kwin/libkwineffects/kwinglutils.cpp
Martin Gräßlin 5290e78106 Adding an option GLLegacy to force OpenGL 1
Setting option "GLLegacy" to true in config group "Compositing"
will disable all GLSL shaders and kwin uses the legacy OpenGL 1
code pathes. Obviously the option is ignored with GLES.

As my Qt Designer is refusing to work, there is no GUI option yet.
2011-04-29 16:44:48 +02:00

1794 lines
48 KiB
C++

/********************************************************************
KWin - the KDE window manager
This file is part of the KDE project.
Copyright (C) 2006-2007 Rivo Laks <rivolaks@hot.ee>
Copyright (C) 2010, 2011 Martin Gräßlin <mgraesslin@kde.org>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*********************************************************************/
#include "kwinglutils.h"
#ifdef KWIN_HAVE_OPENGL
#include "kwinglobals.h"
#include "kwineffects.h"
#include "kwinglplatform.h"
#include "kdebug.h"
#include <kstandarddirs.h>
#include <KDE/KConfig>
#include <KDE/KConfigGroup>
#include <QPixmap>
#include <QImage>
#include <QHash>
#include <QFile>
#include <QVector2D>
#include <QVector3D>
#include <QVector4D>
#include <QMatrix4x4>
#include <math.h>
#define DEBUG_GLRENDERTARGET 0
#define MAKE_GL_VERSION(major, minor, release) ( ((major) << 16) | ((minor) << 8) | (release) )
namespace KWin
{
// Variables
// GL version, use MAKE_GL_VERSION() macro for comparing with a specific version
static int glVersion;
// GLX version, use MAKE_GL_VERSION() macro for comparing with a specific version
static int glXVersion;
// EGL version, use MAKE_GL_VERSION() macro for comparing with a specific version
static int eglVersion;
// List of all supported GL, EGL and GLX extensions
static QStringList glExtensions;
static QStringList glxExtensions;
static QStringList eglExtension;
static bool legacyGl;
int glTextureUnitsCount;
// Functions
void initGLX()
{
#ifndef KWIN_HAVE_OPENGLES
// Get GLX version
int major, minor;
glXQueryVersion(display(), &major, &minor);
glXVersion = MAKE_GL_VERSION(major, minor, 0);
// Get list of supported GLX extensions
glxExtensions = QString((const char*)glXQueryExtensionsString(
display(), DefaultScreen(display()))).split(' ');
glxResolveFunctions();
#endif
}
void initEGL()
{
#ifdef KWIN_HAVE_OPENGLES
EGLDisplay dpy = eglGetCurrentDisplay();
int major, minor;
eglInitialize(dpy, &major, &minor);
eglVersion = MAKE_GL_VERSION(major, minor, 0);
eglExtension = QString((const char*)eglQueryString(dpy, EGL_EXTENSIONS)).split(' ');
eglResolveFunctions();
#endif
}
void initGL()
{
// Get OpenGL version
QString glversionstring = QString((const char*)glGetString(GL_VERSION));
QStringList glversioninfo = glversionstring.left(glversionstring.indexOf(' ')).split('.');
while (glversioninfo.count() < 3)
glversioninfo << "0";
#ifdef KWIN_HAVE_OPENGLES
legacyGl = false;
#else
KSharedConfig::Ptr kwinconfig = KSharedConfig::openConfig("kwinrc", KConfig::NoGlobals);
KConfigGroup config(kwinconfig, "Compositing");
legacyGl = config.readEntry<bool>("GLLegacy", false);
glVersion = MAKE_GL_VERSION(glversioninfo[0].toInt(), glversioninfo[1].toInt(), glversioninfo[2].toInt());
#endif
// Get list of supported OpenGL extensions
glExtensions = QString((const char*)glGetString(GL_EXTENSIONS)).split(' ');
// handle OpenGL extensions functions
glResolveFunctions();
GLTexture::initStatic();
GLRenderTarget::initStatic();
GLVertexBuffer::initStatic();
}
void cleanupGL()
{
ShaderManager::cleanup();
}
bool hasGLVersion(int major, int minor, int release)
{
return glVersion >= MAKE_GL_VERSION(major, minor, release);
}
bool hasGLXVersion(int major, int minor, int release)
{
return glXVersion >= MAKE_GL_VERSION(major, minor, release);
}
bool hasEGLVersion(int major, int minor, int release)
{
return eglVersion >= MAKE_GL_VERSION(major, minor, release);
}
bool hasGLExtension(const QString& extension)
{
return glExtensions.contains(extension) || glxExtensions.contains(extension) || eglExtension.contains(extension);
}
static QString formatGLError(GLenum err)
{
switch(err) {
case GL_NO_ERROR: return "GL_NO_ERROR";
case GL_INVALID_ENUM: return "GL_INVALID_ENUM";
case GL_INVALID_VALUE: return "GL_INVALID_VALUE";
case GL_INVALID_OPERATION: return "GL_INVALID_OPERATION";
#ifndef KWIN_HAVE_OPENGLES
case GL_STACK_OVERFLOW: return "GL_STACK_OVERFLOW";
case GL_STACK_UNDERFLOW: return "GL_STACK_UNDERFLOW";
#endif
case GL_OUT_OF_MEMORY: return "GL_OUT_OF_MEMORY";
default: return QString("0x") + QString::number(err, 16);
}
}
bool checkGLError(const char* txt)
{
GLenum err = glGetError();
if (err != GL_NO_ERROR) {
kWarning(1212) << "GL error (" << txt << "): " << formatGLError(err);
return true;
}
return false;
}
int nearestPowerOfTwo(int x)
{
// This method had been copied from Qt's nearest_gl_texture_size()
int n = 0, last = 0;
for (int s = 0; s < 32; ++s) {
if (((x >> s) & 1) == 1) {
++n;
last = s;
}
}
if (n > 1)
return 1 << (last + 1);
return 1 << last;
}
void pushMatrix()
{
#ifndef KWIN_HAVE_OPENGLES
glPushMatrix();
#endif
}
void pushMatrix(const QMatrix4x4 &matrix)
{
#ifdef KWIN_HAVE_OPENGLES
