kwin/libkwineffects/kwinglutils.cpp
Casian Andrei 01adbe6dc5 Implement color correction (per output)
Add an option to kcmcompositing in the 'Advanced' tab, to enable or
disable color correction. It is specified that it's experimental and it
needs Kolor Manager.

Before painting for a particular screen, ColorCorrection::setupForOutput
should be called.

A screen property is added for WindowPaintData.

In kwinglutils, The fragment shaders are intercepted before being
compiled and they get a couple of lines of code inserted in order to do
the color correction. This happens only when color correction is enabled, of
course.

For D-Bus communication with KolorServer, everything is async.

The implementation basically manages a set of color lookup tables for
different outputs and for different window regions. These are taken via
D-Bus. Each lookup table has around 700 KB.

This commit reintroduces the changes from the former merge with the
"color2" branch. In this form, it can be easily reverted.

REVIEW: 106141
2012-11-13 22:47:09 +02:00

1414 lines
38 KiB
C++

/********************************************************************
KWin - the KDE window manager
This file is part of the KDE project.
Copyright (C) 2006-2007 Rivo Laks <rivolaks@hot.ee>
Copyright (C) 2010, 2011 Martin Gräßlin <mgraesslin@kde.org>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*********************************************************************/
#include "kwinglutils.h"
// need to call GLTexturePrivate::initStatic()
#include "kwingltexture_p.h"
#include "kwinglcolorcorrection.h"
#include "kwinglobals.h"
#include "kwineffects.h"
#include "kwinglplatform.h"
#include "kdebug.h"
#include <kstandarddirs.h>
#include <KDE/KConfig>
#include <KDE/KConfigGroup>
#include <QPixmap>
#include <QImage>
#include <QHash>
#include <QFile>
#include <QVector2D>
#include <QVector3D>
#include <QVector4D>
#include <QMatrix4x4>
#include <math.h>
#define DEBUG_GLRENDERTARGET 0
#define MAKE_GL_VERSION(major, minor, release) ( ((major) << 16) | ((minor) << 8) | (release) )
namespace KWin
{
// Variables
// GL version, use MAKE_GL_VERSION() macro for comparing with a specific version
static int glVersion;
// GLX version, use MAKE_GL_VERSION() macro for comparing with a specific version
static int glXVersion;
// EGL version, use MAKE_GL_VERSION() macro for comparing with a specific version
static int eglVersion;
// List of all supported GL, EGL and GLX extensions
static QStringList glExtensions;
static QStringList glxExtensions;
static QStringList eglExtension;
int glTextureUnitsCount;
// Functions
void initGLX()
{
#ifndef KWIN_HAVE_OPENGLES
// Get GLX version
int major, minor;
glXQueryVersion(display(), &major, &minor);
glXVersion = MAKE_GL_VERSION(major, minor, 0);
// Get list of supported GLX extensions
glxExtensions = QString((const char*)glXQueryExtensionsString(
display(), DefaultScreen(display()))).split(' ');
glxResolveFunctions();
#endif
}
void initEGL()
{
#ifdef KWIN_HAVE_EGL
EGLDisplay dpy = eglGetCurrentDisplay();
int major, minor;
eglInitialize(dpy, &major, &minor);
eglVersion = MAKE_GL_VERSION(major, minor, 0);
eglExtension = QString((const char*)eglQueryString(dpy, EGL_EXTENSIONS)).split(' ');
eglResolveFunctions();
#endif
}
void initGL(OpenGLPlatformInterface platformInterface)
{
// Get OpenGL version
QString glversionstring = QString((const char*)glGetString(GL_VERSION));
QStringList glversioninfo = glversionstring.left(glversionstring.indexOf(' ')).split('.');
while (glversioninfo.count() < 3)
glversioninfo << "0";
#ifndef KWIN_HAVE_OPENGLES
glVersion = MAKE_GL_VERSION(glversioninfo[0].toInt(), glversioninfo[1].toInt(), glversioninfo[2].toInt());
#endif
// Get list of supported OpenGL extensions
glExtensions = QString((const char*)glGetString(GL_EXTENSIONS)).split(' ');
// handle OpenGL extensions functions
glResolveFunctions(platformInterface);
GLTexturePrivate::initStatic();
GLRenderTarget::initStatic();
GLVertexBuffer::initStatic();
}
void cleanupGL()
{
ShaderManager::cleanup();
}
bool hasGLVersion(int major, int minor, int release)
{
return glVersion >= MAKE_GL_VERSION(major, minor, release);
}
bool hasGLXVersion(int major, int minor, int release)
{
return glXVersion >= MAKE_GL_VERSION(major, minor, release);
}
bool hasEGLVersion(int major, int minor, int release)
{
