kwin/lib/kwinglutils.cpp
2011-01-30 14:12:00 +01:00

1753 lines
48 KiB
C++

/********************************************************************
KWin - the KDE window manager
This file is part of the KDE project.
Copyright (C) 2006-2007 Rivo Laks <rivolaks@hot.ee>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*********************************************************************/
#include "kwinglutils.h"
#ifdef KWIN_HAVE_OPENGL
#include "kwinglobals.h"
#include "kwineffects.h"
#include "kdebug.h"
#include <kstandarddirs.h>
#include <QPixmap>
#include <QImage>
#include <QHash>
#include <QFile>
#include <QVector2D>
#include <QVector3D>
#include <QVector4D>
#include <QMatrix4x4>
#include <math.h>
#define DEBUG_GLRENDERTARGET 0
#define MAKE_GL_VERSION(major, minor, release) ( ((major) << 16) | ((minor) << 8) | (release) )
namespace KWin
{
// Variables
// GL version, use MAKE_GL_VERSION() macro for comparing with a specific version
static int glVersion;
// GLX version, use MAKE_GL_VERSION() macro for comparing with a specific version
static int glXVersion;
// EGL version, use MAKE_GL_VERSION() macro for comparing with a specific version
static int eglVersion;
// List of all supported GL, EGL and GLX extensions
static QStringList glExtensions;
static QStringList glxExtensions;
static QStringList eglExtension;
int glTextureUnitsCount;
// Functions
void initGLX()
{
#ifndef KWIN_HAVE_OPENGLES
// Get GLX version
int major, minor;
glXQueryVersion( display(), &major, &minor );
glXVersion = MAKE_GL_VERSION( major, minor, 0 );
// Get list of supported GLX extensions
glxExtensions = QString((const char*)glXQueryExtensionsString(
display(), DefaultScreen( display()))).split(' ');
glxResolveFunctions();
#endif
}
void initEGL()
{
#ifdef KWIN_HAVE_OPENGLES
EGLDisplay dpy = eglGetCurrentDisplay();
int major, minor;
eglInitialize(dpy, &major, &minor);
eglVersion = MAKE_GL_VERSION(major, minor, 0);
eglExtension = QString((const char*)eglQueryString(dpy, EGL_EXTENSIONS)).split(' ');
eglResolveFunctions();
#endif
}
void initGL()
{
// Get OpenGL version
QString glversionstring = QString((const char*)glGetString(GL_VERSION));
QStringList glversioninfo = glversionstring.left(glversionstring.indexOf(' ')).split('.');
#ifndef KWIN_HAVE_OPENGLES
glVersion = MAKE_GL_VERSION(glversioninfo[0].toInt(), glversioninfo[1].toInt(),
glversioninfo.count() > 2 ? glversioninfo[2].toInt() : 0);
#endif
// Get list of supported OpenGL extensions
glExtensions = QString((const char*)glGetString(GL_EXTENSIONS)).split(' ');
// handle OpenGL extensions functions
glResolveFunctions();
GLTexture::initStatic();
GLShader::initStatic();
GLRenderTarget::initStatic();
GLVertexBuffer::initStatic();
}
bool hasGLVersion(int major, int minor, int release)
{
return glVersion >= MAKE_GL_VERSION(major, minor, release);
}
bool hasGLXVersion(int major, int minor, int release)
{
return glXVersion >= MAKE_GL_VERSION(major, minor, release);
}
bool hasEGLVersion(int major, int minor, int release)
{
return eglVersion >= MAKE_GL_VERSION(major, minor, release);
}
bool hasGLExtension(const QString& extension)
{
return glExtensions.contains(extension) || glxExtensions.contains(extension) || eglExtension.contains(extension);
}
static QString formatGLError( GLenum err )
{
switch ( err )
{
case GL_NO_ERROR: return "GL_NO_ERROR";
case GL_INVALID_ENUM: return "GL_INVALID_ENUM";
case GL_INVALID_VALUE: return "GL_INVALID_VALUE";
case GL_INVALID_OPERATION: return "GL_INVALID_OPERATION";
#ifndef KWIN_HAVE_OPENGLES
case GL_STACK_OVERFLOW: return "GL_STACK_OVERFLOW";
case GL_STACK_UNDERFLOW: return "GL_STACK_UNDERFLOW";
#endif
case GL_OUT_OF_MEMORY: return "GL_OUT_OF_MEMORY";
default: return QString( "0x" ) + QString::number( err, 16 );
}
}
bool checkGLError( const char* txt )
{
GLenum err = glGetError();
if( err != GL_NO_ERROR )
{
kWarning(1212) << "GL error (" << txt << "): " << formatGLError( err );
return true;
}
return false;
}
int nearestPowerOfTwo( int x )
{
// This method had been copied from Qt's nearest_gl_texture_size()
int n = 0, last = 0;
for (int s = 0; s < 32; ++s) {
if (((x>>s) & 1) == 1) {
++n;
last = s;
}
}
if (n > 1)
return 1 << (last+1);
return 1 << last;
}
void renderGLGeometry( int count, const float* vertices, const float* texture, const float* color,
int dim, int stride )
{
return renderGLGeometry( infiniteRegion(), count, vertices, texture, color, dim, stride );
}
void renderGLGeometry( const QRegion& region, int count,
const float* vertices, const float* texture, const float* color,
int dim, int stride )
{
#ifndef KWIN_HAVE_OPENGLES
// Using arrays only makes sense if we have larger number of vertices.