Q_UNUSED(matrix)
#else
glPushMatrix();
multiplyMatrix(matrix);
#endif
}
void multiplyMatrix(const QMatrix4x4 &matrix)
{
#ifdef KWIN_HAVE_OPENGLES
Q_UNUSED(matrix)
#else
GLfloat m[16];
const qreal *data = matrix.constData();
for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 4; ++j) {
m[i*4+j] = data[i*4+j];
}
}
glMultMatrixf(m);
#endif
}
void loadMatrix(const QMatrix4x4 &matrix)
{
#ifdef KWIN_HAVE_OPENGLES
Q_UNUSED(matrix)
#else
GLfloat m[16];
const qreal *data = matrix.constData();
for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 4; ++j) {
m[i*4+j] = data[i*4+j];
}
}
glLoadMatrixf(m);
#endif
}
void popMatrix()
{
#ifndef KWIN_HAVE_OPENGLES
glPopMatrix();
#endif
}
//****************************************
// GLTexture
//****************************************
bool GLTexture::sNPOTTextureSupported = false;
bool GLTexture::sFramebufferObjectSupported = false;
bool GLTexture::sSaturationSupported = false;
GLTexture::GLTexture()
{
init();
}
GLTexture::GLTexture(const QImage& image, GLenum target)
{
init();
load(image, target);
}
GLTexture::GLTexture(const QPixmap& pixmap, GLenum target)
{
init();
load(pixmap, target);
}
GLTexture::GLTexture(const QString& fileName)
{
init();
load(fileName);
}
GLTexture::GLTexture(int width, int height)
{
init();
if (NPOTTextureSupported() || (isPowerOfTwo(width) && isPowerOfTwo(height))) {
mTarget = GL_TEXTURE_2D;
mScale.setWidth(1.0 / width);
mScale.setHeight(1.0 / height);
mSize = QSize(width, height);
can_use_mipmaps = true;
glGenTextures(1, &mTexture);
bind();
#ifdef KWIN_HAVE_OPENGLES
// format and internal format have to match in ES, GL_RGBA8 and GL_BGRA are not available
// see http://www.khronos.org/opengles/sdk/docs/man/xhtml/glTexImage2D.xml
glTexImage2D(mTarget, 0, GL_RGBA, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, 0);
#else
glTexImage2D(mTarget, 0, GL_RGBA8, width, height, 0, GL_BGRA, GL_UNSIGNED_BYTE, 0);
#endif
unbind();
}
}
GLTexture::~GLTexture()
{
delete m_vbo;
discard();
assert(mUnnormalizeActive == 0);
assert(mNormalizeActive == 0);
}
void GLTexture::init()
{
mTexture = None;
mTarget = 0;
mFilter = 0;
y_inverted = false;
can_use_mipmaps = false;
has_valid_mipmaps = false;
mUnnormalizeActive = 0;
mNormalizeActive = 0;
m_vbo = 0;
}
void GLTexture::initStatic()
{
#ifdef KWIN_HAVE_OPENGLES
sNPOTTextureSupported = true;
sFramebufferObjectSupported = true;
sSaturationSupported = true;
#else
sNPOTTextureSupported = hasGLExtension("GL_ARB_texture_non_power_of_two");
sFramebufferObjectSupported = hasGLExtension("GL_EXT_framebuffer_object");
sSaturationSupported = ((hasGLExtension("GL_ARB_texture_env_crossbar")
&& hasGLExtension("GL_ARB_texture_env_dot3")) || hasGLVersion(1, 4))
&& (glTextureUnitsCount >= 4) && glActiveTexture != NULL;
#endif
}
bool GLTexture::isNull() const
{
return mTexture == None;
}
QSize GLTexture::size() const
{
return mSize;
}
bool GLTexture::load(const QImage& image, GLenum target)
{
if (image.isNull())
return false;
QImage img = image;
mTarget = target;
#ifndef KWIN_HAVE_OPENGLES
if (mTarget != GL_TEXTURE_RECTANGLE_ARB) {
#endif
if (!NPOTTextureSupported()
&& (!isPowerOfTwo(image.width()) || !isPowerOfTwo(image.height()))) {
// non-rectangular target requires POT texture
img = img.scaled(nearestPowerOfTwo(image.width()),
nearestPowerOfTwo(image.height()));
}
mScale.setWidth(1.0 / img.width());
mScale.setHeight(1.0 / img.height());
can_use_mipmaps = true;
#ifndef KWIN_HAVE_OPENGLES
} else {
mScale.setWidth(1.0);
mScale.setHeight(1.0);
can_use_mipmaps = false;
}
#endif
setFilter(GL_LINEAR);
mSize = img.size();
y_inverted = false;
img = convertToGLFormat(img);
setDirty();
if (isNull())
glGenTextures(1, &mTexture);
bind();
#ifdef KWIN_HAVE_OPENGLES
// format and internal format have to match in ES, GL_RGBA8 and GL_BGRA are not available
// see http://www.khronos.org/opengles/sdk/docs/man/xhtml/glTexImage2D.xml
glTexImage2D(mTarget, 0, GL_RGBA, img.width(), img.height(), 0, GL_RGBA, GL_UNSIGNED_BYTE, img.bits());
#else
glTexImage2D(mTarget, 0, GL_RGBA8, img.width(), img.height(), 0,
GL_BGRA, GL_UNSIGNED_BYTE, img.bits());
#endif
unbind();
return true;
}
bool GLTexture::load(const QPixmap& pixmap, GLenum target)
{
if (pixmap.isNull())
return false;
return load(pixmap.toImage(), target);
}
bool GLTexture::load(const QString& fileName)
{
if (fileName.isEmpty())
return false;
return load(QImage(fileName));
}
void GLTexture::discard()
{
setDirty();
if (mTexture != None)
glDeleteTextures(1, &mTexture);
mTexture = None;
}
void GLTexture::bind()
{
#ifndef KWIN_HAVE_OPENGLES
glEnable(mTarget);
#endif
glBindTexture(mTarget, mTexture);
enableFilter();
}
void GLTexture::unbind()
{
glBindTexture(mTarget, 0);
#ifndef KWIN_HAVE_OPENGLES
glDisable(mTarget);
#endif
}
void GLTexture::render(QRegion region, const QRect& rect)
{
if (rect.size() != m_cachedSize) {
m_cachedSize = rect.size();
QRect r(rect);
r.moveTo(0, 0);
if (!m_vbo) {
m_vbo = new GLVertexBuffer(KWin::GLVertexBuffer::Static);
}
const float verts[ 4 * 2 ] = {
// NOTICE: r.x/y could be replaced by "0", but that would make it unreadable...
