometry(workspace()->geometry());
connect(workspace(), &Workspace::geometryChanged, this, [this]() {
setGeometry(workspace()->geometry());
});
}
void Scene::addRepaintFull()
{
addRepaint(geometry());
}
void Scene::addRepaint(int x, int y, int width, int height)
{
addRepaint(QRegion(x, y, width, height));
}
void Scene::addRepaint(const QRegion &region)
{
for (const auto &delegate : std::as_const(m_delegates)) {
const QRect viewport = delegate->viewport();
QRegion dirtyRegion = region & viewport;
dirtyRegion.translate(-viewport.topLeft());
if (!dirtyRegion.isEmpty()) {
delegate->layer()->addRepaint(dirtyRegion);
}
}
}
QRegion Scene::damage() const
{
return m_paintContext.damage;
}
QRect Scene::geometry() const
{
return m_geometry;
}
void Scene::setGeometry(const QRect &rect)
{
if (m_geometry != rect) {
m_geometry = rect;
addRepaintFull();
}
}
QList<SceneDelegate *> Scene::delegates() const
{
return m_delegates;
}
void Scene::addDelegate(SceneDelegate *delegate)
{
m_delegates.append(delegate);
}
void Scene::removeDelegate(SceneDelegate *delegate)
{
m_delegates.removeOne(delegate);
}
static SurfaceItem *findTopMostSurface(SurfaceItem *item)
{
const QList<Item *> children = item->childItems();
if (children.isEmpty()) {
return item;
} else {
return findTopMostSurface(static_cast<SurfaceItem *>(children.constLast()));
}
}
SurfaceItem *Scene::scanoutCandidate() const
{
if (!waylandServer()) {
return nullptr;
}
SurfaceItem *candidate = nullptr;
if (!static_cast<EffectsHandlerImpl *>(effects)->blocksDirectScanout()) {
for (int i = stacking_order.count() - 1; i >= 0; i--) {
WindowItem *windowItem = stacking_order[i];
Window *window = windowItem->window();
if (window->isOnOutput(painted_screen) && window->opacity() > 0) {
if (!window->isClient() || !window->isFullScreen() || window->opacity() != 1.0) {
break;
}
if (!windowItem->surfaceItem()) {
break;
}
SurfaceItem *topMost = findTopMostSurface(windowItem->surfaceItem());
auto pixmap = topMost->pixmap();
if (!pixmap) {
break;
}
pixmap->update();
// the subsurface has to be able to cover the whole window
if (topMost->position() != QPoint(0, 0)) {
break;
}
// and it has to be completely opaque
if (pixmap->hasAlphaChannel() && !topMost->opaque().contains(QRect(0, 0, window->width(), window->height()))) {
break;
}
candidate = topMost;
break;
}
}
}
return candidate;
}
void Scene::prePaint(Output *output)
{
createStackingOrder();
if (kwinApp()->operationMode() == Application::OperationModeX11) {
painted_screen = kwinApp()->platform()->enabledOutputs().constFirst();
setRenderTargetRect(geometry());
setRenderTargetScale(1);
} else {
painted_screen = output;
setRenderTargetRect(painted_screen->geometry());
setRenderTargetScale(painted_screen->scale());
}
const RenderLoop *renderLoop = painted_screen->renderLoop();
const std::chrono::milliseconds presentTime =
std::chrono::duration_cast<std::chrono::milliseconds>(renderLoop->nextPresentationTimestamp());
if (Q_UNLIKELY(presentTime < m_expectedPresentTimestamp)) {
qCDebug(KWIN_CORE,
"Provided presentation timestamp is invalid: %lld (current: %lld)",
static_cast<long long>(presentTime.count()),
static_cast<long long>(m_expectedPresentTimestamp.count()));
} else {
m_expectedPresentTimestamp = presentTime;
}
// preparation step
auto effectsImpl = static_cast<EffectsHandlerImpl *>(effects);
effectsImpl->startPaint();
ScreenPrePaintData prePaintData;
prePaintData.mask = 0;
prePaintData.screen = EffectScreenImpl::get(painted_screen);
effects->prePaintScreen(prePaintData, m_expectedPresentTimestamp);
m_paintContext.damage = prePaintData.paint;
m_paintContext.mask = prePaintData.mask;
m_paintContext.phase2Data.clear();
if (m_paintContext.mask & (PAINT_SCREEN_TRANSFORMED | PAINT_SCREEN_WITH_TRANSFORMED_WINDOWS)) {
preparePaintGenericScreen();
} else {
preparePaintSimpleScreen();
}
}
static void resetRepaintsHelper(Item *item, Output *output)
{
item->resetRepaints(output);
const auto childItems = item->childItems();
for (Item *childItem : childItems) {
resetRepaintsHelper(childItem, output);
}
}
static void accumulateRepaints(Item *item, Output *output, QRegion *repaints)
{
*repaints += item->repaints(output);
item->resetRepaints(output);
const auto childItems = item->childItems();
for (Item *childItem : childItems) {
accumulateRepaints(childItem, output, repaints);
}
}
void Scene::preparePaintGenericScreen()
{
for (WindowItem *windowItem : std::as_const(stacking_order)) {
resetRepaintsHelper(windowItem, painted_screen);
WindowPrePaintData data;
data.mask = m_paintContext.mask;
data.paint = infiniteRegion(); // no clipping, so doesn't really matter
effects->prePaintWindow(windowItem->window()->effectWindow(), data, m_expectedPresentTimestamp);
m_paintContext.phase2Data.append(Phase2Data{
.item = windowItem,
.region = infiniteRegion(),
.opaque = data.opaque,
.mask = data.mask,
});
}
m_paintContext.damage = renderTargetRect();
}
void Scene::preparePaintSimpleScreen()
{
for (WindowItem *windowItem : std::as_const(stacking_order)) {
Window *window = windowItem->window();
WindowPrePaintData data;
data.mask = m_paintContext.mask;
accumulateRepaints(windowItem, painted_screen, &data.paint);
// Clip out the decoration for opaque windows; the decoration is drawn in the second pass.