// Otherwise overhead of enabling/disabling them is too big.
bool use_arrays = (count > 5);
if( use_arrays )
{
glPushAttrib( GL_ENABLE_BIT );
glPushClientAttrib( GL_CLIENT_VERTEX_ARRAY_BIT );
// Enable arrays
glEnableClientState( GL_VERTEX_ARRAY );
glVertexPointer( dim, GL_FLOAT, stride, vertices );
if( texture != NULL )
{
glEnableClientState( GL_TEXTURE_COORD_ARRAY );
glTexCoordPointer( 2, GL_FLOAT, stride, texture );
}
if( color != NULL )
{
glEnableClientState( GL_COLOR_ARRAY );
glColorPointer( 4, GL_FLOAT, stride, color );
}
}
// Clip using scissoring
if( !effects->isRenderTargetBound() )
{
PaintClipper pc( region );
for( PaintClipper::Iterator iterator;
!iterator.isDone();
iterator.next())
{
if( use_arrays )
glDrawArrays( GL_QUADS, 0, count );
else
renderGLGeometryImmediate( count, vertices, texture, color, dim, stride );
}
}
else
{
if( use_arrays )
glDrawArrays( GL_QUADS, 0, count );
else
renderGLGeometryImmediate( count, vertices, texture, color, dim, stride );
}
if( use_arrays )
{
glPopClientAttrib();
glPopAttrib();
}
#endif
}
void renderGLGeometryImmediate( int count, const float* vertices, const float* texture, const float* color,
int dim, int stride )
{
#ifndef KWIN_HAVE_OPENGLES
// Find out correct glVertex*fv function according to dim parameter.
void ( *glVertexFunc )( const float* ) = glVertex2fv;
if( dim == 3 )
glVertexFunc = glVertex3fv;
else if( dim == 4 )
glVertexFunc = glVertex4fv;
// These are number of _floats_ per item, not _bytes_ per item as opengl uses.
int vsize, tsize, csize;
vsize = tsize = csize = stride / sizeof(float);
if( !stride )
{
// 0 means that arrays are tightly packed. This gives us different
// strides for different arrays
vsize = dim;
tsize = 2;
csize = 4;
}
glBegin( GL_QUADS );
// This sucks. But makes it faster.
if( texture && color )
{
for( int i = 0; i < count; i++ )
{
glTexCoord2fv( texture + i*tsize );
glColor4fv( color + i*csize );
glVertexFunc( vertices + i*vsize );
}
}
else if( texture )
{
for( int i = 0; i < count; i++ )
{
glTexCoord2fv( texture + i*tsize );
glVertexFunc( vertices + i*vsize );
}
}
else if( color )
{
for( int i = 0; i < count; i++ )
{
glColor4fv( color + i*csize );
glVertexFunc( vertices + i*vsize );
}
}
else
{
for( int i = 0; i < count; i++ )
glVertexFunc( vertices + i*vsize );
}
glEnd();
#endif
}
void addQuadVertices(QVector<float>& verts, float x1, float y1, float x2, float y2)
{
verts << x1 << y1;
verts << x1 << y2;
verts << x2 << y2;
verts << x2 << y1;
}
//****************************************
// GLTexture
//****************************************
bool GLTexture::mNPOTTextureSupported = false;
bool GLTexture::mFramebufferObjectSupported = false;
bool GLTexture::mSaturationSupported = false;
GLTexture::GLTexture()
{
init();
}
GLTexture::GLTexture( const QImage& image, GLenum target )
{
init();
load( image, target );
}
GLTexture::GLTexture( const QPixmap& pixmap, GLenum target )
{
init();
load( pixmap, target );
}
GLTexture::GLTexture( const QString& fileName )
{
init();
load( fileName );
}
GLTexture::GLTexture( int width, int height )
{
init();
if( NPOTTextureSupported() || ( isPowerOfTwo( width ) && isPowerOfTwo( height )))
{
mTarget = GL_TEXTURE_2D;
mScale.setWidth( 1.0 / width);
mScale.setHeight( 1.0 / height);
mSize = QSize( width, height );
can_use_mipmaps = true;
glGenTextures( 1, &mTexture );
bind();
#ifdef KWIN_HAVE_OPENGLES
// format and internal format have to match in ES, GL_RGBA8 and GL_BGRA are not available
// see http://www.khronos.org/opengles/sdk/docs/man/xhtml/glTexImage2D.xml
glTexImage2D( mTarget, 0, GL_RGBA, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, 0);
#else
glTexImage2D( mTarget, 0, GL_RGBA8, width, height, 0, GL_BGRA, GL_UNSIGNED_BYTE, 0);
#endif
unbind();
}
}
GLTexture::~GLTexture()
{
delete m_vbo;
discard();
assert( mUnnormalizeActive == 0 );
assert( mNormalizeActive == 0 );
}
void GLTexture::init()
{
mTexture = None;
mTarget = 0;
mFilter = 0;
y_inverted = false;
can_use_mipmaps = false;
has_valid_mipmaps = false;
mUnnormalizeActive = 0;
mNormalizeActive = 0;
m_vbo = 0;
}
void GLTexture::initStatic()
{
#ifdef KWIN_HAVE_OPENGLES
mNPOTTextureSupported = true;
mFramebufferObjectSupported = true;
mSaturationSupported = true;
#else
mNPOTTextureSupported = hasGLExtension( "GL_ARB_texture_non_power_of_two" );
mFramebufferObjectSupported = hasGLExtension( "GL_EXT_framebuffer_object" );
mSaturationSupported = ((hasGLExtension("GL_ARB_texture_env_crossbar")
&& hasGLExtension("GL_ARB_texture_env_dot3")) || hasGLVersion(1, 4))
&& (glTextureUnitsCount >= 4) && glActiveTexture != NULL;
#endif
}
bool GLTexture::isNull() const
{
return mTexture == None;
}
QSize GLTexture::size() const
{
return mSize;
}
bool GLTexture::load( const QImage& image, GLenum target )
{
if( image.isNull())
return false;
QImage img = image;
mTarget = target;
#ifndef KWIN_HAVE_OPENGLES
if( mTarget != GL_TEXTURE_RECTANGLE_ARB )
{
#endif
if( !NPOTTextureSupported()
&& ( !isPowerOfTwo( image.width()) || !isPowerOfTwo( image.height())))
{ // non-rectangular target requires POT texture
img = img.scaled( nearestPowerOfTwo( image.width()),
nearestPowerOfTwo( image.height()));
}
mScale.setWidth( 1.0 / img.width());
mScale.setHeight( 1.0 / img.height());
can_use_mipmaps = true;
#ifndef KWIN_HAVE_OPENGLES
}
else
{
mScale.setWidth( 1.0 );
mScale.setHeight( 1.0 );
can_use_mipmaps = false;
}
#endif