return eglVersion >= MAKE_GL_VERSION(major, minor, release);
}
bool hasGLExtension(const QString& extension)
{
return glExtensions.contains(extension) || glxExtensions.contains(extension) || eglExtension.contains(extension);
}
static QString formatGLError(GLenum err)
{
switch(err) {
case GL_NO_ERROR: return "GL_NO_ERROR";
case GL_INVALID_ENUM: return "GL_INVALID_ENUM";
case GL_INVALID_VALUE: return "GL_INVALID_VALUE";
case GL_INVALID_OPERATION: return "GL_INVALID_OPERATION";
#ifndef KWIN_HAVE_OPENGLES
case GL_STACK_OVERFLOW: return "GL_STACK_OVERFLOW";
case GL_STACK_UNDERFLOW: return "GL_STACK_UNDERFLOW";
#endif
case GL_OUT_OF_MEMORY: return "GL_OUT_OF_MEMORY";
default: return QString("0x") + QString::number(err, 16);
}
}
bool checkGLError(const char* txt)
{
GLenum err = glGetError();
bool hasError = false;
while (err != GL_NO_ERROR) {
kWarning(1212) << "GL error (" << txt << "): " << formatGLError(err);
hasError = true;
err = glGetError();
}
return hasError;
}
int nearestPowerOfTwo(int x)
{
// This method had been copied from Qt's nearest_gl_texture_size()
int n = 0, last = 0;
for (int s = 0; s < 32; ++s) {
if (((x >> s) & 1) == 1) {
++n;
last = s;
}
}
if (n > 1)
return 1 << (last + 1);
return 1 << last;
}
void pushMatrix()
{
#ifdef KWIN_HAVE_OPENGL_1
if (ShaderManager::instance()->isValid()) {
return;
}
glPushMatrix();
#endif
}
void pushMatrix(const QMatrix4x4 &matrix)
{
#ifndef KWIN_HAVE_OPENGL_1
Q_UNUSED(matrix)
#else
if (ShaderManager::instance()->isValid()) {
return;
}
glPushMatrix();
multiplyMatrix(matrix);
#endif
}
void multiplyMatrix(const QMatrix4x4 &matrix)
{
#ifndef KWIN_HAVE_OPENGL_1
Q_UNUSED(matrix)
#else
if (ShaderManager::instance()->isValid()) {
return;
}
GLfloat m[16];
const qreal *data = matrix.constData();
for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 4; ++j) {
m[i*4+j] = data[i*4+j];
}
}
glMultMatrixf(m);
#endif
}
void loadMatrix(const QMatrix4x4 &matrix)
{
#ifndef KWIN_HAVE_OPENGL_1
Q_UNUSED(matrix)
#else
if (ShaderManager::instance()->isValid()) {
return;
}
GLfloat m[16];
const qreal *data = matrix.constData();
for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 4; ++j) {
m[i*4+j] = data[i*4+j];
}
}
glLoadMatrixf(m);
#endif
}
void popMatrix()
{
#ifdef KWIN_HAVE_OPENGL_1
if (ShaderManager::instance()->isValid()) {
return;
}
glPopMatrix();
#endif
}
//****************************************
// GLShader
//****************************************
bool GLShader::sColorCorrect = false;
GLShader::GLShader()
: mProgram(0)
, mValid(false)
, mLocationsResolved(false)
{
}
GLShader::GLShader(const QString& vertexfile, const QString& fragmentfile)
: mProgram(0)
, mValid(false)
, mLocationsResolved(false)
{
loadFromFiles(vertexfile, fragmentfile);
}
GLShader::~GLShader()
{
if (mProgram) {
glDeleteProgram(mProgram);
}
}
bool GLShader::loadFromFiles(const QString &vertexFile, const QString &fragmentFile)
{
QFile vf(vertexFile);
if (!vf.open(QIODevice::ReadOnly)) {
kError(1212) << "Couldn't open" << vertexFile << "for reading!" << endl;
return false;
}
const QByteArray vertexSource = vf.readAll();
QFile ff(fragmentFile);
if (!ff.open(QIODevice::ReadOnly)) {
kError(1212) << "Couldn't open" << fragmentFile << "for reading!" << endl;
return false;
}
const QByteArray fragmentSource = ff.readAll();
return load(vertexSource, fragmentSource);
}
const QByteArray GLShader::prepareSource(GLenum shaderType, const QByteArray &source) const
{
// Prepare the source code
QByteArray ba;
#ifdef KWIN_HAVE_OPENGLES
ba.append("#ifdef GL_ES\nprecision highp float;\n#endif\n");
#endif
if (ShaderManager::instance()->isShaderDebug()) {
ba.append("#define KWIN_SHADER_DEBUG 1\n");
}
ba.append(source);
// Inject color correction code for fragment shaders, if possible
if (shaderType == GL_FRAGMENT_SHADER && sColorCorrect)
ba = ColorCorrection::prepareFragmentShader(ba);
return ba;
}
bool GLShader::compile(GLuint program, GLenum shaderType, const QByteArray &source) const
{
GLuint shader = glCreateShader(shaderType);
QByteArray preparedSource = prepareSource(shaderType, source);
const char* src = preparedSource.constData();
glShaderSource(shader, 1, &src, NULL);
// Compile the shader
glCompileShader(shader);
// Get the shader info log
int maxLength, length;
glGetShaderiv(shader, GL_INFO_LOG_LENGTH, &maxLength);
QByteArray log(maxLength, 0);
