kwin/scene.h
Casian Andrei 01adbe6dc5 Implement color correction (per output)
Add an option to kcmcompositing in the 'Advanced' tab, to enable or
disable color correction. It is specified that it's experimental and it
needs Kolor Manager.

Before painting for a particular screen, ColorCorrection::setupForOutput
should be called.

A screen property is added for WindowPaintData.

In kwinglutils, The fragment shaders are intercepted before being
compiled and they get a couple of lines of code inserted in order to do
the color correction. This happens only when color correction is enabled, of
course.

For D-Bus communication with KolorServer, everything is async.

The implementation basically manages a set of color lookup tables for
different outputs and for different window regions. These are taken via
D-Bus. Each lookup table has around 700 KB.

This commit reintroduces the changes from the former merge with the
"color2" branch. In this form, it can be easily reverted.

REVIEW: 106141
2012-11-13 22:47:09 +02:00

330 lines
10 KiB
C++

/********************************************************************
KWin - the KDE window manager
This file is part of the KDE project.
Copyright (C) 2006 Lubos Lunak <l.lunak@kde.org>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*********************************************************************/
#ifndef KWIN_SCENE_H
#define KWIN_SCENE_H
#include "toplevel.h"
#include "utils.h"
#include "kwineffects.h"
namespace KWin
{
class Workspace;
class Deleted;
class EffectFrameImpl;
class EffectWindowImpl;
class OverlayWindow;
class Shadow;
// The base class for compositing backends.
class Scene : public QObject
{
Q_OBJECT
public:
Scene(Workspace* ws);
virtual ~Scene() = 0;
class EffectFrame;
class Window;
// Returns true if the ctor failed to properly initialize.
virtual bool initFailed() const = 0;
virtual CompositingType compositingType() const = 0;
virtual bool hasPendingFlush() const { return false; }
// Repaints the given screen areas, windows provides the stacking order.
// The entry point for the main part of the painting pass.
// returns the time since the last vblank signal - if there's one
// ie. "what of this frame is lost to painting"
virtual int paint(QRegion damage, ToplevelList windows) = 0;
// Notification function - KWin core informs about changes.
// Used to mainly discard cached data.
// a new window has been created
virtual void windowAdded(Toplevel*) = 0;
/**
* Method invoked when the screen geometry is changed.
* Reimplementing classes should also invoke the parent method
* as it takes care of resizing the overlay window.
* @param size The new screen geometry size
**/
virtual void screenGeometryChanged(const QSize &size);
// Flags controlling how painting is done.
enum {
// Window (or at least part of it) will be painted opaque.
PAINT_WINDOW_OPAQUE = 1 << 0,
// Window (or at least part of it) will be painted translucent.
PAINT_WINDOW_TRANSLUCENT = 1 << 1,
// Window will be painted with transformed geometry.
PAINT_WINDOW_TRANSFORMED = 1 << 2,
// Paint only a region of the screen (can be optimized, cannot
// be used together with TRANSFORMED flags).
PAINT_SCREEN_REGION = 1 << 3,
// Whole screen will be painted with transformed geometry.
PAINT_SCREEN_TRANSFORMED = 1 << 4,
// At least one window will be painted with transformed geometry.
PAINT_SCREEN_WITH_TRANSFORMED_WINDOWS = 1 << 5,
// Clear whole background as the very first step, without optimizing it
PAINT_SCREEN_BACKGROUND_FIRST = 1 << 6,
// PAINT_DECORATION_ONLY = 1 << 7 has been removed
// Window will be painted with a lanczos filter.
PAINT_WINDOW_LANCZOS = 1 << 8
// PAINT_SCREEN_WITH_TRANSFORMED_WINDOWS_WITHOUT_FULL_REPAINTS = 1 << 9 has been removed
};
// types of filtering available
enum ImageFilterType { ImageFilterFast, ImageFilterGood };
// there's nothing to paint (adjust time_diff later)
virtual void idle();
virtual bool waitSyncAvailable() const;
virtual OverlayWindow* overlayWindow() = 0;
public Q_SLOTS:
// a window has been destroyed
virtual void windowDeleted(KWin::Deleted*) = 0;
// opacity of a window changed
virtual void windowOpacityChanged(KWin::Toplevel* c) = 0;
// shape/size of a window changed
virtual void windowGeometryShapeChanged(KWin::Toplevel* c) = 0;
// a window has been closed
virtual void windowClosed(KWin::Toplevel* c, KWin::Deleted* deleted) = 0;
protected:
// shared implementation, starts painting the screen
void paintScreen(int* mask, QRegion* region);
friend class EffectsHandlerImpl;
// called after all effects had their paintScreen() called
void finalPaintScreen(int mask, QRegion region, ScreenPaintData& data);
// shared implementation of painting the screen in the generic
// (unoptimized) way
virtual void paintGenericScreen(int mask, ScreenPaintData data);
// shared implementation of painting the screen in an optimized way
virtual void paintSimpleScreen(int mask, QRegion region);
// paint the background (not the desktop background - the whole background)
virtual void paintBackground(QRegion region) = 0;