setFilter( GL_LINEAR );
mSize = img.size();
y_inverted = false;
img = convertToGLFormat( img );
setDirty();
if( isNull())
glGenTextures( 1, &mTexture );
bind();
#ifdef KWIN_HAVE_OPENGLES
// format and internal format have to match in ES, GL_RGBA8 and GL_BGRA are not available
// see http://www.khronos.org/opengles/sdk/docs/man/xhtml/glTexImage2D.xml
glTexImage2D( mTarget, 0, GL_RGBA, img.width(), img.height(), 0, GL_RGBA, GL_UNSIGNED_BYTE, img.bits());
#else
glTexImage2D( mTarget, 0, GL_RGBA8, img.width(), img.height(), 0,
GL_BGRA, GL_UNSIGNED_BYTE, img.bits());
#endif
unbind();
return true;
}
bool GLTexture::load( const QPixmap& pixmap, GLenum target )
{
if( pixmap.isNull())
return false;
#ifdef KWIN_HAVE_OPENGLES
if( isNull() )
glGenTextures( 1, &mTexture );
mTarget = target;
bind();
const EGLint attribs[] = {
EGL_IMAGE_PRESERVED_KHR, EGL_TRUE,
EGL_NONE
};
EGLDisplay dpy = eglGetCurrentDisplay();
EGLImageKHR image = eglCreateImageKHR(dpy, EGL_NO_CONTEXT, EGL_NATIVE_PIXMAP_KHR,
(EGLClientBuffer)pixmap.handle(), attribs);
glEGLImageTargetTexture2DOES(GL_TEXTURE_2D, (GLeglImageOES)image);
eglDestroyImageKHR(dpy, image);
unbind();
return true;
#else
return load( pixmap.toImage(), target );
#endif
}
bool GLTexture::load( const QString& fileName )
{
if( fileName.isEmpty())
return false;
return load( QImage( fileName ));
}
void GLTexture::discard()
{
setDirty();
if( mTexture != None )
glDeleteTextures( 1, &mTexture );
mTexture = None;
}
void GLTexture::bind()
{
#ifndef KWIN_HAVE_OPENGLES
glEnable( mTarget );
#endif
glBindTexture( mTarget, mTexture );
enableFilter();
}
void GLTexture::unbind()
{
glBindTexture( mTarget, 0 );
#ifndef KWIN_HAVE_OPENGLES
glDisable( mTarget );
#endif
}
void GLTexture::render( QRegion region, const QRect& rect )
{
render( region, rect, false );
}
void GLTexture::render( QRegion region, const QRect& rect, bool useShader )
{
if( rect.size() != m_cachedSize )
{
m_cachedSize = rect.size();
QRect r(rect);
r.moveTo(0,0);
if( !m_vbo )
{
m_vbo = new GLVertexBuffer( KWin::GLVertexBuffer::Static );
}
const float verts[ 4 * 2 ] =
{ // NOTICE: r.x/y could be replaced by "0", but that would make it unreadable...
r.x(), r.y(),
r.x(), r.y() + rect.height(),
r.x() + rect.width(), r.y(),
r.x() + rect.width(), r.y() + rect.height()
};
const float texcoords[ 4 * 2 ] =
{
0.0f, y_inverted ? 0.0f : 1.0f, // y needs to be swapped (normalized coords)
0.0f, y_inverted ? 1.0f : 0.0f,
1.0f, y_inverted ? 0.0f : 1.0f,
1.0f, y_inverted ? 1.0f : 0.0f
};
m_vbo->setData( 4, 2, verts, texcoords );
}
if (useShader) {
GLint currentProgram;
glGetIntegerv( GL_CURRENT_PROGRAM, &currentProgram );
GLint location = glGetUniformLocation(currentProgram, "geometry");
glUniform4f(location, rect.x(), rect.y(), 0.0f, 0.0f);
} else {
#ifndef KWIN_HAVE_OPENGLES
glTranslatef( rect.x(), rect.y(), 0.0f );
#endif
}
m_vbo->setUseShader( useShader );
m_vbo->render( region, GL_TRIANGLE_STRIP );
if (!useShader) {
#ifndef KWIN_HAVE_OPENGLES
glTranslatef( -rect.x(), -rect.y(), 0.0f );
#endif
}
}
void GLTexture::enableUnnormalizedTexCoords()
{
#ifndef KWIN_HAVE_OPENGLES
assert( mNormalizeActive == 0 );
if( mUnnormalizeActive++ != 0 )
return;
// update texture matrix to handle GL_TEXTURE_2D and GL_TEXTURE_RECTANGLE
glMatrixMode( GL_TEXTURE );
glPushMatrix();
glLoadIdentity();
glScalef( mScale.width(), mScale.height(), 1 );
if( !y_inverted )
{
// Modify texture matrix so that we could always use non-opengl
// coordinates for textures
glScalef( 1, -1, 1 );
glTranslatef( 0, -mSize.height(), 0 );
}
glMatrixMode( GL_MODELVIEW );
#endif
}
void GLTexture::disableUnnormalizedTexCoords()
{
#ifndef KWIN_HAVE_OPENGLES
if( --mUnnormalizeActive != 0 )
return;
// Restore texture matrix
glMatrixMode( GL_TEXTURE );
glPopMatrix();
glMatrixMode( GL_MODELVIEW );
#endif
}
void GLTexture::enableNormalizedTexCoords()
{
#ifndef KWIN_HAVE_OPENGLES
assert( mUnnormalizeActive == 0 );
if( mNormalizeActive++ != 0 )
return;
// update texture matrix to handle GL_TEXTURE_2D and GL_TEXTURE_RECTANGLE
glMatrixMode( GL_TEXTURE );
glPushMatrix();
glLoadIdentity();
glScalef( mSize.width() * mScale.width(), mSize.height() * mScale.height(), 1 );
if( y_inverted )
{
// Modify texture matrix so that we could always use non-opengl
// coordinates for textures
glScalef( 1, -1, 1 );
glTranslatef( 0, -1, 0 );
}
glMatrixMode( GL_MODELVIEW );
#endif
}
void GLTexture::disableNormalizedTexCoords()
{
#ifndef KWIN_HAVE_OPENGLES
if( --mNormalizeActive != 0 )
return;
// Restore texture matrix
glMatrixMode( GL_TEXTURE );
glPopMatrix();
glMatrixMode( GL_MODELVIEW );
#endif
}
GLuint GLTexture::texture() const
{
return mTexture;
}
GLenum GLTexture::target() const
{
return mTarget;
}
GLenum GLTexture::filter() const
{
return mFilter;
}
bool GLTexture::isDirty() const
{
return has_valid_mipmaps;
}
void GLTexture::setTexture( GLuint texture )
{
discard();
mTexture = texture;
}
void GLTexture::setTarget( GLenum target )
{
mTarget = target;
}
void GLTexture::setFilter( GLenum filter )
{
mFilter = filter;
}
void GLTexture::setWrapMode( GLenum mode )
{
bind();
glTexParameteri( mTarget, GL_TEXTURE_WRAP_S, mode );
glTexParameteri( mTarget, GL_TEXTURE_WRAP_T, mode );
unbind();
}
void GLTexture::setDirty()
{
has_valid_mipmaps = false;
}
void GLTexture::enableFilter()
{
if( mFilter == GL_LINEAR_MIPMAP_LINEAR )
{ // trilinear filtering requested, but is it possible?