glGetShaderInfoLog(shader, maxLength, &length, log.data());
// Check the status
int status;
glGetShaderiv(shader, GL_COMPILE_STATUS, &status);
if (status == 0) {
const char *typeName = (shaderType == GL_VERTEX_SHADER ? "vertex" : "fragment");
kError(1212) << "Failed to compile" << typeName << "shader:" << endl << log << endl;
} else if (length > 0)
kDebug(1212) << "Shader compile log:" << log;
if (status != 0)
glAttachShader(program, shader);
glDeleteShader(shader);
return status != 0;
}
bool GLShader::load(const QByteArray &vertexSource, const QByteArray &fragmentSource)
{
#ifndef KWIN_HAVE_OPENGLES
// Make sure shaders are actually supported
if (!GLPlatform::instance()->supports(GLSL) || GLPlatform::instance()->supports(LimitedNPOT)) {
kError(1212) << "Shaders are not supported";
return false;
}
#endif
// Create the shader program
mProgram = glCreateProgram();
// Compile the vertex shader
if (!vertexSource.isEmpty()) {
bool success = compile(mProgram, GL_VERTEX_SHADER, vertexSource);
if (!success) {
glDeleteProgram(mProgram);
mProgram = 0;
return false;
}
}
// Compile the fragment shader
if (!fragmentSource.isEmpty()) {
bool success = compile(mProgram, GL_FRAGMENT_SHADER, fragmentSource);
if (!success) {
glDeleteProgram(mProgram);
mProgram = 0;
return false;
}
}
glLinkProgram(mProgram);
// Get the program info log
int maxLength, length;
glGetProgramiv(mProgram, GL_INFO_LOG_LENGTH, &maxLength);
QByteArray log(maxLength, 0);
glGetProgramInfoLog(mProgram, maxLength, &length, log.data());
// Make sure the program linked successfully
int status;
glGetProgramiv(mProgram, GL_LINK_STATUS, &status);
if (status == 0) {
kError(1212) << "Failed to link shader:" << endl << log << endl;
glDeleteProgram(mProgram);
mProgram = 0;
return false;
} else if (length > 0)
kDebug(1212) << "Shader link log:" << log;
mValid = true;
return true;
}
void GLShader::bind()
{
glUseProgram(mProgram);
}
void GLShader::unbind()
{
glUseProgram(0);
}
void GLShader::resolveLocations()
{
if (mLocationsResolved)
return;
mMatrixLocation[TextureMatrix] = uniformLocation("textureMatrix");
mMatrixLocation[ProjectionMatrix] = uniformLocation("projection");
mMatrixLocation[ModelViewMatrix] = uniformLocation("modelview");
mMatrixLocation[WindowTransformation] = uniformLocation("windowTransformation");
mMatrixLocation[ScreenTransformation] = uniformLocation("screenTransformation");
mVec2Location[Offset] = uniformLocation("offset");
mVec4Location[ModulationConstant] = uniformLocation("modulation");
mFloatLocation[Saturation] = uniformLocation("saturation");
mLocationsResolved = true;
}
int GLShader::uniformLocation(const char *name)
{
const int location = glGetUniformLocation(mProgram, name);
return location;
}
bool GLShader::setUniform(GLShader::MatrixUniform uniform, const QMatrix4x4 &matrix)
{
resolveLocations();
return setUniform(mMatrixLocation[uniform], matrix);
}
bool GLShader::setUniform(GLShader::Vec2Uniform uniform, const QVector2D &value)
{
resolveLocations();
return setUniform(mVec2Location[uniform], value);
}
bool GLShader::setUniform(GLShader::Vec4Uniform uniform, const QVector4D &value)
{
resolveLocations();
return setUniform(mVec4Location[uniform], value);
}
bool GLShader::setUniform(GLShader::FloatUniform uniform, float value)
{
resolveLocations();
return setUniform(mFloatLocation[uniform], value);
}
bool GLShader::setUniform(GLShader::IntUniform uniform, int value)
{
resolveLocations();
return setUniform(mIntLocation[uniform], value);
}
bool GLShader::setUniform(const char *name, float value)
{
const int location = uniformLocation(name);
return setUniform(location, value);
}
bool GLShader::setUniform(const char *name, int value)
{
const int location = uniformLocation(name);
return setUniform(location, value);
}
bool GLShader::setUniform(const char *name, const QVector2D& value)
{
const int location = uniformLocation(name);
return setUniform(location, value);
}
bool GLShader::setUniform(const char *name, const QVector3D& value)
{
const int location = uniformLocation(name);
return setUniform(location, value);
}
bool GLShader::setUniform(const char *name, const QVector4D& value)
{
const int location = uniformLocation(name);
return setUniform(location, value);
}
bool GLShader::setUniform(const char *name, const QMatrix4x4& value)
{
const int location = uniformLocation(name);