if (window->opacity() == 1.0) {
const SurfaceItem *surfaceItem = windowItem->surfaceItem();
if (Q_LIKELY(surfaceItem)) {
data.opaque = surfaceItem->mapToGlobal(surfaceItem->opaque());
}
const DecorationItem *decorationItem = windowItem->decorationItem();
if (decorationItem) {
data.opaque |= decorationItem->mapToGlobal(decorationItem->opaque());
}
}
effects->prePaintWindow(window->effectWindow(), data, m_expectedPresentTimestamp);
m_paintContext.phase2Data.append(Phase2Data{
.item = windowItem,
.region = data.paint,
.opaque = data.opaque,
.mask = data.mask,
});
}
// Perform an occlusion cull pass, remove surface damage occluded by opaque windows.
QRegion opaque;
for (int i = m_paintContext.phase2Data.size() - 1; i >= 0; --i) {
const auto &paintData = m_paintContext.phase2Data.at(i);
m_paintContext.damage += paintData.region - opaque;
if (!(paintData.mask & (PAINT_WINDOW_TRANSLUCENT | PAINT_WINDOW_TRANSFORMED))) {
opaque += paintData.opaque;
}
}
}
void Scene::postPaint()
{
for (WindowItem *w : std::as_const(stacking_order)) {
effects->postPaintWindow(w->window()->effectWindow());
}
effects->postPaintScreen();
if (waylandServer()) {
const std::chrono::milliseconds frameTime =
std::chrono::duration_cast<std::chrono::milliseconds>(painted_screen->renderLoop()->lastPresentationTimestamp());
for (WindowItem *windowItem : std::as_const(stacking_order)) {
Window *window = windowItem->window();
if (!window->isOnOutput(painted_screen)) {
continue;
}
if (auto surface = window->surface()) {
surface->frameRendered(frameTime.count());
}
}
}
clearStackingOrder();
}
static QMatrix4x4 createProjectionMatrix(const QRect &rect)
{
// Create a perspective projection with a 60° field-of-view,
// and an aspect ratio of 1.0.
QMatrix4x4 ret;
ret.setToIdentity();
const float fovY = std::tan(qDegreesToRadians(60.0f) / 2);
const float aspect = 1.0f;
const float zNear = 0.1f;
const float zFar = 100.0f;
const float yMax = zNear * fovY;
const float yMin = -yMax;
const float xMin = yMin * aspect;
const float xMax = yMax * aspect;
ret.frustum(xMin, xMax, yMin, yMax, zNear, zFar);
const float scaleFactor = 1.1 * fovY / yMax;
ret.translate(xMin * scaleFactor, yMax * scaleFactor, -1.1);
ret.scale((xMax - xMin) * scaleFactor / rect.width(),
-(yMax - yMin) * scaleFactor / rect.height(),
0.001);
ret.translate(-rect.x(), -rect.y());
return ret;
}
QMatrix4x4 Scene::renderTargetProjectionMatrix() const
{
return m_renderTargetProjectionMatrix;
}
QRect Scene::renderTargetRect() const
{
return m_renderTargetRect;
}
void Scene::setRenderTargetRect(const QRect &rect)
{
m_renderTargetRect = rect;
m_renderTargetProjectionMatrix = createProjectionMatrix(rect);
}
qreal Scene::renderTargetScale() const
{
return m_renderTargetScale;
}
void Scene::setRenderTargetScale(qreal scale)
{
m_renderTargetScale = scale;
}
QRegion Scene::mapToRenderTarget(const QRegion &region) const
{
QRegion result;
for (const QRect &rect : region) {
result += QRect((rect.x() - m_renderTargetRect.x()) * m_renderTargetScale,
(rect.y() - m_renderTargetRect.y()) * m_renderTargetScale,
rect.width() * m_renderTargetScale,
rect.height() * m_renderTargetScale);
}
return result;
}
void Scene::paintScreen(const QRegion &region)
{
ScreenPaintData data(m_renderTargetProjectionMatrix, EffectScreenImpl::get(painted_screen));
effects->paintScreen(m_paintContext.mask, region, data);
m_paintScreenCount = 0;
Q_EMIT frameRendered();
}
// the function that'll be eventually called by paintScreen() above
void Scene::finalPaintScreen(int mask, const QRegion &region, ScreenPaintData &data)
{
m_paintScreenCount++;
if (mask & (PAINT_SCREEN_TRANSFORMED | PAINT_SCREEN_WITH_TRANSFORMED_WINDOWS)) {
paintGenericScreen(mask, data);
} else {
paintSimpleScreen(mask, region);
}
}
// The generic painting code that can handle even transformations.