if( NPOTTextureSupported()
&& framebufferObjectSupported()
&& can_use_mipmaps )
{
glTexParameteri( mTarget, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR );
glTexParameteri( mTarget, GL_TEXTURE_MAG_FILTER, GL_LINEAR );
if( !has_valid_mipmaps )
{
glGenerateMipmap( mTarget );
has_valid_mipmaps = true;
}
}
else
{ // can't use trilinear, so use bilinear
setFilter( GL_LINEAR );
glTexParameteri( mTarget, GL_TEXTURE_MIN_FILTER, GL_LINEAR );
glTexParameteri( mTarget, GL_TEXTURE_MAG_FILTER, GL_LINEAR );
}
}
else if( mFilter == GL_LINEAR )
{
glTexParameteri( mTarget, GL_TEXTURE_MIN_FILTER, GL_LINEAR );
glTexParameteri( mTarget, GL_TEXTURE_MAG_FILTER, GL_LINEAR );
}
else
{ // if neither trilinear nor bilinear, default to fast filtering
setFilter( GL_NEAREST );
glTexParameteri( mTarget, GL_TEXTURE_MIN_FILTER, GL_NEAREST );
glTexParameteri( mTarget, GL_TEXTURE_MAG_FILTER, GL_NEAREST );
}
}
static void convertToGLFormatHelper(QImage &dst, const QImage &img, GLenum texture_format)
{ // Copied from Qt
Q_ASSERT(dst.size() == img.size());
Q_ASSERT(dst.depth() == 32);
Q_ASSERT(img.depth() == 32);
const int width = img.width();
const int height = img.height();
const uint *p = (const uint*) img.scanLine(img.height() - 1);
uint *q = (uint*) dst.scanLine(0);
#ifndef KWIN_HAVE_OPENGLES
if (texture_format == GL_BGRA) {
if (QSysInfo::ByteOrder == QSysInfo::BigEndian) {
// mirror + swizzle
for (int i=0; i < height; ++i) {
const uint *end = p + width;
while (p < end) {
*q = ((*p << 24) & 0xff000000)
| ((*p >> 24) & 0x000000ff)
| ((*p << 8) & 0x00ff0000)
| ((*p >> 8) & 0x0000ff00);
p++;
q++;
}
p -= 2 * width;
}
} else {
const uint bytesPerLine = img.bytesPerLine();
for (int i=0; i < height; ++i) {
memcpy(q, p, bytesPerLine);
q += width;
p -= width;
}
}
} else {
#endif
if (QSysInfo::ByteOrder == QSysInfo::BigEndian) {
for (int i=0; i < height; ++i) {
const uint *end = p + width;
while (p < end) {
*q = (*p << 8) | ((*p >> 24) & 0xFF);
p++;
q++;
}
p -= 2 * width;
}
} else {
for (int i=0; i < height; ++i) {
const uint *end = p + width;
while (p < end) {
*q = ((*p << 16) & 0xff0000) | ((*p >> 16) & 0xff) | (*p & 0xff00ff00);
p++;
q++;
}
p -= 2 * width;
}
}
#ifndef KWIN_HAVE_OPENGLES
}
#endif
}
QImage GLTexture::convertToGLFormat( const QImage& img ) const
{ // Copied from Qt's QGLWidget::convertToGLFormat()
QImage res(img.size(), QImage::Format_ARGB32);
#ifdef KWIN_HAVE_OPENGLES
convertToGLFormatHelper(res, img.convertToFormat(QImage::Format_ARGB32), GL_RGBA);
#else
convertToGLFormatHelper(res, img.convertToFormat(QImage::Format_ARGB32), GL_BGRA);
#endif
return res;
}
//****************************************
// GLShader
//****************************************
bool GLShader::mFragmentShaderSupported = false;
bool GLShader::mVertexShaderSupported = false;
void GLShader::initStatic()
{
#ifdef KWIN_HAVE_OPENGLES
mFragmentShaderSupported = mVertexShaderSupported = true;
#else
mFragmentShaderSupported = mVertexShaderSupported =
hasGLExtension("GL_ARB_shader_objects") && hasGLExtension("GL_ARB_shading_language_100");
mVertexShaderSupported &= hasGLExtension("GL_ARB_vertex_shader");
mFragmentShaderSupported &= hasGLExtension("GL_ARB_fragment_shader");
#endif
}
GLShader::GLShader(const QString& vertexfile, const QString& fragmentfile)
{
mValid = false;
mProgram = 0;
mTextureWidth = -1.0f;
mTextureHeight = -1.0f;
loadFromFiles(vertexfile, fragmentfile);
}
GLShader::~GLShader()
{
if(mProgram)
{
glDeleteProgram(mProgram);
}
}
bool GLShader::loadFromFiles(const QString& vertexfile, const QString& fragmentfile)
{
QFile vf(vertexfile);
if(!vf.open(QIODevice::ReadOnly))
{
kError(1212) << "Couldn't open '" << vertexfile << "' for reading!" << endl;
return false;
}
QString vertexsource(vf.readAll());
QFile ff(fragmentfile);
if(!ff.open(QIODevice::ReadOnly))
{
kError(1212) << "Couldn't open '" << fragmentfile << "' for reading!" << endl;
return false;
}
QString fragsource(ff.readAll());
return load(vertexsource, fragsource);
}
bool GLShader::load(const QString& vertexsource, const QString& fragmentsource)
{
// Make sure shaders are actually supported
if(( !vertexsource.isEmpty() && !vertexShaderSupported() ) ||
( !fragmentsource.isEmpty() && !fragmentShaderSupported() ))
{
kDebug(1212) << "Shaders not supported";
return false;
}
GLuint vertexshader;
GLuint fragmentshader;
GLsizei logsize, logarraysize;
char* log = 0;
// Create program object
mProgram = glCreateProgram();
if(!vertexsource.isEmpty())
{
// Create shader object
vertexshader = glCreateShader(GL_VERTEX_SHADER);
// Load it
const QByteArray& srcba = vertexsource.toLatin1();
const char* src = srcba.data();
glShaderSource(vertexshader, 1, &src, NULL);
// Compile the shader
glCompileShader(vertexshader);
// Make sure it compiled correctly
int compiled;
glGetShaderiv(vertexshader, GL_COMPILE_STATUS, &compiled);
// Get info log
glGetShaderiv(vertexshader, GL_INFO_LOG_LENGTH, &logarraysize);
log = new char[logarraysize];
glGetShaderInfoLog(vertexshader, logarraysize, &logsize, log);