r.x(), r.y(),
r.x(), r.y() + rect.height(),
r.x() + rect.width(), r.y(),
r.x() + rect.width(), r.y() + rect.height()
};
const float texcoords[ 4 * 2 ] = {
0.0f, y_inverted ? 0.0f : 1.0f, // y needs to be swapped (normalized coords)
0.0f, y_inverted ? 1.0f : 0.0f,
1.0f, y_inverted ? 0.0f : 1.0f,
1.0f, y_inverted ? 1.0f : 0.0f
};
m_vbo->setData(4, 2, verts, texcoords);
}
QMatrix4x4 translation;
translation.translate(rect.x(), rect.y());
if (ShaderManager::instance()->isShaderBound()) {
GLShader *shader = ShaderManager::instance()->getBoundShader();
shader->setUniform(GLShader::Offset, QVector2D(rect.x(), rect.y()));
shader->setUniform(GLShader::WindowTransformation, translation);
shader->setUniform(GLShader::TextureWidth, 1.0f);
shader->setUniform(GLShader::TextureHeight, 1.0f);
} else {
pushMatrix(translation);
}
m_vbo->render(region, GL_TRIANGLE_STRIP);
if (ShaderManager::instance()->isShaderBound()) {
GLShader *shader = ShaderManager::instance()->getBoundShader();
shader->setUniform(GLShader::WindowTransformation, QMatrix4x4());
} else {
popMatrix();
}
}
void GLTexture::enableUnnormalizedTexCoords()
{
#ifndef KWIN_HAVE_OPENGLES
assert(mNormalizeActive == 0);
if (mUnnormalizeActive++ != 0)
return;
// update texture matrix to handle GL_TEXTURE_2D and GL_TEXTURE_RECTANGLE
glMatrixMode(GL_TEXTURE);
glPushMatrix();
glLoadIdentity();
glScalef(mScale.width(), mScale.height(), 1);
if (!y_inverted) {
// Modify texture matrix so that we could always use non-opengl
// coordinates for textures
glScalef(1, -1, 1);
glTranslatef(0, -mSize.height(), 0);
}
glMatrixMode(GL_MODELVIEW);
#endif
}
void GLTexture::disableUnnormalizedTexCoords()
{
#ifndef KWIN_HAVE_OPENGLES
if (--mUnnormalizeActive != 0)
return;
// Restore texture matrix
glMatrixMode(GL_TEXTURE);
glPopMatrix();
glMatrixMode(GL_MODELVIEW);
#endif
}
void GLTexture::enableNormalizedTexCoords()
{
#ifndef KWIN_HAVE_OPENGLES
assert(mUnnormalizeActive == 0);
if (mNormalizeActive++ != 0)
return;
// update texture matrix to handle GL_TEXTURE_2D and GL_TEXTURE_RECTANGLE
glMatrixMode(GL_TEXTURE);
glPushMatrix();
glLoadIdentity();
glScalef(mSize.width() * mScale.width(), mSize.height() * mScale.height(), 1);
if (y_inverted) {
// Modify texture matrix so that we could always use non-opengl
// coordinates for textures
glScalef(1, -1, 1);
glTranslatef(0, -1, 0);
}
glMatrixMode(GL_MODELVIEW);
#endif
}
void GLTexture::disableNormalizedTexCoords()
{
#ifndef KWIN_HAVE_OPENGLES
if (--mNormalizeActive != 0)
return;
// Restore texture matrix
glMatrixMode(GL_TEXTURE);
glPopMatrix();
glMatrixMode(GL_MODELVIEW);
#endif
}
GLuint GLTexture::texture() const
{
return mTexture;
}
GLenum GLTexture::target() const
{
return mTarget;
}
GLenum GLTexture::filter() const
{
return mFilter;
}
bool GLTexture::isDirty() const
{
return has_valid_mipmaps;
}
void GLTexture::setTexture(GLuint texture)
{
discard();
mTexture = texture;
}
void GLTexture::setTarget(GLenum target)
{
mTarget = target;
}
void GLTexture::setFilter(GLenum filter)
{
mFilter = filter;
}
void GLTexture::setWrapMode(GLenum mode)
{
bind();
glTexParameteri(mTarget, GL_TEXTURE_WRAP_S, mode);
glTexParameteri(mTarget, GL_TEXTURE_WRAP_T, mode);
unbind();
}
void GLTexture::setDirty()
{
has_valid_mipmaps = false;
}
void GLTexture::enableFilter()
{
if (mFilter == GL_LINEAR_MIPMAP_LINEAR) {
// trilinear filtering requested, but is it possible?
if (NPOTTextureSupported()
&& framebufferObjectSupported()
&& can_use_mipmaps) {
glTexParameteri(mTarget, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
glTexParameteri(mTarget, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
if (!has_valid_mipmaps) {
glGenerateMipmap(mTarget);
has_valid_mipmaps = true;
}
} else {
// can't use trilinear, so use bilinear
setFilter(GL_LINEAR);
glTexParameteri(mTarget, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(mTarget, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
}
} else if (mFilter == GL_LINEAR) {
glTexParameteri(mTarget, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(mTarget, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
} else {
// if neither trilinear nor bilinear, default to fast filtering
setFilter(GL_NEAREST);
glTexParameteri(mTarget, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(mTarget, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
}
}
static void convertToGLFormatHelper(QImage &dst, const QImage &img, GLenum texture_format)
{
#ifdef KWIN_HAVE_OPENGLES
Q_UNUSED(texture_format)
#endif
// Copied from Qt
Q_ASSERT(dst.size() == img.size());
Q_ASSERT(dst.depth() == 32);
Q_ASSERT(img.depth() == 32);
const int width = img.width();
const int height = img.height();
const uint *p = (const uint*) img.scanLine(img.height() - 1);
uint *q = (uint*) dst.scanLine(0);
#ifndef KWIN_HAVE_OPENGLES
if (texture_format == GL_BGRA) {
if (QSysInfo::ByteOrder == QSysInfo::BigEndian) {
// mirror + swizzle
for (int i = 0; i < height; ++i) {
const uint *end = p + width;
while (p < end) {
*q = ((*p << 24) & 0xff000000)
| ((*p >> 24) & 0x000000ff)
| ((*p << 8) & 0x00ff0000)
| ((*p >> 8) & 0x0000ff00);
p++;
q++;
}
p -= 2 * width;
}
} else {
const uint bytesPerLine = img.bytesPerLine();
for (int i = 0; i < height; ++i) {
memcpy(q, p, bytesPerLine);
q += width;
p -= width;
}
}
} else {
#endif
if (QSysInfo::ByteOrder == QSysInfo::BigEndian) {