return setUniform(location, value);
}
bool GLShader::setUniform(const char *name, const QColor& color)
{
const int location = uniformLocation(name);
return setUniform(location, color);
}
bool GLShader::setUniform(int location, float value)
{
if (location >= 0) {
glUniform1f(location, value);
}
return (location >= 0);
}
bool GLShader::setUniform(int location, int value)
{
if (location >= 0) {
glUniform1i(location, value);
}
return (location >= 0);
}
bool GLShader::setUniform(int location, const QVector2D &value)
{
if (location >= 0) {
glUniform2fv(location, 1, (const GLfloat*)&value);
}
return (location >= 0);
}
bool GLShader::setUniform(int location, const QVector3D &value)
{
if (location >= 0) {
glUniform3fv(location, 1, (const GLfloat*)&value);
}
return (location >= 0);
}
bool GLShader::setUniform(int location, const QVector4D &value)
{
if (location >= 0) {
glUniform4fv(location, 1, (const GLfloat*)&value);
}
return (location >= 0);
}
bool GLShader::setUniform(int location, const QMatrix4x4 &value)
{
if (location >= 0) {
GLfloat m[16];
const qreal *data = value.constData();
// i is column, j is row for m
for (int i = 0; i < 16; ++i) {
m[i] = data[i];
}
glUniformMatrix4fv(location, 1, GL_FALSE, m);
}
return (location >= 0);
}
bool GLShader::setUniform(int location, const QColor &color)
{
if (location >= 0) {
glUniform4f(location, color.redF(), color.greenF(), color.blueF(), color.alphaF());
}
return (location >= 0);
}
int GLShader::attributeLocation(const char* name)
{
int location = glGetAttribLocation(mProgram, name);
return location;
}
bool GLShader::setAttribute(const char* name, float value)
{
int location = attributeLocation(name);
if (location >= 0) {
glVertexAttrib1f(location, value);
}
return (location >= 0);
}
QMatrix4x4 GLShader::getUniformMatrix4x4(const char* name)
{
int location = uniformLocation(name);
if (location >= 0) {
GLfloat m[16];
glGetUniformfv(mProgram, location, m);
QMatrix4x4 matrix(m[0], m[4], m[8], m[12],
m[1], m[5], m[9], m[13],
m[2], m[6], m[10], m[14],
m[3], m[7], m[11], m[15]);
matrix.optimize();
return matrix;
} else {
return QMatrix4x4();
}
}
//****************************************
// ShaderManager
//****************************************
ShaderManager *ShaderManager::s_shaderManager = NULL;
ShaderManager *ShaderManager::instance()
{
if (!s_shaderManager) {
s_shaderManager = new ShaderManager();
s_shaderManager->initShaders();
s_shaderManager->m_inited = true;
}
return s_shaderManager;
}
void ShaderManager::disable()
{
// for safety do a Cleanup first
ShaderManager::cleanup();
// create a new ShaderManager and set it to inited without calling init
// that will ensure that the ShaderManager is not valid
s_shaderManager = new ShaderManager();
s_shaderManager->m_inited = true;
}
void ShaderManager::cleanup()
{
delete s_shaderManager;
s_shaderManager = NULL;
}
ShaderManager::ShaderManager()
: m_orthoShader(NULL)
, m_genericShader(NULL)
, m_colorShader(NULL)
, m_inited(false)
, m_valid(false)
{
m_debug = qstrcmp(qgetenv("KWIN_GL_DEBUG"), "1") == 0;
}
ShaderManager::~ShaderManager()
{
while (!m_boundShaders.isEmpty()) {
popShader();
}
delete m_orthoShader;
delete m_genericShader;
delete m_colorShader;
}
GLShader *ShaderManager::getBoundShader() const
{
if (m_boundShaders.isEmpty()) {
return NULL;
} else {
return m_boundShaders.top();
}
}
bool ShaderManager::isShaderBound() const
{
return !m_boundShaders.isEmpty();
}
bool ShaderManager::isValid() const
{
return m_valid;
}
bool ShaderManager::isShaderDebug() const
{
return m_debug;
}
GLShader *ShaderManager::pushShader(ShaderType type, bool reset)
{
if (m_inited && !m_valid) {
return NULL;
}
GLShader *shader;
switch(type) {
case SimpleShader:
shader = m_orthoShader;
break;
case GenericShader:
shader = m_genericShader;
break;
case ColorShader:
shader = m_colorShader;
break;
default:
return NULL;
}
pushShader(shader);
if (reset) {
resetShader(type);
}
return shader;
}
void ShaderManager::resetAllShaders()
{
if (!m_inited || !m_valid) {
return;
}
pushShader(SimpleShader, true);
pushShader(GenericShader, true);
pushShader(ColorShader, true);
popShader();
popShader();
popShader();
}
void ShaderManager::pushShader(GLShader *shader)
{
// only bind shader if it is not already bound
if (shader != getBoundShader()) {
shader->bind();
}
m_boundShaders.push(shader);
}
void ShaderManager::popShader()