if(!compiled)
{
kError(1212) << "Couldn't compile vertex shader! Log:" << endl << log << endl;
delete[] log;
return false;
}
else if(logsize > 0)
kDebug(1212) << "Vertex shader compilation log:"<< log;
// Attach the shader to the program
glAttachShader(mProgram, vertexshader);
// Delete shader
glDeleteShader(vertexshader);
delete[] log;
}
if(!fragmentsource.isEmpty())
{
fragmentshader = glCreateShader(GL_FRAGMENT_SHADER);
// Load it
const QByteArray& srcba = fragmentsource.toLatin1();
const char* src = srcba.data();
glShaderSource(fragmentshader, 1, &src, NULL);
//glShaderSource(fragmentshader, 1, &fragmentsrc.latin1(), NULL);
// Compile the shader
glCompileShader(fragmentshader);
// Make sure it compiled correctly
int compiled;
glGetShaderiv(fragmentshader, GL_COMPILE_STATUS, &compiled);
// Get info log
glGetShaderiv(fragmentshader, GL_INFO_LOG_LENGTH, &logarraysize);
log = new char[logarraysize];
glGetShaderInfoLog(fragmentshader, logarraysize, &logsize, log);
if(!compiled)
{
kError(1212) << "Couldn't compile fragment shader! Log:" << endl << log << endl;
delete[] log;
return false;
}
else if(logsize > 0)
kDebug(1212) << "Fragment shader compilation log:"<< log;
// Attach the shader to the program
glAttachShader(mProgram, fragmentshader);
// Delete shader
glDeleteShader(fragmentshader);
delete[] log;
}
// Link the program
glLinkProgram(mProgram);
// Make sure it linked correctly
int linked;
glGetProgramiv(mProgram, GL_LINK_STATUS, &linked);
// Get info log
glGetProgramiv(mProgram, GL_INFO_LOG_LENGTH, &logarraysize);
log = new char[logarraysize];
glGetProgramInfoLog(mProgram, logarraysize, &logsize, log);
if(!linked)
{
kError(1212) << "Couldn't link the program! Log" << endl << log << endl;
delete[] log;
return false;
}
else if(logsize > 0)
kDebug(1212) << "Shader linking log:"<< log;
delete[] log;
mValid = true;
return true;
}
void GLShader::bind()
{
glUseProgram(mProgram);
}
void GLShader::unbind()
{
glUseProgram(0);
}
int GLShader::uniformLocation(const char* name)
{
int location = glGetUniformLocation(mProgram, name);
return location;
}
bool GLShader::setUniform(const char* name, float value)
{
int location = uniformLocation(name);
if(location >= 0)
{
glUniform1f(location, value);
}
return (location >= 0);
}
bool GLShader::setUniform(const char* name, int value)
{
int location = uniformLocation(name);
if(location >= 0)
{
glUniform1i(location, value);
}
return (location >= 0);
}
bool GLShader::setUniform(const char* name, const QVector2D& value)
{
const int location = uniformLocation(name);
if(location >= 0)
{
glUniform2f(location, value.x(), value.y());
}
return (location >= 0);
}
bool GLShader::setUniform(const char* name, const QVector3D& value)
{
const int location = uniformLocation(name);
if(location >= 0)
{
glUniform3f(location, value.x(), value.y(), value.z());
}
return (location >= 0);
}
bool GLShader::setUniform(const char* name, const QVector4D& value)
{
const int location = uniformLocation(name);
if(location >= 0)
{
glUniform4f(location, value.x(), value.y(), value.z(), value.w());
}
return (location >= 0);
}
bool GLShader::setUniform(const char* name, const QMatrix4x4& value)
{
const int location = uniformLocation(name);
if (location >= 0) {
GLfloat m[16];
const qreal *data = value.constData();
// i is column, j is row for m
for (int i = 0; i < 4; ++i) {
for (int j=0; j < 4; ++j) {
m[i*4+j] = data[j*4+i];
}
}
glUniformMatrix4fv(location, 1, GL_FALSE, m);
}
return (location >= 0);
}
bool GLShader::setUniform(const char* name, const QColor& color)
{
const int location = uniformLocation(name);
if (location >= 0) {
glUniform4f(location, color.redF(), color.greenF(), color.blueF(), color.alphaF());
}
return (location >= 0);
}
int GLShader::attributeLocation(const char* name)
{
int location = glGetAttribLocation(mProgram, name);
return location;
}
bool GLShader::setAttribute(const char* name, float value)
{
int location = attributeLocation(name);
if(location >= 0)
{
glVertexAttrib1f(location, value);
}
return (location >= 0);
}
void GLShader::setTextureHeight(float height)
{
mTextureHeight = height;
}
void GLShader::setTextureWidth(float width)
{
mTextureWidth = width;
}
float GLShader::textureHeight()
{
return mTextureHeight;
}
float GLShader::textureWidth()
{
return mTextureWidth;
}
void GLShader::bindAttributeLocation(int index, const char* name)
{
glBindAttribLocation(mProgram, index, name);
// TODO: relink the shader
}
//****************************************
// ShaderManager
//****************************************
ShaderManager *ShaderManager::s_shaderManager = NULL;
ShaderManager *ShaderManager::instance()
{
if (!s_shaderManager) {
s_shaderManager = new ShaderManager();
}
return s_shaderManager;
}
void ShaderManager::cleanup()
{
delete s_shaderManager;
}
ShaderManager::ShaderManager()
: m_orthoShader(NULL)
, m_genericShader(NULL)
, m_colorShader(NULL)
, m_inited(false)
, m_valid(false)
{
initShaders();
m_inited = true;