for (int i = 0; i < height; ++i) {
const uint *end = p + width;
while (p < end) {
*q = (*p << 8) | ((*p >> 24) & 0xFF);
p++;
q++;
}
p -= 2 * width;
}
} else {
for (int i = 0; i < height; ++i) {
const uint *end = p + width;
while (p < end) {
*q = ((*p << 16) & 0xff0000) | ((*p >> 16) & 0xff) | (*p & 0xff00ff00);
p++;
q++;
}
p -= 2 * width;
}
}
#ifndef KWIN_HAVE_OPENGLES
}
#endif
}
QImage GLTexture::convertToGLFormat(const QImage& img) const
{
// Copied from Qt's QGLWidget::convertToGLFormat()
QImage res(img.size(), QImage::Format_ARGB32);
#ifdef KWIN_HAVE_OPENGLES
convertToGLFormatHelper(res, img.convertToFormat(QImage::Format_ARGB32), GL_RGBA);
#else
convertToGLFormatHelper(res, img.convertToFormat(QImage::Format_ARGB32), GL_BGRA);
#endif
return res;
}
//****************************************
// GLShader
//****************************************
GLShader::GLShader()
: mProgram(0)
, mValid(false)
, mLocationsResolved(false)
, mTextureWidth(-1.0f)
, mTextureHeight(-1.0f)
{
}
GLShader::GLShader(const QString& vertexfile, const QString& fragmentfile)
: mProgram(0)
, mValid(false)
, mLocationsResolved(false)
, mTextureWidth(-1.0f)
, mTextureHeight(-1.0f)
{
loadFromFiles(vertexfile, fragmentfile);
}
GLShader::~GLShader()
{
if (mProgram) {
glDeleteProgram(mProgram);
}
}
bool GLShader::loadFromFiles(const QString &vertexFile, const QString &fragmentFile)
{
QFile vf(vertexFile);
if (!vf.open(QIODevice::ReadOnly)) {
kError(1212) << "Couldn't open" << vertexFile << "for reading!" << endl;
return false;
}
const QByteArray vertexSource = vf.readAll();
QFile ff(fragmentFile);
if (!ff.open(QIODevice::ReadOnly)) {
kError(1212) << "Couldn't open" << fragmentFile << "for reading!" << endl;
return false;
}
const QByteArray fragmentSource = ff.readAll();
return load(vertexSource, fragmentSource);
}
bool GLShader::compile(GLuint program, GLenum shaderType, const QByteArray &source) const
{
GLuint shader = glCreateShader(shaderType);
// Prepare the source code
QByteArray ba;
#ifdef KWIN_HAVE_OPENGLES
ba.append("#ifdef GL_ES\nprecision highp float;\n#endif\n");
#endif
ba.append(source);
const char* src = ba.constData();
glShaderSource(shader, 1, &src, NULL);
// Compile the shader
glCompileShader(shader);
// Get the shader info log
int maxLength, length;
glGetShaderiv(shader, GL_INFO_LOG_LENGTH, &maxLength);
QByteArray log(maxLength, 0);
glGetShaderInfoLog(shader, maxLength, &length, log.data());
// Check the status
int status;
glGetShaderiv(shader, GL_COMPILE_STATUS, &status);
if (status == 0) {
const char *typeName = (shaderType == GL_VERTEX_SHADER ? "vertex" : "fragment");
kError(1212) << "Failed to compile" << typeName << "shader:" << endl << log << endl;
} else if (length > 0)
kDebug(1212) << "Shader compile log:" << log;
if (status != 0)
glAttachShader(program, shader);
glDeleteShader(shader);
return status != 0;
}
bool GLShader::load(const QByteArray &vertexSource, const QByteArray &fragmentSource)
{
// Make sure shaders are actually supported
if (!GLPlatform::instance()->supports(GLSL)) {
kError(1212) << "Shaders are not supported";
return false;
}
// Create the shader program
mProgram = glCreateProgram();
// Compile the vertex shader
if (!vertexSource.isEmpty()) {
bool success = compile(mProgram, GL_VERTEX_SHADER, vertexSource);
if (!success) {
glDeleteProgram(mProgram);
mProgram = 0;
return false;
}
}
// Compile the fragment shader
if (!fragmentSource.isEmpty()) {
bool success = compile(mProgram, GL_FRAGMENT_SHADER, fragmentSource);
if (!success) {
glDeleteProgram(mProgram);
mProgram = 0;
return false;
}
}
glLinkProgram(mProgram);
// Get the program info log
int maxLength, length;
glGetProgramiv(mProgram, GL_INFO_LOG_LENGTH, &maxLength);
QByteArray log(maxLength, 0);
glGetProgramInfoLog(mProgram, maxLength, &length, log.data());
// Make sure the program linked successfully
int status;
glGetProgramiv(mProgram, GL_LINK_STATUS, &status);
if (status == 0) {
kError(1212) << "Failed to link shader:" << endl << log << endl;
glDeleteProgram(mProgram);
mProgram = 0;
return false;
} else if (length > 0)
kDebug(1212) << "Shader link log:" << log;
mValid = true;
return true;
}
void GLShader::bind()
{
glUseProgram(mProgram);
}
void GLShader::unbind()
{
glUseProgram(0);
}
void GLShader::resolveLocations()
{
if (mLocationsResolved)
return;
mMatrixLocation[TextureMatrix] = uniformLocation("textureMatrix");
mMatrixLocation[ProjectionMatrix] = uniformLocation("projection");
mMatrixLocation[ModelViewMatrix] = uniformLocation("modelview");
mMatrixLocation[WindowTransformation] = uniformLocation("windowTransformation");
mMatrixLocation[ScreenTransformation] = uniformLocation("screenTransformation");
mVec2Location[Offset] = uniformLocation("offset");
mVec4Location[ModulationConstant] = uniformLocation("modulation");
mFloatLocation[Saturation] = uniformLocation("saturation");
mFloatLocation[TextureWidth] = uniformLocation("textureWidth");
mFloatLocation[TextureHeight] = uniformLocation("textureHeight");
mIntLocation[AlphaToOne] = uniformLocation("u_forceAlpha");
mLocationsResolved = true;
}
int GLShader::uniformLocation(const char *name)
{
const int location = glGetUniformLocation(mProgram, name);
return location;
}
bool GLShader::setUniform(GLShader::MatrixUniform uniform, const QMatrix4x4 &matrix)
{
resolveLocations();