{
if (m_boundShaders.isEmpty()) {
return;
}
GLShader *shader = m_boundShaders.pop();
if (m_boundShaders.isEmpty()) {
// no more shader bound - unbind
shader->unbind();
} else if (shader != m_boundShaders.top()) {
// only rebind if a different shader is on top of stack
m_boundShaders.top()->bind();
}
}
GLShader *ShaderManager::loadFragmentShader(ShaderType vertex, const QString &fragmentFile)
{
QString vertexShader;
switch(vertex) {
case SimpleShader:
vertexShader = ":/resources/scene-vertex.glsl";
break;
case GenericShader:
vertexShader = ":/resources/scene-generic-vertex.glsl";
break;
case ColorShader:
vertexShader = ":/resources/scene-color-vertex.glsl";
break;
}
GLShader *shader = new GLShader(vertexShader, fragmentFile);
if (shader->isValid()) {
pushShader(shader);
resetShader(vertex);
popShader();
}
return shader;
}
GLShader *ShaderManager::loadVertexShader(ShaderType fragment, const QString &vertexFile)
{
QString fragmentShader;
switch(fragment) {
// Simple and Generic Shader use same fragment Shader
case SimpleShader:
case GenericShader:
fragmentShader = ":/resources/scene-fragment.glsl";
break;
case ColorShader:
fragmentShader = ":/resources/scene-color-fragment.glsl";
break;
}
GLShader *shader = new GLShader(vertexFile, fragmentShader);
if (shader->isValid()) {
pushShader(shader);
resetShader(fragment);
popShader();
}
return shader;
}
GLShader *ShaderManager::loadShaderFromCode(const QByteArray &vertexSource, const QByteArray &fragmentSource)
{
GLShader *shader = new GLShader();
shader->load(vertexSource, fragmentSource);
return shader;
}
void ShaderManager::initShaders()
{
m_orthoShader = new GLShader(":/resources/scene-vertex.glsl", ":/resources/scene-fragment.glsl");
if (m_orthoShader->isValid()) {
pushShader(SimpleShader, true);
popShader();
kDebug(1212) << "Ortho Shader is valid";
} else {
delete m_orthoShader;
m_orthoShader = NULL;
kDebug(1212) << "Orho Shader is not valid";
return;
}
m_genericShader = new GLShader(":/resources/scene-generic-vertex.glsl", ":/resources/scene-fragment.glsl");
if (m_genericShader->isValid()) {
pushShader(GenericShader, true);
popShader();
kDebug(1212) << "Generic Shader is valid";
} else {
delete m_genericShader;
m_genericShader = NULL;
delete m_orthoShader;
m_orthoShader = NULL;
kDebug(1212) << "Generic Shader is not valid";
return;
}
m_colorShader = new GLShader(":/resources/scene-color-vertex.glsl", ":/resources/scene-color-fragment.glsl");
if (m_colorShader->isValid()) {
pushShader(ColorShader, true);
popShader();
kDebug(1212) << "Color Shader is valid";
} else {
delete m_genericShader;
m_genericShader = NULL;
delete m_orthoShader;
m_orthoShader = NULL;
delete m_colorShader;
m_colorShader = NULL;
kDebug(1212) << "Color Scene Shader is not valid";
return;
}
m_valid = true;
}
void ShaderManager::resetShader(ShaderType type)
{
// resetShader is either called from init or from push, we know that a built-in shader is bound
const QMatrix4x4 identity;
QMatrix4x4 projection;
QMatrix4x4 modelView;
GLShader *shader = getBoundShader();
switch(type) {
case SimpleShader:
projection.ortho(0, displayWidth(), displayHeight(), 0, 0, 65535);
break;
case GenericShader: {
// Set up the projection matrix
float fovy = 60.0f;
float aspect = 1.0f;
float zNear = 0.1f;
float zFar = 100.0f;
float ymax = zNear * tan(fovy * M_PI / 360.0f);
float ymin = -ymax;
float xmin = ymin * aspect;
float xmax = ymax * aspect;
projection.frustum(xmin, xmax, ymin, ymax, zNear, zFar);
// Set up the model-view matrix
float scaleFactor = 1.1 * tan(fovy * M_PI / 360.0f) / ymax;
modelView.translate(xmin * scaleFactor, ymax * scaleFactor, -1.1);
modelView.scale((xmax - xmin)*scaleFactor / displayWidth(), -(ymax - ymin)*scaleFactor / displayHeight(), 0.001);
break;
}
case ColorShader:
projection.ortho(0, displayWidth(), displayHeight(), 0, 0, 65535);
shader->setUniform("geometryColor", QVector4D(0, 0, 0, 1));
break;
}
shader->setUniform("sampler", 0);
shader->setUniform(GLShader::ProjectionMatrix, projection);
shader->setUniform(GLShader::ModelViewMatrix, modelView);
shader->setUniform(GLShader::ScreenTransformation, identity);
shader->setUniform(GLShader::WindowTransformation, identity);
shader->setUniform(GLShader::Offset, QVector2D(0, 0));
shader->setUniform(GLShader::ModulationConstant, QVector4D(1.0, 1.0, 1.0, 1.0));