}
ShaderManager::~ShaderManager()
{
while (!m_boundShaders.isEmpty()) {
popShader();
}
delete m_orthoShader;
delete m_genericShader;
delete m_colorShader;
}
GLShader *ShaderManager::getBoundShader() const
{
if (m_boundShaders.isEmpty()) {
return NULL;
} else {
return m_boundShaders.top();
}
}
bool ShaderManager::isShaderBound() const
{
return !m_boundShaders.isEmpty();
}
bool ShaderManager::isValid() const
{
return m_valid;
}
GLShader *ShaderManager::pushShader(ShaderType type, bool reset)
{
if (m_inited && !m_valid) {
return NULL;
}
GLShader *shader;
switch (type) {
case SimpleShader:
shader = m_orthoShader;
break;
case GenericShader:
shader = m_genericShader;
break;
case ColorShader:
shader = m_colorShader;
break;
default:
return NULL;
}
pushShader(shader);
if (reset) {
resetShader(type);
}
return shader;
}
void ShaderManager::pushShader(GLShader *shader)
{
// only bind shader if it is not already bound
if (shader != getBoundShader()) {
shader->bind();
}
m_boundShaders.push(shader);
}
void ShaderManager::popShader()
{
if (m_boundShaders.isEmpty()) {
return;
}
GLShader *shader = m_boundShaders.pop();
if (m_boundShaders.isEmpty()) {
// no more shader bound - unbind
shader->unbind();
} else if (shader != m_boundShaders.top()) {
// only rebind if a different shader is on top of stack
m_boundShaders.top()->bind();
}
}
void ShaderManager::initShaders()
{
m_orthoShader = new GLShader(":/resources/scene-vertex.glsl", ":/resources/scene-fragment.glsl");
if (m_orthoShader->isValid()) {
pushShader(SimpleShader, true);
popShader();
kDebug(1212) << "Ortho Shader is valid";
}
else {
delete m_orthoShader;
m_orthoShader = NULL;
kDebug(1212) << "Orho Shader is not valid";
return;
}
m_genericShader = new GLShader( ":/resources/scene-generic-vertex.glsl", ":/resources/scene-fragment.glsl" );
if (m_genericShader->isValid()) {
pushShader(GenericShader, true);
popShader();
kDebug(1212) << "Generic Shader is valid";
}
else {
delete m_genericShader;
m_genericShader = NULL;
delete m_orthoShader;
m_orthoShader = NULL;
kDebug(1212) << "Generic Shader is not valid";
return;
}
m_colorShader = new GLShader(":/resources/scene-color-vertex.glsl", ":/resources/scene-color-fragment.glsl");
if (m_colorShader->isValid()) {
pushShader(ColorShader, true);
popShader();
kDebug(1212) << "Color Shader is valid";
} else {
delete m_genericShader;
m_genericShader = NULL;
delete m_orthoShader;
m_orthoShader = NULL;
delete m_colorShader;
m_colorShader = NULL;
kDebug(1212) << "Color Scene Shader is not valid";
return;
}
m_valid = true;
}
void ShaderManager::resetShader(ShaderType type)
{
// resetShader is either called from init or from push, we know that a built-in shader is bound
GLShader *shader = getBoundShader();
switch (type) {
case SimpleShader:
shader->setUniform("displaySize", QVector2D(displayWidth(), displayHeight()));
// TODO: has to become offset
shader->setUniform("geometry", QVector4D(0, 0, 0, 0));
shader->setUniform("debug", 0);
shader->setUniform("sample", 0);
// TODO: has to become textureSize
shader->setUniform("textureWidth", 1.0f);
shader->setUniform("textureHeight", 1.0f);
// TODO: has to become colorManiuplation
shader->setUniform("opacity", 1.0f);
shader->setUniform("brightness", 1.0f);
shader->setUniform("saturation", 1.0f);
break;
case GenericShader: {
shader->setUniform("debug", 0);
shader->setUniform("sample", 0);
QMatrix4x4 projection;
float fovy = 60.0f;
float aspect = 1.0f;
float zNear = 0.1f;
float zFar = 100.0f;
float ymax = zNear * tan(fovy * M_PI / 360.0f);
float ymin = -ymax;
float xmin = ymin * aspect;
float xmax = ymax * aspect;
projection.frustum(xmin, xmax, ymin, ymax, zNear, zFar);
shader->setUniform("projection", projection);
QMatrix4x4 modelview;
float scaleFactor = 1.1 * tan( fovy * M_PI / 360.0f )/ymax;
modelview.translate(xmin*scaleFactor, ymax*scaleFactor, -1.1);
modelview.scale((xmax-xmin)*scaleFactor/displayWidth(), -(ymax-ymin)*scaleFactor/displayHeight(), 0.001);
shader->setUniform("modelview", modelview);
const QMatrix4x4 identity;
shader->setUniform("screenTransformation", identity);
shader->setUniform("windowTransformation", identity);
// TODO: has to become textureSize
shader->setUniform("textureWidth", 1.0f);
shader->setUniform("textureHeight", 1.0f);
// TODO: has to become colorManiuplation
shader->setUniform("opacity", 1.0f);
shader->setUniform("brightness", 1.0f);
shader->setUniform("saturation", 1.0f);
break;
}
case ColorShader:
shader->setUniform("displaySize", QVector2D(displayWidth(), displayHeight()));
// TODO: has to become offset
shader->setUniform("geometry", QVector4D(0, 0, 0, 0));
shader->setUniform("geometryColor", QVector4D(0, 0, 0, 1));
break;
}
}
/*** GLRenderTarget ***/
bool GLRenderTarget::mSupported = false;
void GLRenderTarget::initStatic()
{
#ifdef KWIN_HAVE_OPENGLES
mSupported = true;
#else
mSupported = hasGLExtension("GL_EXT_framebuffer_object") && glFramebufferTexture2D;
#endif
}
GLRenderTarget::GLRenderTarget(GLTexture* color)
{