// It simply paints bottom-to-top.
void Scene::paintGenericScreen(int, const ScreenPaintData &)
{
if (m_paintContext.mask & PAINT_SCREEN_BACKGROUND_FIRST) {
if (m_paintScreenCount == 1) {
paintBackground(infiniteRegion());
}
} else {
paintBackground(infiniteRegion());
}
for (const Phase2Data &paintData : std::as_const(m_paintContext.phase2Data)) {
paintWindow(paintData.item, paintData.mask, paintData.region);
}
}
// The optimized case without any transformations at all.
// It can paint only the requested region and can use clipping
// to reduce painting and improve performance.
void Scene::paintSimpleScreen(int, const QRegion &region)
{
// This is the occlusion culling pass
QRegion visible = region;
for (int i = m_paintContext.phase2Data.size() - 1; i >= 0; --i) {
Phase2Data *data = &m_paintContext.phase2Data[i];
data->region = visible;
if (!(data->mask & PAINT_WINDOW_TRANSFORMED)) {
data->region &= data->item->mapToGlobal(data->item->boundingRect());
if (!(data->mask & PAINT_WINDOW_TRANSLUCENT)) {
visible -= data->opaque;
}
}
}
paintBackground(visible);
for (const Phase2Data &paintData : std::as_const(m_paintContext.phase2Data)) {
paintWindow(paintData.item, paintData.mask, paintData.region);
}
}
void Scene::createStackingOrder()
{
// Create a list of all windows in the stacking order
QList<Window *> windows = workspace()->stackingOrder();
// Move elevated windows to the top of the stacking order
const QList<EffectWindow *> elevatedList = static_cast<EffectsHandlerImpl *>(effects)->elevatedWindows();
for (EffectWindow *c : elevatedList) {
Window *t = static_cast<EffectWindowImpl *>(c)->window();
windows.removeAll(t);
windows.append(t);
}
// Skip windows that are not yet ready for being painted and if screen is locked skip windows
// that are neither lockscreen nor inputmethod windows.
//
// TODO? This cannot be used so carelessly - needs protections against broken clients, the
// window should not get focus before it's displayed, handle unredirected windows properly and
// so on.
for (Window *window : std::as_const(windows)) {
if (!window->readyForPainting()) {
continue;
}
if (!window->windowItem()->isVisible()) {
continue;
}
stacking_order.append(window->windowItem());
}
}
void Scene::clearStackingOrder()
{
stacking_order.clear();
}
void Scene::paintWindow(WindowItem *item, int mask, const QRegion &region)
{
if (region.isEmpty()) { // completely clipped
return;
}
WindowPaintData data(renderTargetProjectionMatrix());
effects->paintWindow(item->window()->effectWindow(), mask, region, data);
}
// the function that'll be eventually called by paintWindow() above
void Scene::finalPaintWindow(EffectWindowImpl *w, int mask, const QRegion &region, WindowPaintData &data)
{
effects->drawWindow(w, mask, region, data);
}
// will be eventually called from drawWindow()
void Scene::finalDrawWindow(EffectWindowImpl *w, int mask, const QRegion &region, WindowPaintData &data)
{
render(w->windowItem(), mask, region, data);
}
bool Scene::makeOpenGLContextCurrent()
{
return false;
}
void Scene::doneOpenGLContextCurrent()
{
}
bool Scene::supportsNativeFence() const
{
return false;
}
QPainter *Scene::scenePainter() const
{
return nullptr;
}
QVector<QByteArray> Scene::openGLPlatformInterfaceExtensions() const
{
return QVector<QByteArray>{};
}
std::unique_ptr<SurfaceTexture> Scene::createSurfaceTextureInternal(SurfacePixmapInternal *pixmap)
{
Q_UNUSED(pixmap)
return nullptr;
}
std::unique_ptr<SurfaceTexture> Scene::createSurfaceTextureX11(SurfacePixmapX11 *pixmap)
{
Q_UNUSED(pixmap)
return nullptr;
}
std::unique_ptr<SurfaceTexture> Scene::createSurfaceTextureWayland(SurfacePixmapWayland *pixmap)
{
Q_UNUSED(pixmap)
return nullptr;
}
} // namespace