return setUniform(mMatrixLocation[uniform], matrix);
}
bool GLShader::setUniform(GLShader::Vec2Uniform uniform, const QVector2D &value)
{
resolveLocations();
return setUniform(mVec2Location[uniform], value);
}
bool GLShader::setUniform(GLShader::Vec4Uniform uniform, const QVector4D &value)
{
resolveLocations();
return setUniform(mVec4Location[uniform], value);
}
bool GLShader::setUniform(GLShader::FloatUniform uniform, float value)
{
resolveLocations();
return setUniform(mFloatLocation[uniform], value);
}
bool GLShader::setUniform(GLShader::IntUniform uniform, int value)
{
resolveLocations();
return setUniform(mIntLocation[uniform], value);
}
bool GLShader::setUniform(const char *name, float value)
{
const int location = uniformLocation(name);
return setUniform(location, value);
}
bool GLShader::setUniform(const char *name, int value)
{
const int location = uniformLocation(name);
return setUniform(location, value);
}
bool GLShader::setUniform(const char *name, const QVector2D& value)
{
const int location = uniformLocation(name);
return setUniform(location, value);
}
bool GLShader::setUniform(const char *name, const QVector3D& value)
{
const int location = uniformLocation(name);
return setUniform(location, value);
}
bool GLShader::setUniform(const char *name, const QVector4D& value)
{
const int location = uniformLocation(name);
return setUniform(location, value);
}
bool GLShader::setUniform(const char *name, const QMatrix4x4& value)
{
const int location = uniformLocation(name);
return setUniform(location, value);
}
bool GLShader::setUniform(const char *name, const QColor& color)
{
const int location = uniformLocation(name);
return setUniform(location, color);
}
bool GLShader::setUniform(int location, float value)
{
if (location >= 0) {
glUniform1f(location, value);
}
return (location >= 0);
}
bool GLShader::setUniform(int location, int value)
{
if (location >= 0) {
glUniform1i(location, value);
}
return (location >= 0);
}
bool GLShader::setUniform(int location, const QVector2D &value)
{
if (location >= 0) {
glUniform2fv(location, 1, (const GLfloat*)&value);
}
return (location >= 0);
}
bool GLShader::setUniform(int location, const QVector3D &value)
{
if (location >= 0) {
glUniform3fv(location, 1, (const GLfloat*)&value);
}
return (location >= 0);
}
bool GLShader::setUniform(int location, const QVector4D &value)
{
if (location >= 0) {
glUniform4fv(location, 1, (const GLfloat*)&value);
}
return (location >= 0);
}
bool GLShader::setUniform(int location, const QMatrix4x4 &value)
{
if (location >= 0) {
GLfloat m[16];
const qreal *data = value.constData();
// i is column, j is row for m
for (int i = 0; i < 16; ++i) {
m[i] = data[i];
}
glUniformMatrix4fv(location, 1, GL_FALSE, m);
}
return (location >= 0);
}
bool GLShader::setUniform(int location, const QColor &color)
{
if (location >= 0) {
glUniform4f(location, color.redF(), color.greenF(), color.blueF(), color.alphaF());
}
return (location >= 0);
}
int GLShader::attributeLocation(const char* name)
{
int location = glGetAttribLocation(mProgram, name);
return location;
}
bool GLShader::setAttribute(const char* name, float value)
{
int location = attributeLocation(name);
if (location >= 0) {
glVertexAttrib1f(location, value);
}
return (location >= 0);
}
void GLShader::setTextureHeight(float height)
{
mTextureHeight = height;
}
void GLShader::setTextureWidth(float width)
{
mTextureWidth = width;
}
float GLShader::textureHeight()
{
return mTextureHeight;
}
float GLShader::textureWidth()
{
return mTextureWidth;
}
QMatrix4x4 GLShader::getUniformMatrix4x4(const char* name)
{
int location = uniformLocation(name);
if (location >= 0) {
GLfloat m[16];
glGetUniformfv(mProgram, location, m);
QMatrix4x4 matrix(m[0], m[4], m[8], m[12],
m[1], m[5], m[9], m[13],
m[2], m[6], m[10], m[14],
m[3], m[7], m[11], m[15]);
matrix.optimize();
return matrix;
} else {
return QMatrix4x4();
}
}
//****************************************
// ShaderManager
//****************************************
ShaderManager *ShaderManager::s_shaderManager = NULL;
ShaderManager *ShaderManager::instance()
{
if (!s_shaderManager) {
s_shaderManager = new ShaderManager();
}
return s_shaderManager;
}
void ShaderManager::cleanup()
{
delete s_shaderManager;
s_shaderManager = NULL;
}
ShaderManager::ShaderManager()
: m_orthoShader(NULL)
, m_genericShader(NULL)
, m_colorShader(NULL)
, m_inited(false)
, m_valid(false)
{
initShaders();
m_inited = true;
}
ShaderManager::~ShaderManager()
{
while (!m_boundShaders.isEmpty()) {
popShader();
}
delete m_orthoShader;
delete m_genericShader;
delete m_colorShader;
}
GLShader *ShaderManager::getBoundShader() const
{
if (m_boundShaders.isEmpty()) {
return NULL;
} else {
return m_boundShaders.top();
}
}
bool ShaderManager::isShaderBound() const
{
return !m_boundShaders.isEmpty();
}
bool ShaderManager::isValid() const
{
return m_valid;
}
GLShader *ShaderManager::pushShader(ShaderType type, bool reset)
{
if (m_inited && !m_valid) {
return NULL;
}
GLShader *shader;
switch(type) {
case SimpleShader:
shader = m_orthoShader;
break;
case GenericShader:
shader = m_genericShader;
break;
case ColorShader:
shader = m_colorShader;
break;
default:
return NULL;
}
pushShader(shader);
if (reset) {
resetShader(type);
}
return shader;
}
void ShaderManager::pushShader(GLShader *shader)
{
// only bind shader if it is not already bound