shader->setUniform(GLShader::Saturation, 1.0f);
}
/*** GLRenderTarget ***/
bool GLRenderTarget::sSupported = false;
bool GLRenderTarget::s_blitSupported = false;
QStack<GLRenderTarget*> GLRenderTarget::s_renderTargets = QStack<GLRenderTarget*>();
QSize GLRenderTarget::s_oldViewport;
void GLRenderTarget::initStatic()
{
#ifdef KWIN_HAVE_OPENGLES
sSupported = true;
s_blitSupported = false;
#else
sSupported = hasGLExtension("GL_EXT_framebuffer_object") && glFramebufferTexture2D;
s_blitSupported = hasGLExtension("GL_EXT_framebuffer_blit");
#endif
}
bool GLRenderTarget::isRenderTargetBound()
{
return !s_renderTargets.isEmpty();
}
bool GLRenderTarget::blitSupported()
{
return s_blitSupported;
}
void GLRenderTarget::pushRenderTarget(GLRenderTarget* target)
{
if (s_renderTargets.isEmpty()) {
GLint params[4];
glGetIntegerv(GL_VIEWPORT, params);
s_oldViewport = QSize(params[2], params[3]);
}
target->enable();
s_renderTargets.push(target);
}
GLRenderTarget* GLRenderTarget::popRenderTarget()
{
GLRenderTarget* ret = s_renderTargets.pop();
ret->disable();
if (!s_renderTargets.isEmpty()) {
s_renderTargets.top()->enable();
} else if (!s_oldViewport.isEmpty()) {
glViewport (0, 0, s_oldViewport.width(), s_oldViewport.height());
}
return ret;
}
GLRenderTarget::GLRenderTarget(const GLTexture& color)
{
// Reset variables
mValid = false;
mTexture = color;
// Make sure FBO is supported
if (sSupported && !mTexture.isNull()) {
initFBO();
} else
kError(1212) << "Render targets aren't supported!" << endl;
}
GLRenderTarget::~GLRenderTarget()
{
if (mValid) {
glDeleteFramebuffers(1, &mFramebuffer);
}
}
bool GLRenderTarget::enable()
{
if (!valid()) {
kError(1212) << "Can't enable invalid render target!" << endl;
return false;
}
glBindFramebuffer(GL_FRAMEBUFFER, mFramebuffer);
glViewport(0, 0, mTexture.width(), mTexture.height());
mTexture.setDirty();
return true;
}
bool GLRenderTarget::disable()
{
if (!valid()) {
kError(1212) << "Can't disable invalid render target!" << endl;
return false;
}
glBindFramebuffer(GL_FRAMEBUFFER, 0);
mTexture.setDirty();
return true;
}
static QString formatFramebufferStatus(GLenum status)
{
switch(status) {
case GL_FRAMEBUFFER_INCOMPLETE_ATTACHMENT:
// An attachment is the wrong type / is invalid / has 0 width or height
return "GL_FRAMEBUFFER_INCOMPLETE_ATTACHMENT";
case GL_FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:
// There are no images attached to the framebuffer
return "GL_FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";
case GL_FRAMEBUFFER_UNSUPPORTED:
// A format or the combination of formats of the attachments is unsupported
return "GL_FRAMEBUFFER_UNSUPPORTED";
#ifndef KWIN_HAVE_OPENGLES
case GL_FRAMEBUFFER_INCOMPLETE_DIMENSIONS_EXT:
// Not all attached images have the same width and height
return "GL_FRAMEBUFFER_INCOMPLETE_DIMENSIONS_EXT";
case GL_FRAMEBUFFER_INCOMPLETE_FORMATS_EXT:
// The color attachments don't have the same format
return "GL_FRAMEBUFFER_INCOMPLETE_FORMATS_EXT";
case GL_FRAMEBUFFER_INCOMPLETE_MULTISAMPLE_EXT:
// The attachments don't have the same number of samples
return "GL_FRAMEBUFFER_INCOMPLETE_MULTISAMPLE";
case GL_FRAMEBUFFER_INCOMPLETE_DRAW_BUFFER_EXT:
// The draw buffer is missing
return "GL_FRAMEBUFFER_INCOMPLETE_DRAW_BUFFER";
case GL_FRAMEBUFFER_INCOMPLETE_READ_BUFFER_EXT:
// The read buffer is missing
return "GL_FRAMEBUFFER_INCOMPLETE_READ_BUFFER";
#endif
default:
return "Unknown (0x" + QString::number(status, 16) + ')';
}
}
void GLRenderTarget::initFBO()
{
#if DEBUG_GLRENDERTARGET
GLenum err = glGetError();
if (err != GL_NO_ERROR)
kError(1212) << "Error status when entering GLRenderTarget::initFBO: " << formatGLError(err);
#endif
glGenFramebuffers(1, &mFramebuffer);
#if DEBUG_GLRENDERTARGET
if ((err = glGetError()) != GL_NO_ERROR) {
kError(1212) << "glGenFramebuffers failed: " << formatGLError(err);
return;
}
#endif
glBindFramebuffer(GL_FRAMEBUFFER, mFramebuffer);
#if DEBUG_GLRENDERTARGET
if ((err = glGetError()) != GL_NO_ERROR) {
kError(1212) << "glBindFramebuffer failed: " << formatGLError(err);
glDeleteFramebuffers(1, &mFramebuffer);
return;
}
#endif
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0,
mTexture.target(), mTexture.texture(), 0);
#if DEBUG_GLRENDERTARGET
if ((err = glGetError()) != GL_NO_ERROR) {
kError(1212) << "glFramebufferTexture2D failed: " << formatGLError(err);