// Reset variables
mValid = false;
mTexture = color;
// Make sure FBO is supported
if(mSupported && mTexture && !mTexture->isNull())
{
initFBO();
}
else
kError(1212) << "Render targets aren't supported!" << endl;
}
GLRenderTarget::~GLRenderTarget()
{
if(mValid)
{
glDeleteFramebuffers(1, &mFramebuffer);
}
}
bool GLRenderTarget::enable()
{
if(!valid())
{
kError(1212) << "Can't enable invalid render target!" << endl;
return false;
}
glBindFramebuffer(GL_FRAMEBUFFER, mFramebuffer);
mTexture->setDirty();
return true;
}
bool GLRenderTarget::disable()
{
if(!valid())
{
kError(1212) << "Can't disable invalid render target!" << endl;
return false;
}
glBindFramebuffer(GL_FRAMEBUFFER, 0);
mTexture->setDirty();
return true;
}
static QString formatFramebufferStatus( GLenum status )
{
switch( status )
{
case GL_FRAMEBUFFER_INCOMPLETE_ATTACHMENT:
// An attachment is the wrong type / is invalid / has 0 width or height
return "GL_FRAMEBUFFER_INCOMPLETE_ATTACHMENT";
case GL_FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:
// There are no images attached to the framebuffer
return "GL_FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";
case GL_FRAMEBUFFER_UNSUPPORTED:
// A format or the combination of formats of the attachments is unsupported
return "GL_FRAMEBUFFER_UNSUPPORTED";
#ifndef KWIN_HAVE_OPENGLES
case GL_FRAMEBUFFER_INCOMPLETE_DIMENSIONS_EXT:
// Not all attached images have the same width and height
return "GL_FRAMEBUFFER_INCOMPLETE_DIMENSIONS_EXT";
case GL_FRAMEBUFFER_INCOMPLETE_FORMATS_EXT:
// The color attachments don't have the same format
return "GL_FRAMEBUFFER_INCOMPLETE_FORMATS_EXT";
case GL_FRAMEBUFFER_INCOMPLETE_MULTISAMPLE_EXT:
// The attachments don't have the same number of samples
return "GL_FRAMEBUFFER_INCOMPLETE_MULTISAMPLE";
case GL_FRAMEBUFFER_INCOMPLETE_DRAW_BUFFER_EXT:
// The draw buffer is missing
return "GL_FRAMEBUFFER_INCOMPLETE_DRAW_BUFFER";
case GL_FRAMEBUFFER_INCOMPLETE_READ_BUFFER_EXT:
// The read buffer is missing
return "GL_FRAMEBUFFER_INCOMPLETE_READ_BUFFER";
#endif
default:
return "Unknown (0x" + QString::number(status, 16) + ')';
}
}
void GLRenderTarget::initFBO()
{
#if DEBUG_GLRENDERTARGET
GLenum err = glGetError();
if( err != GL_NO_ERROR )
kError(1212) << "Error status when entering GLRenderTarget::initFBO: " << formatGLError( err );
#endif
glGenFramebuffers(1, &mFramebuffer);
#if DEBUG_GLRENDERTARGET
if( (err = glGetError()) != GL_NO_ERROR )
{
kError(1212) << "glGenFramebuffers failed: " << formatGLError( err );
return;
}
#endif
glBindFramebuffer(GL_FRAMEBUFFER, mFramebuffer);
#if DEBUG_GLRENDERTARGET
if( (err = glGetError()) != GL_NO_ERROR )
{
kError(1212) << "glBindFramebuffer failed: " << formatGLError( err );
glDeleteFramebuffers(1, &mFramebuffer);
return;
}
#endif
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0,
mTexture->target(), mTexture->texture(), 0);
#if DEBUG_GLRENDERTARGET
if( (err = glGetError()) != GL_NO_ERROR )
{
kError(1212) << "glFramebufferTexture2D failed: " << formatGLError( err );
glBindFramebuffer(GL_FRAMEBUFFER, 0);
glDeleteFramebuffers(1, &mFramebuffer);
return;
}
#endif
const GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
glBindFramebuffer(GL_FRAMEBUFFER, 0);
if( status != GL_FRAMEBUFFER_COMPLETE )
{ // We have an incomplete framebuffer, consider it invalid
if (status == 0)
kError(1212) << "glCheckFramebufferStatus failed: " << formatGLError( glGetError() );
else
kError(1212) << "Invalid framebuffer status: " << formatFramebufferStatus( status );
glDeleteFramebuffers(1, &mFramebuffer);
return;
}
mValid = true;
}
//*********************************
// GLVertexBufferPrivate
//*********************************
class GLVertexBufferPrivate
{
public:
GLVertexBufferPrivate( GLVertexBuffer::UsageHint usageHint )
: hint( usageHint )
, numberVertices( 0 )
, dimension( 2 )
, useShader( false )
, useColor( false )
, useTexCoords( true )
, color( 0, 0, 0, 255 )
{
if( GLVertexBufferPrivate::supported )
{
glGenBuffers( 2, buffers );
}
}
~GLVertexBufferPrivate()
{
if( GLVertexBufferPrivate::supported )
{
glDeleteBuffers( 2, buffers );
}
}
GLVertexBuffer::UsageHint hint;
GLuint buffers[2];
int numberVertices;
int dimension;
bool useShader;
static bool supported;
static GLVertexBuffer *streamingBuffer;
QVector<float> legacyVertices;
QVector<float> legacyTexCoords;
bool useColor;
bool useTexCoords;
QColor color;
void legacyPainting( QRegion region, GLenum primitiveMode );
void corePainting( const QRegion& region, GLenum primitiveMode );
};
bool GLVertexBufferPrivate::supported = false;
GLVertexBuffer *GLVertexBufferPrivate::streamingBuffer = NULL;
void GLVertexBufferPrivate::legacyPainting( QRegion region, GLenum primitiveMode )
{
#ifndef KWIN_HAVE_OPENGLES
// Enable arrays
glEnableClientState( GL_VERTEX_ARRAY );
glVertexPointer( dimension, GL_FLOAT, 0, legacyVertices.constData() );
if (!legacyTexCoords.isEmpty()) {
glEnableClientState( GL_TEXTURE_COORD_ARRAY );
glTexCoordPointer( 2, GL_FLOAT, 0, legacyTexCoords.constData() );