if (shader != getBoundShader()) {
shader->bind();
}
m_boundShaders.push(shader);
}
void ShaderManager::popShader()
{
if (m_boundShaders.isEmpty()) {
return;
}
GLShader *shader = m_boundShaders.pop();
if (m_boundShaders.isEmpty()) {
// no more shader bound - unbind
shader->unbind();
} else if (shader != m_boundShaders.top()) {
// only rebind if a different shader is on top of stack
m_boundShaders.top()->bind();
}
}
GLShader *ShaderManager::loadFragmentShader(ShaderType vertex, const QString &fragmentFile)
{
QString vertexShader;
switch(vertex) {
case SimpleShader:
vertexShader = ":/resources/scene-vertex.glsl";
break;
case GenericShader:
vertexShader = ":/resources/scene-generic-vertex.glsl";
break;
case ColorShader:
vertexShader = ":/resources/scene-color-vertex.glsl";
break;
}
GLShader *shader = new GLShader(vertexShader, fragmentFile);
if (shader->isValid()) {
pushShader(shader);
resetShader(vertex);
popShader();
}
return shader;
}
GLShader *ShaderManager::loadVertexShader(ShaderType fragment, const QString &vertexFile)
{
QString fragmentShader;
switch(fragment) {
// Simple and Generic Shader use same fragment Shader
case SimpleShader:
case GenericShader:
fragmentShader = ":/resources/scene-fragment.glsl";
break;
case ColorShader:
fragmentShader = ":/resources/scene-color-fragment.glsl";
break;
}
GLShader *shader = new GLShader(vertexFile, fragmentShader);
if (shader->isValid()) {
pushShader(shader);
resetShader(fragment);
popShader();
}
return shader;
}
GLShader *ShaderManager::loadShaderFromCode(const QByteArray &vertexSource, const QByteArray &fragmentSource)
{
GLShader *shader = new GLShader();
shader->load(vertexSource, fragmentSource);
return shader;
}
void ShaderManager::initShaders()
{
if (legacyGl) {
kDebug(1212) << "OpenGL Shaders disabled by config option";
return;
}
m_orthoShader = new GLShader(":/resources/scene-vertex.glsl", ":/resources/scene-fragment.glsl");
if (m_orthoShader->isValid()) {
pushShader(SimpleShader, true);
popShader();
kDebug(1212) << "Ortho Shader is valid";
} else {
delete m_orthoShader;
m_orthoShader = NULL;
kDebug(1212) << "Orho Shader is not valid";
return;
}
m_genericShader = new GLShader(":/resources/scene-generic-vertex.glsl", ":/resources/scene-fragment.glsl");
if (m_genericShader->isValid()) {
pushShader(GenericShader, true);
popShader();
kDebug(1212) << "Generic Shader is valid";
} else {
delete m_genericShader;
m_genericShader = NULL;
delete m_orthoShader;
m_orthoShader = NULL;
kDebug(1212) << "Generic Shader is not valid";
return;
}
m_colorShader = new GLShader(":/resources/scene-color-vertex.glsl", ":/resources/scene-color-fragment.glsl");
if (m_colorShader->isValid()) {
pushShader(ColorShader, true);
popShader();
kDebug(1212) << "Color Shader is valid";
} else {
delete m_genericShader;
m_genericShader = NULL;
delete m_orthoShader;
m_orthoShader = NULL;
delete m_colorShader;
m_colorShader = NULL;
kDebug(1212) << "Color Scene Shader is not valid";
return;
}
m_valid = true;
}
void ShaderManager::resetShader(ShaderType type)
{
// resetShader is either called from init or from push, we know that a built-in shader is bound
const QMatrix4x4 identity;
QMatrix4x4 projection;
QMatrix4x4 modelView;
GLShader *shader = getBoundShader();
switch(type) {
case SimpleShader:
projection.ortho(0, displayWidth(), displayHeight(), 0, 0, 65535);
break;
case GenericShader: {
// Set up the projection matrix
float fovy = 60.0f;
float aspect = 1.0f;
float zNear = 0.1f;
float zFar = 100.0f;
float ymax = zNear * tan(fovy * M_PI / 360.0f);
float ymin = -ymax;
float xmin = ymin * aspect;
float xmax = ymax * aspect;
projection.frustum(xmin, xmax, ymin, ymax, zNear, zFar);
// Set up the model-view matrix
float scaleFactor = 1.1 * tan(fovy * M_PI / 360.0f) / ymax;
modelView.translate(xmin * scaleFactor, ymax * scaleFactor, -1.1);
modelView.scale((xmax - xmin)*scaleFactor / displayWidth(), -(ymax - ymin)*scaleFactor / displayHeight(), 0.001);
break;
}
case ColorShader:
projection.ortho(0, displayWidth(), displayHeight(), 0, 0, 65535);
shader->setUniform("geometryColor", QVector4D(0, 0, 0, 1));
break;
}
//shader->setUniform("debug", 0);
shader->setUniform("sampler", 0);
shader->setUniform(GLShader::ProjectionMatrix, projection);
shader->setUniform(GLShader::ModelViewMatrix, modelView);
shader->setUniform(GLShader::ScreenTransformation, identity);
shader->setUniform(GLShader::WindowTransformation, identity);
shader->setUniform(GLShader::Offset, QVector2D(0, 0));
shader->setUniform(GLShader::ModulationConstant, QVector4D(1.0, 1.0, 1.0, 1.0));
shader->setUniform(GLShader::Saturation, 1.0f);
shader->setUniform(GLShader::AlphaToOne, 0);
// TODO: has to become textureSize
shader->setUniform(GLShader::TextureWidth, 1.0f);
shader->setUniform(GLShader::TextureHeight, 1.0f);
}
/*** GLRenderTarget ***/
bool GLRenderTarget::sSupported = false;
QStack<GLRenderTarget*> GLRenderTarget::s_renderTargets = QStack<GLRenderTarget*>();
void GLRenderTarget::initStatic()
{
#ifdef KWIN_HAVE_OPENGLES
sSupported = true;
#else
sSupported = hasGLExtension("GL_EXT_framebuffer_object") && glFramebufferTexture2D;
#endif
}
bool GLRenderTarget::isRenderTargetBound()
{
return !s_renderTargets.isEmpty();
}
void GLRenderTarget::pushRenderTarget(GLRenderTarget* target)
{
target->enable();
s_renderTargets.push(target);