glBindFramebuffer(GL_FRAMEBUFFER, 0);
glDeleteFramebuffers(1, &mFramebuffer);
return;
}
#endif
const GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
glBindFramebuffer(GL_FRAMEBUFFER, 0);
if (status != GL_FRAMEBUFFER_COMPLETE) {
// We have an incomplete framebuffer, consider it invalid
if (status == 0)
kError(1212) << "glCheckFramebufferStatus failed: " << formatGLError(glGetError());
else
kError(1212) << "Invalid framebuffer status: " << formatFramebufferStatus(status);
glDeleteFramebuffers(1, &mFramebuffer);
return;
}
mValid = true;
}
void GLRenderTarget::blitFromFramebuffer(const QRect &source, const QRect &destination, GLenum filter)
{
if (!GLRenderTarget::blitSupported()) {
return;
}
#ifdef KWIN_HAVE_OPENGLES
Q_UNUSED(source)
Q_UNUSED(destination)
Q_UNUSED(filter)
#else
GLRenderTarget::pushRenderTarget(this);
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, mFramebuffer);
glBindFramebuffer(GL_READ_FRAMEBUFFER, 0);
const QRect s = source.isNull() ? QRect(0, 0, displayWidth(), displayHeight()) : source;
const QRect d = destination.isNull() ? QRect(0, 0, mTexture.width(), mTexture.height()) : destination;
glBlitFramebuffer(s.x(), displayHeight() - s.y() - s.height(), s.x() + s.width(), displayHeight() - s.y(),
d.x(), mTexture.height() - d.y() - d.height(), d.x() + d.width(), mTexture.height() - d.y(),
GL_COLOR_BUFFER_BIT, filter);
GLRenderTarget::popRenderTarget();
#endif
}
void GLRenderTarget::attachTexture(const GLTexture& target)
{
if (!mValid || mTexture.texture() == target.texture()) {
return;
}
pushRenderTarget(this);
mTexture = target;
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0,
mTexture.target(), mTexture.texture(), 0);
popRenderTarget();
}
//*********************************
// GLVertexBufferPrivate
//*********************************
class GLVertexBufferPrivate
{
public:
GLVertexBufferPrivate(GLVertexBuffer::UsageHint usageHint)
: vertexCount(0)
, dimension(2)
, useColor(false)
, useTexCoords(true)
, color(0, 0, 0, 255) {
if (GLVertexBufferPrivate::supported) {
glGenBuffers(2, buffers);
}
switch(usageHint) {
case GLVertexBuffer::Dynamic:
usage = GL_DYNAMIC_DRAW;
break;
case GLVertexBuffer::Static:
usage = GL_STATIC_DRAW;
break;
default:
usage = GL_STREAM_DRAW;
break;
}
}
~GLVertexBufferPrivate() {
if (GLVertexBufferPrivate::supported) {
glDeleteBuffers(2, buffers);
}
}
GLuint buffers[2];
GLenum usage;
int vertexCount;
int dimension;
static bool supported;
static GLVertexBuffer *streamingBuffer;
QVector<float> legacyVertices;
QVector<float> legacyTexCoords;
bool useColor;
bool useTexCoords;
QColor color;
//! VBO is not supported
void legacyPainting(QRegion region, GLenum primitiveMode, bool hardwareClipping);
//! VBO and shaders are both supported
void corePainting(const QRegion& region, GLenum primitiveMode, bool hardwareClipping);
//! VBO is supported, but shaders are not supported
void fallbackPainting(const QRegion& region, GLenum primitiveMode, bool hardwareClipping);
};
bool GLVertexBufferPrivate::supported = false;
GLVertexBuffer *GLVertexBufferPrivate::streamingBuffer = NULL;
void GLVertexBufferPrivate::legacyPainting(QRegion region, GLenum primitiveMode, bool hardwareClipping)
{
#ifndef KWIN_HAVE_OPENGL_1
Q_UNUSED(region)
Q_UNUSED(primitiveMode)
Q_UNUSED(hardwareClipping)
#else
// Enable arrays
glEnableClientState(GL_VERTEX_ARRAY);
glVertexPointer(dimension, GL_FLOAT, 0, legacyVertices.constData());
if (!legacyTexCoords.isEmpty()) {
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glTexCoordPointer(2, GL_FLOAT, 0, legacyTexCoords.constData());
}
if (useColor) {
glColor4f(color.redF(), color.greenF(), color.blueF(), color.alphaF());
}
if (!hardwareClipping) {
glDrawArrays(primitiveMode, 0, vertexCount);
} else {
foreach (const QRect& r, region.rects()) {
glScissor(r.x(), displayHeight() - r.y() - r.height(), r.width(), r.height());
glDrawArrays(primitiveMode, 0, vertexCount);
}
}
glDisableClientState(GL_VERTEX_ARRAY);
if (!legacyTexCoords.isEmpty()) {
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
}
#endif
}
void GLVertexBufferPrivate::corePainting(const QRegion& region, GLenum primitiveMode, bool hardwareClipping)
{
GLShader *shader = ShaderManager::instance()->getBoundShader();
GLint vertexAttrib = shader->attributeLocation("vertex");
GLint texAttrib = shader->attributeLocation("texCoord");