// called after all effects had their paintWindow() called
void finalPaintWindow(EffectWindowImpl* w, int mask, QRegion region, WindowPaintData& data);
// shared implementation, starts painting the window
virtual void paintWindow(Window* w, int mask, QRegion region, WindowQuadList quads);
// called after all effects had their drawWindow() called
virtual void finalDrawWindow(EffectWindowImpl* w, int mask, QRegion region, WindowPaintData& data);
// compute time since the last repaint
void updateTimeDiff();
// saved data for 2nd pass of optimized screen painting
struct Phase2Data {
Phase2Data(Window* w, QRegion r, QRegion c, int m, const WindowQuadList& q)
: window(w), region(r), clip(c), mask(m), quads(q) {}
Phase2Data() {
window = 0;
mask = 0;
}
Window* window;
QRegion region;
QRegion clip;
int mask;
WindowQuadList quads;
};
// windows in their stacking order
QVector< Window* > stacking_order;
// The region which actually has been painted by paintScreen() and should be
// copied from the buffer to the screen. I.e. the region returned from Scene::paintScreen().
// Since prePaintWindow() can extend areas to paint, these changes would have to propagate
// up all the way from paintSimpleScreen() up to paintScreen(), so save them here rather
// than propagate them up in arguments.
QRegion painted_region;
// time since last repaint
int time_diff;
QElapsedTimer last_time;
Workspace* wspace;
};
// The base class for windows representations in composite backends
class Scene::Window
{
public:
Window(Toplevel* c);
virtual ~Window();
// perform the actual painting of the window
virtual void performPaint(int mask, QRegion region, WindowPaintData data) = 0;
// do any cleanup needed when the window's composite pixmap is discarded
virtual void pixmapDiscarded() {}
int x() const;
int y() const;
int width() const;
int height() const;
QRect geometry() const;
QPoint pos() const;
QSize size() const;
QRect rect() const;
// access to the internal window class
// TODO eventually get rid of this
Toplevel* window();
// should the window be painted
bool isPaintingEnabled() const;
void resetPaintingEnabled();
// Flags explaining why painting should be disabled
enum {
// Window will not be painted
PAINT_DISABLED = 1 << 0,
// Window will not be painted because it is deleted
PAINT_DISABLED_BY_DELETE = 1 << 1,
// Window will not be painted because of which desktop it's on
PAINT_DISABLED_BY_DESKTOP = 1 << 2,
// Window will not be painted because it is minimized
PAINT_DISABLED_BY_MINIMIZE = 1 << 3,
// Window will not be painted because it is not the active window in a client group
PAINT_DISABLED_BY_TAB_GROUP = 1 << 4,
// Window will not be painted because it's not on the current activity
PAINT_DISABLED_BY_ACTIVITY = 1 << 5
};
void enablePainting(int reason);
void disablePainting(int reason);
// is the window visible at all
bool isVisible() const;
// is the window fully opaque
bool isOpaque() const;
// shape of the window
const QRegion &shape() const;
QRegion clientShape() const;
void discardShape();
void updateToplevel(Toplevel* c);
// creates initial quad list for the window
virtual WindowQuadList buildQuads(bool force = false) const;
void suspendUnredirect(bool suspend);
void updateShadow(Shadow* shadow);
const Shadow* shadow() const;
Shadow* shadow();
protected:
WindowQuadList makeQuads(WindowQuadType type, const QRegion& reg) const;
Toplevel* toplevel;
ImageFilterType filter;
Shadow *m_shadow;
private:
int disable_painting;
mutable QRegion shape_region;
mutable bool shape_valid;
mutable WindowQuadList* cached_quad_list;
Q_DISABLE_COPY(Window)
};
class Scene::EffectFrame
{
public:
EffectFrame(EffectFrameImpl* frame);
virtual ~EffectFrame();
virtual void render(QRegion region, double opacity, double frameOpacity) = 0;
virtual void free() = 0;
virtual void freeIconFrame() = 0;
virtual void freeTextFrame() = 0;
virtual void freeSelection() = 0;
virtual void crossFadeIcon() = 0;
virtual void crossFadeText() = 0;
protected:
EffectFrameImpl* m_effectFrame;
};
inline
int Scene::Window::x() const
{
return toplevel->x();
}
inline
int Scene::Window::y() const
{
return toplevel->y();
}
inline
int Scene::Window::width() const
{
return toplevel->width();
}
inline
int Scene::Window::height() const
{
return toplevel->height();
}
inline
QRect Scene::Window::geometry() const
{
return toplevel->geometry();
}
inline
QSize Scene::Window::size() const
{
return toplevel->size();
}
inline
QPoint Scene::Window::pos() const
{
return toplevel->pos();
}
inline
QRect Scene::Window::rect() const
{
return toplevel->rect();
}
inline
Toplevel* Scene::Window::window()
{
return toplevel;
}
inline
void Scene::Window::updateToplevel(Toplevel* c)
{
toplevel = c;
}
inline
void Scene::Window::suspendUnredirect(bool suspend)
{
toplevel->suspendUnredirect(suspend);
}
inline
void Scene::Window::updateShadow(Shadow* shadow)
{
m_shadow = shadow;
}
inline
const Shadow* Scene::Window::shadow() const
{
return m_shadow;
}
inline
Shadow* Scene::Window::shadow()
{
return m_shadow;
}
} // namespace
#endif