}
GLRenderTarget* GLRenderTarget::popRenderTarget()
{
GLRenderTarget* ret = s_renderTargets.pop();
ret->disable();
if (!s_renderTargets.isEmpty())
s_renderTargets.top()->enable();
return ret;
}
GLRenderTarget::GLRenderTarget(GLTexture* color)
{
// Reset variables
mValid = false;
mTexture = color;
// Make sure FBO is supported
if (sSupported && mTexture && !mTexture->isNull()) {
initFBO();
} else
kError(1212) << "Render targets aren't supported!" << endl;
}
GLRenderTarget::~GLRenderTarget()
{
if (mValid) {
glDeleteFramebuffers(1, &mFramebuffer);
}
}
bool GLRenderTarget::enable()
{
if (!valid()) {
kError(1212) << "Can't enable invalid render target!" << endl;
return false;
}
glBindFramebuffer(GL_FRAMEBUFFER, mFramebuffer);
mTexture->setDirty();
return true;
}
bool GLRenderTarget::disable()
{
if (!valid()) {
kError(1212) << "Can't disable invalid render target!" << endl;
return false;
}
glBindFramebuffer(GL_FRAMEBUFFER, 0);
mTexture->setDirty();
return true;
}
static QString formatFramebufferStatus(GLenum status)
{
switch(status) {
case GL_FRAMEBUFFER_INCOMPLETE_ATTACHMENT:
// An attachment is the wrong type / is invalid / has 0 width or height
return "GL_FRAMEBUFFER_INCOMPLETE_ATTACHMENT";
case GL_FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:
// There are no images attached to the framebuffer
return "GL_FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";
case GL_FRAMEBUFFER_UNSUPPORTED:
// A format or the combination of formats of the attachments is unsupported
return "GL_FRAMEBUFFER_UNSUPPORTED";
#ifndef KWIN_HAVE_OPENGLES
case GL_FRAMEBUFFER_INCOMPLETE_DIMENSIONS_EXT:
// Not all attached images have the same width and height
return "GL_FRAMEBUFFER_INCOMPLETE_DIMENSIONS_EXT";
case GL_FRAMEBUFFER_INCOMPLETE_FORMATS_EXT:
// The color attachments don't have the same format
return "GL_FRAMEBUFFER_INCOMPLETE_FORMATS_EXT";
case GL_FRAMEBUFFER_INCOMPLETE_MULTISAMPLE_EXT:
// The attachments don't have the same number of samples
return "GL_FRAMEBUFFER_INCOMPLETE_MULTISAMPLE";
case GL_FRAMEBUFFER_INCOMPLETE_DRAW_BUFFER_EXT:
// The draw buffer is missing
return "GL_FRAMEBUFFER_INCOMPLETE_DRAW_BUFFER";
case GL_FRAMEBUFFER_INCOMPLETE_READ_BUFFER_EXT:
// The read buffer is missing
return "GL_FRAMEBUFFER_INCOMPLETE_READ_BUFFER";
#endif
default:
return "Unknown (0x" + QString::number(status, 16) + ')';
}
}
void GLRenderTarget::initFBO()
{
#if DEBUG_GLRENDERTARGET
GLenum err = glGetError();
if (err != GL_NO_ERROR)
kError(1212) << "Error status when entering GLRenderTarget::initFBO: " << formatGLError(err);
#endif
glGenFramebuffers(1, &mFramebuffer);
#if DEBUG_GLRENDERTARGET
if ((err = glGetError()) != GL_NO_ERROR) {
kError(1212) << "glGenFramebuffers failed: " << formatGLError(err);
return;
}
#endif
glBindFramebuffer(GL_FRAMEBUFFER, mFramebuffer);
#if DEBUG_GLRENDERTARGET
if ((err = glGetError()) != GL_NO_ERROR) {
kError(1212) << "glBindFramebuffer failed: " << formatGLError(err);
glDeleteFramebuffers(1, &mFramebuffer);
return;
}
#endif
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0,
mTexture->target(), mTexture->texture(), 0);
#if DEBUG_GLRENDERTARGET
if ((err = glGetError()) != GL_NO_ERROR) {
kError(1212) << "glFramebufferTexture2D failed: " << formatGLError(err);
glBindFramebuffer(GL_FRAMEBUFFER, 0);
glDeleteFramebuffers(1, &mFramebuffer);
return;
}
#endif
const GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
glBindFramebuffer(GL_FRAMEBUFFER, 0);
if (status != GL_FRAMEBUFFER_COMPLETE) {
// We have an incomplete framebuffer, consider it invalid
if (status == 0)
kError(1212) << "glCheckFramebufferStatus failed: " << formatGLError(glGetError());
else
kError(1212) << "Invalid framebuffer status: " << formatFramebufferStatus(status);
glDeleteFramebuffers(1, &mFramebuffer);
return;
}
mValid = true;
}
//*********************************
// GLVertexBufferPrivate
//*********************************
class GLVertexBufferPrivate
{
public:
GLVertexBufferPrivate(GLVertexBuffer::UsageHint usageHint)
: hint(usageHint)
, numberVertices(0)
, dimension(2)
, useColor(false)
, useTexCoords(true)
, color(0, 0, 0, 255) {
if (GLVertexBufferPrivate::supported) {
glGenBuffers(2, buffers);
}
}
~GLVertexBufferPrivate() {
if (GLVertexBufferPrivate::supported) {
glDeleteBuffers(2, buffers);
}
}
GLVertexBuffer::UsageHint hint;
GLuint buffers[2];
int numberVertices;
int dimension;
static bool supported;
static GLVertexBuffer *streamingBuffer;
QVector<float> legacyVertices;
QVector<float> legacyTexCoords;
bool useColor;
bool useTexCoords;
QColor color;
//! VBO is not supported
void legacyPainting(QRegion region, GLenum primitiveMode);
//! VBO and shaders are both supported
void corePainting(const QRegion& region, GLenum primitiveMode);
//! VBO is supported, but shaders are not supported
void fallbackPainting(const QRegion& region, GLenum primitiveMode);
};
bool GLVertexBufferPrivate::supported = false;
GLVertexBuffer *GLVertexBufferPrivate::streamingBuffer = NULL;
void GLVertexBufferPrivate::legacyPainting(QRegion region, GLenum primitiveMode)
{
#ifdef KWIN_HAVE_OPENGLES
Q_UNUSED(region)
Q_UNUSED(primitiveMode)
#else
// Enable arrays
glEnableClientState(GL_VERTEX_ARRAY);
glVertexPointer(dimension, GL_FLOAT, 0, legacyVertices.constData());
if (!legacyTexCoords.isEmpty()) {