glEnableVertexAttribArray(vertexAttrib);
if (useTexCoords) {
glEnableVertexAttribArray(texAttrib);
}
if (useColor) {
shader->setUniform("geometryColor", color);
}
glBindBuffer(GL_ARRAY_BUFFER, buffers[ 0 ]);
glVertexAttribPointer(vertexAttrib, dimension, GL_FLOAT, GL_FALSE, 0, 0);
if (texAttrib != -1 && useTexCoords) {
glBindBuffer(GL_ARRAY_BUFFER, buffers[ 1 ]);
glVertexAttribPointer(texAttrib, 2, GL_FLOAT, GL_FALSE, 0, 0);
}
if (!hardwareClipping) {
glDrawArrays(primitiveMode, 0, vertexCount);
} else {
foreach (const QRect& r, region.rects()) {
glScissor(r.x(), displayHeight() - r.y() - r.height(), r.width(), r.height());
glDrawArrays(primitiveMode, 0, vertexCount);
}
}
glBindBuffer(GL_ARRAY_BUFFER, 0);
if (useTexCoords) {
glDisableVertexAttribArray(texAttrib);
}
glDisableVertexAttribArray(vertexAttrib);
}
void GLVertexBufferPrivate::fallbackPainting(const QRegion& region, GLenum primitiveMode, bool hardwareClipping)
{
#ifndef KWIN_HAVE_OPENGL_1
Q_UNUSED(region)
Q_UNUSED(primitiveMode)
Q_UNUSED(hardwareClipping)
#else
glEnableClientState(GL_VERTEX_ARRAY);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glBindBuffer(GL_ARRAY_BUFFER, buffers[ 0 ]);
glVertexPointer(dimension, GL_FLOAT, 0, 0);
glBindBuffer(GL_ARRAY_BUFFER, buffers[ 1 ]);
glTexCoordPointer(2, GL_FLOAT, 0, 0);
if (useColor) {
glColor4f(color.redF(), color.greenF(), color.blueF(), color.alphaF());
}
// Clip using scissoring
if (!hardwareClipping) {
glDrawArrays(primitiveMode, 0, vertexCount);
} else {
foreach (const QRect& r, region.rects()) {
glScissor(r.x(), displayHeight() - r.y() - r.height(), r.width(), r.height());
glDrawArrays(primitiveMode, 0, vertexCount);
}
}
glBindBuffer(GL_ARRAY_BUFFER, 0);
glDisableClientState(GL_VERTEX_ARRAY);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
#endif
}
//*********************************
// GLVertexBuffer
//*********************************
GLVertexBuffer::GLVertexBuffer(UsageHint hint)
: d(new GLVertexBufferPrivate(hint))
{
}
GLVertexBuffer::~GLVertexBuffer()
{
delete d;
}
void GLVertexBuffer::setData(int vertexCount, int dim, const float* vertices, const float* texcoords)
{
d->vertexCount = vertexCount;
d->dimension = dim;
d->useTexCoords = (texcoords != NULL);
if (!GLVertexBufferPrivate::supported) {
// legacy data
d->legacyVertices.clear();
d->legacyVertices.reserve(vertexCount * dim);
for (int i = 0; i < vertexCount * dim; ++i) {
d->legacyVertices << vertices[i];
}
d->legacyTexCoords.clear();
if (d->useTexCoords) {
d->legacyTexCoords.reserve(vertexCount * 2);
for (int i = 0; i < vertexCount * 2; ++i) {
d->legacyTexCoords << texcoords[i];
}
}
return;
}
glBindBuffer(GL_ARRAY_BUFFER, d->buffers[ 0 ]);
glBufferData(GL_ARRAY_BUFFER, sizeof(GLfloat)*vertexCount * d->dimension, vertices, d->usage);
if (d->useTexCoords) {
glBindBuffer(GL_ARRAY_BUFFER, d->buffers[ 1 ]);
glBufferData(GL_ARRAY_BUFFER, sizeof(GLfloat)*vertexCount * 2, texcoords, d->usage);
}
glBindBuffer(GL_ARRAY_BUFFER, 0);
}
void GLVertexBuffer::render(GLenum primitiveMode)
{
render(infiniteRegion(), primitiveMode, false);
}
void GLVertexBuffer::render(const QRegion& region, GLenum primitiveMode, bool hardwareClipping)
{
if (!GLVertexBufferPrivate::supported) {
d->legacyPainting(region, primitiveMode, hardwareClipping);
} else if (ShaderManager::instance()->isShaderBound()) {
d->corePainting(region, primitiveMode, hardwareClipping);
} else {
d->fallbackPainting(region, primitiveMode, hardwareClipping);
}
}
bool GLVertexBuffer::isSupported()
{
return GLVertexBufferPrivate::supported;
}
bool GLVertexBuffer::isUseColor() const
{
return d->useColor;
}
void GLVertexBuffer::setUseColor(bool enable)
{
d->useColor = enable;
}
void GLVertexBuffer::setColor(const QColor& color, bool enable)
{
d->useColor = enable;
d->color = color;
}
void GLVertexBuffer::reset()
{
d->useColor = false;
d->color = QColor(0, 0, 0, 255);
d->vertexCount = 0;
d->dimension = 2;
d->useTexCoords = true;
}
void GLVertexBuffer::initStatic()
{
#ifdef KWIN_HAVE_OPENGLES
GLVertexBufferPrivate::supported = true;
#else
GLVertexBufferPrivate::supported = hasGLExtension("GL_ARB_vertex_buffer_object");
#endif
GLVertexBufferPrivate::streamingBuffer = new GLVertexBuffer(GLVertexBuffer::Stream);
}
GLVertexBuffer *GLVertexBuffer::streamingBuffer()
{
return GLVertexBufferPrivate::streamingBuffer;
}
} // namespace