}
if (useColor) {
glColor4f(color.redF(), color.greenF(), color.blueF(), color.alphaF());
}
// Clip using scissoring
PaintClipper pc( region );
for( PaintClipper::Iterator iterator;
!iterator.isDone();
iterator.next())
{
glDrawArrays( primitiveMode, 0, numberVertices );
}
glDisableClientState( GL_VERTEX_ARRAY );
if (!legacyTexCoords.isEmpty()) {
glDisableClientState( GL_TEXTURE_COORD_ARRAY );
}
#endif
}
void GLVertexBufferPrivate::corePainting( const QRegion& region, GLenum primitiveMode )
{
glEnableVertexAttribArray( 0 );
if (useTexCoords) {
glEnableVertexAttribArray( 1 );
}
GLShader *shader = ShaderManager::instance()->getBoundShader();
GLint vertexAttrib = shader->attributeLocation("vertex");
GLint texAttrib = shader->attributeLocation("texCoord" );
if (useColor) {
shader->setUniform("geometryColor", color);
}
glBindBuffer( GL_ARRAY_BUFFER, buffers[ 0 ] );
glVertexAttribPointer( vertexAttrib, dimension, GL_FLOAT, GL_FALSE, 0, 0 );
if (texAttrib != -1 && useTexCoords) {
glBindBuffer( GL_ARRAY_BUFFER, buffers[ 1 ] );
glVertexAttribPointer( texAttrib, 2, GL_FLOAT, GL_FALSE, 0, 0 );
}
// Clip using scissoring
PaintClipper pc( region );
for( PaintClipper::Iterator iterator;
!iterator.isDone();
iterator.next())
{
glDrawArrays( primitiveMode, 0, numberVertices );
}
glBindBuffer( GL_ARRAY_BUFFER, 0 );
if (useTexCoords) {
glDisableVertexAttribArray( 1 );
}
glDisableVertexAttribArray( 0 );
}
//*********************************
// GLVertexBuffer
//*********************************
GLVertexBuffer::GLVertexBuffer( UsageHint hint )
: d( new GLVertexBufferPrivate( hint ) )
{
}
GLVertexBuffer::~GLVertexBuffer()
{
delete d;
}
void GLVertexBuffer::setData( int numberVertices, int dim, const float* vertices, const float* texcoords )
{
d->numberVertices = numberVertices;
d->dimension = dim;
d->useTexCoords = (texcoords != NULL);
if( !GLVertexBufferPrivate::supported )
{
// legacy data
d->legacyVertices.clear();
d->legacyVertices.reserve( numberVertices * dim );
for( int i=0; i<numberVertices*dim; ++i)
{
d->legacyVertices << vertices[i];
}
d->legacyTexCoords.clear();
if (d->useTexCoords) {
d->legacyTexCoords.reserve( numberVertices * 2 );
for (int i=0; i<numberVertices*2; ++i) {
d->legacyTexCoords << texcoords[i];
}
}
return;
}
GLenum hint;
switch( d->hint )
{
case Dynamic:
hint = GL_DYNAMIC_DRAW;
break;
case Static:
hint = GL_STATIC_DRAW;
break;
case Stream:
hint = GL_STREAM_DRAW;
break;
default:
// just to make the compiler happy
hint = GL_STREAM_DRAW;
break;
}
glBindBuffer( GL_ARRAY_BUFFER, d->buffers[ 0 ] );
glBufferData( GL_ARRAY_BUFFER, sizeof(GLfloat)*numberVertices*d->dimension, vertices, hint );
if (d->useTexCoords) {
glBindBuffer( GL_ARRAY_BUFFER, d->buffers[ 1 ] );
glBufferData( GL_ARRAY_BUFFER, sizeof(GLfloat)*numberVertices*2, texcoords, hint );
}
glBindBuffer( GL_ARRAY_BUFFER, 0 );
}
void GLVertexBuffer::render( GLenum primitiveMode )
{
render( infiniteRegion(), primitiveMode );
}
void GLVertexBuffer::render( const QRegion& region, GLenum primitiveMode )
{
if( !GLVertexBufferPrivate::supported )
{
d->legacyPainting( region, primitiveMode );
return;
}
if( d->useShader )
{
d->corePainting( region, primitiveMode );
return;
}
#ifndef KWIN_HAVE_OPENGLES
glEnableClientState( GL_VERTEX_ARRAY );
glEnableClientState( GL_TEXTURE_COORD_ARRAY );
glBindBuffer( GL_ARRAY_BUFFER, d->buffers[ 0 ] );
glVertexPointer( d->dimension, GL_FLOAT, 0, 0 );
glBindBuffer( GL_ARRAY_BUFFER, d->buffers[ 1 ] );
glTexCoordPointer( 2, GL_FLOAT, 0, 0 );
if (d->useColor) {
glColor4f(d->color.redF(), d->color.greenF(), d->color.blueF(), d->color.alphaF());
}
// Clip using scissoring
PaintClipper pc( region );
for( PaintClipper::Iterator iterator;
!iterator.isDone();
iterator.next())
{
glDrawArrays( primitiveMode, 0, d->numberVertices );
}
glBindBuffer( GL_ARRAY_BUFFER, 0 );
glDisableClientState( GL_VERTEX_ARRAY );
glDisableClientState( GL_TEXTURE_COORD_ARRAY );
#endif
}
void GLVertexBuffer::setUseShader( bool use )
{
d->useShader = use;
}
bool GLVertexBuffer::isUseShader() const
{
return d->useShader;
}
bool GLVertexBuffer::isSupported()
{
return GLVertexBufferPrivate::supported;
}
bool GLVertexBuffer::isUseColor() const
{
return d->useColor;
}
void GLVertexBuffer::setUseColor(bool enable)
{
d->useColor = enable;
}
void GLVertexBuffer::setColor(const QColor& color, bool enable)
{
d->useColor = enable;
d->color = color;
}
void GLVertexBuffer::reset()
{
d->useColor = false;
d->color = QColor(0, 0, 0, 255);
d->numberVertices = 0;
d->dimension = 2;
d->useShader = false;
d->useTexCoords = true;
}
void GLVertexBuffer::initStatic()
{
#ifdef KWIN_HAVE_OPENGLES
GLVertexBufferPrivate::supported = true;
#else
GLVertexBufferPrivate::supported = hasGLExtension( "GL_ARB_vertex_buffer_object" );
#endif
GLVertexBufferPrivate::streamingBuffer = new GLVertexBuffer(GLVertexBuffer::Stream);
}
GLVertexBuffer *GLVertexBuffer::streamingBuffer()
{
return GLVertexBufferPrivate::streamingBuffer;
}
} // namespace
#endif