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glTexCoordPointer(2, GL_FLOAT, 0, legacyTexCoords.constData());
}
if (useColor) {
glColor4f(color.redF(), color.greenF(), color.blueF(), color.alphaF());
}
// Clip using scissoring
if (region != infiniteRegion()) {
PaintClipper pc(region);
for (PaintClipper::Iterator iterator; !iterator.isDone(); iterator.next()) {
glDrawArrays(primitiveMode, 0, numberVertices);
}
} else {
glDrawArrays(primitiveMode, 0, numberVertices);
}
glDisableClientState(GL_VERTEX_ARRAY);
if (!legacyTexCoords.isEmpty()) {
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
}
#endif
}
void GLVertexBufferPrivate::corePainting(const QRegion& region, GLenum primitiveMode)
{
GLShader *shader = ShaderManager::instance()->getBoundShader();
GLint vertexAttrib = shader->attributeLocation("vertex");
GLint texAttrib = shader->attributeLocation("texCoord");
glEnableVertexAttribArray(vertexAttrib);
if (useTexCoords) {
glEnableVertexAttribArray(texAttrib);
}
if (useColor) {
shader->setUniform("geometryColor", color);
}
glBindBuffer(GL_ARRAY_BUFFER, buffers[ 0 ]);
glVertexAttribPointer(vertexAttrib, dimension, GL_FLOAT, GL_FALSE, 0, 0);
if (texAttrib != -1 && useTexCoords) {
glBindBuffer(GL_ARRAY_BUFFER, buffers[ 1 ]);
glVertexAttribPointer(texAttrib, 2, GL_FLOAT, GL_FALSE, 0, 0);
}
// Clip using scissoring
if (region != infiniteRegion()) {
PaintClipper pc(region);
for (PaintClipper::Iterator iterator; !iterator.isDone(); iterator.next()) {
glDrawArrays(primitiveMode, 0, numberVertices);
}
} else {
glDrawArrays(primitiveMode, 0, numberVertices);
}
glBindBuffer(GL_ARRAY_BUFFER, 0);
if (useTexCoords) {
glDisableVertexAttribArray(texAttrib);
}
glDisableVertexAttribArray(vertexAttrib);
}
void GLVertexBufferPrivate::fallbackPainting(const QRegion& region, GLenum primitiveMode)
{
#ifdef KWIN_HAVE_OPENGLES
Q_UNUSED(region)
Q_UNUSED(primitiveMode)
#else
glEnableClientState(GL_VERTEX_ARRAY);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glBindBuffer(GL_ARRAY_BUFFER, buffers[ 0 ]);
glVertexPointer(dimension, GL_FLOAT, 0, 0);
glBindBuffer(GL_ARRAY_BUFFER, buffers[ 1 ]);
glTexCoordPointer(2, GL_FLOAT, 0, 0);
if (useColor) {
glColor4f(color.redF(), color.greenF(), color.blueF(), color.alphaF());
}
// Clip using scissoring
if (region != infiniteRegion()) {
PaintClipper pc(region);
for (PaintClipper::Iterator iterator; !iterator.isDone(); iterator.next()) {
glDrawArrays(primitiveMode, 0, numberVertices);
}
} else {
glDrawArrays(primitiveMode, 0, numberVertices);
}
glBindBuffer(GL_ARRAY_BUFFER, 0);
glDisableClientState(GL_VERTEX_ARRAY);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
#endif
}
//*********************************
// GLVertexBuffer
//*********************************
GLVertexBuffer::GLVertexBuffer(UsageHint hint)
: d(new GLVertexBufferPrivate(hint))
{
}
GLVertexBuffer::~GLVertexBuffer()
{
delete d;
}
void GLVertexBuffer::setData(int numberVertices, int dim, const float* vertices, const float* texcoords)
{
d->numberVertices = numberVertices;
d->dimension = dim;
d->useTexCoords = (texcoords != NULL);
if (!GLVertexBufferPrivate::supported) {
// legacy data
d->legacyVertices.clear();
d->legacyVertices.reserve(numberVertices * dim);
for (int i = 0; i < numberVertices * dim; ++i) {
d->legacyVertices << vertices[i];
}
d->legacyTexCoords.clear();
if (d->useTexCoords) {
d->legacyTexCoords.reserve(numberVertices * 2);
for (int i = 0; i < numberVertices * 2; ++i) {
d->legacyTexCoords << texcoords[i];
}
}
return;
}
GLenum hint;
switch(d->hint) {
case Dynamic:
hint = GL_DYNAMIC_DRAW;
break;
case Static:
hint = GL_STATIC_DRAW;
break;
case Stream:
hint = GL_STREAM_DRAW;
break;
default:
// just to make the compiler happy
hint = GL_STREAM_DRAW;
break;
}
glBindBuffer(GL_ARRAY_BUFFER, d->buffers[ 0 ]);
glBufferData(GL_ARRAY_BUFFER, sizeof(GLfloat)*numberVertices * d->dimension, vertices, hint);
if (d->useTexCoords) {
glBindBuffer(GL_ARRAY_BUFFER, d->buffers[ 1 ]);
glBufferData(GL_ARRAY_BUFFER, sizeof(GLfloat)*numberVertices * 2, texcoords, hint);
}
glBindBuffer(GL_ARRAY_BUFFER, 0);
}
void GLVertexBuffer::render(GLenum primitiveMode)
{
render(infiniteRegion(), primitiveMode);
}
void GLVertexBuffer::render(const QRegion& region, GLenum primitiveMode)
{
if (!GLVertexBufferPrivate::supported) {
d->legacyPainting(region, primitiveMode);
} else if (ShaderManager::instance()->isShaderBound()) {
d->corePainting(region, primitiveMode);
} else {
d->fallbackPainting(region, primitiveMode);
}
}
bool GLVertexBuffer::isSupported()
{
return GLVertexBufferPrivate::supported;
}
bool GLVertexBuffer::isUseColor() const
{
return d->useColor;
}
void GLVertexBuffer::setUseColor(bool enable)
{
d->useColor = enable;
}
void GLVertexBuffer::setColor(const QColor& color, bool enable)
{
d->useColor = enable;
d->color = color;
}
void GLVertexBuffer::reset()
{
d->useColor = false;
d->color = QColor(0, 0, 0, 255);
d->numberVertices = 0;
d->dimension = 2;
d->useTexCoords = true;
}
void GLVertexBuffer::initStatic()
{
#ifdef KWIN_HAVE_OPENGLES
GLVertexBufferPrivate::supported = true;
#else
GLVertexBufferPrivate::supported = hasGLExtension("GL_ARB_vertex_buffer_object");
#endif
GLVertexBufferPrivate::streamingBuffer = new GLVertexBuffer(GLVertexBuffer::Stream);
}
GLVertexBuffer *GLVertexBuffer::streamingBuffer()
{
return GLVertexBufferPrivate::streamingBuffer;
}
} // namespace
#endif