kwin/scene_opengl.cpp
Fredrik Höglund 32e9de1e23 Refactor the swap completion interface
Move the buffer-swap-pending state from the compositing backends to
the Compositor class. The Compositor is the only class that needs to
access the state, and this way it to do it without calling through
a chain of virtual functions. This commit adds two new functions to
Compositor; aboutToSwapBuffers() and bufferSwapComplete(). The
backends call these functions to set and reset the buffer-swap-pending
state.

This commit also renames a number of functions and variables to make
their meaning clear.

The act of promoting the contents of the back buffer to become the
contents of the front buffer is referred to as posting the buffer,
presenting the buffer, or swapping the buffers; rendering the buffer
is what paintScreen() does.
2014-09-18 20:21:20 +02:00

2076 lines
69 KiB
C++

/********************************************************************
KWin - the KDE window manager
This file is part of the KDE project.
Copyright (C) 2006 Lubos Lunak <l.lunak@kde.org>
Copyright (C) 2009, 2010, 2011 Martin Gräßlin <mgraesslin@kde.org>
Based on glcompmgr code by Felix Bellaby.
Using code from Compiz and Beryl.
Explicit command stream synchronization based on the sample
implementation by James Jones <jajones@nvidia.com>,
Copyright © 2011 NVIDIA Corporation
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*********************************************************************/
#include "scene_opengl.h"
#ifdef KWIN_HAVE_EGL
#include "eglonxbackend.h"
// for Wayland
#if HAVE_WAYLAND_EGL
#include "egl_wayland_backend.h"
#endif
#endif
#ifndef KWIN_HAVE_OPENGLES
#include "glxbackend.h"
#endif
#include <kwinglcolorcorrection.h>
#include <kwinglplatform.h>
#include "utils.h"
#include "client.h"
#include "composite.h"
#include "deleted.h"
#include "effects.h"
#include "lanczosfilter.h"
#include "main.h"
#include "overlaywindow.h"
#include "paintredirector.h"
#include "screens.h"
#include "workspace.h"
#include <cmath>
#include <unistd.h>
#include <stddef.h>
// turns on checks for opengl errors in various places (for easier finding of them)
// normally only few of them are enabled
//#define CHECK_GL_ERROR
#include <qpainter.h>
#include <QDBusConnection>
#include <QDBusConnectionInterface>
#include <QDBusInterface>
#include <QGraphicsScale>
#include <QStringList>
#include <QVector2D>
#include <QVector4D>
#include <QMatrix4x4>
#include <KLocalizedString>
#include <KNotification>
#include <KProcess>
namespace KWin
{
extern int currentRefreshRate();
/**
* SyncObject represents a fence used to synchronize operations in
* the kwin command stream with operations in the X command stream.
*/
class SyncObject
{
public:
enum State { Ready, TriggerSent, Waiting, Done, Resetting };
SyncObject();
~SyncObject();
State state() const { return m_state; }
void trigger();
void wait();
bool finish();
void reset();
void finishResetting();
private:
State m_state;
GLsync m_sync;
xcb_sync_fence_t m_fence;
xcb_get_input_focus_cookie_t m_reset_cookie;
};
SyncObject::SyncObject()
{
m_state = Ready;
xcb_connection_t * const c = connection();
m_fence = xcb_generate_id(c);
xcb_sync_create_fence(c, rootWindow(), m_fence, false);
xcb_flush(c);
m_sync = glImportSyncEXT(GL_SYNC_X11_FENCE_EXT, m_fence, 0);
}
SyncObject::~SyncObject()
{
xcb_sync_destroy_fence(connection(), m_fence);
glDeleteSync(m_sync);
if (m_state == Resetting)
xcb_discard_reply(connection(), m_reset_cookie.sequence);
}
void SyncObject::trigger()
{
assert(m_state == Ready || m_state == Resetting);
// Finish resetting the fence if necessary
if (m_state == Resetting)
finishResetting();
xcb_sync_trigger_fence(connection(), m_fence);
m_state = TriggerSent;
}
void SyncObject::wait()
{
if (m_state != TriggerSent)
return;
glWaitSync(m_sync, 0, GL_TIMEOUT_IGNORED);
m_state = Waiting;
}
bool SyncObject::finish()
{
if (m_state == Done)
return true;
// Note: It is possible that we never inserted a wait for the fence.
// This can happen if we ended up not rendering the damaged
// window because it is fully occluded.
assert(m_state == TriggerSent || m_state == Waiting);
// Check if the fence is signaled
GLint value;
glGetSynciv(m_sync, GL_SYNC_STATUS, 1, nullptr, &value);
if (value != GL_SIGNALED) {
qDebug() << "Waiting for X fence to finish";
// Wait for the fence to become signaled with a one second timeout
const GLenum result = glClientWaitSync(m_sync, 0, 1000000000);
switch (result) {
case GL_TIMEOUT_EXPIRED:
qWarning() << "Timeout while waiting for X fence";
return false;
case GL_WAIT_FAILED:
qWarning() << "glClientWaitSync() failed";
return false;
}
}
m_state = Done;
return true;
}
void SyncObject::reset()
{
assert(m_state == Done);
xcb_connection_t * const c = connection();
// Send the reset request along with a sync request.
// We use the cookie to ensure that the server has processed the reset
// request before we trigger the fence and call glWaitSync().
// Otherwise there is a race condition between the reset finishing and
// the glWaitSync() call.
xcb_sync_reset_fence(c, m_fence);
m_reset_cookie = xcb_get_input_focus(c);
xcb_flush(c);
m_state = Resetting;
}
void SyncObject::finishResetting()
{
assert(m_state == Resetting);
free(xcb_get_input_focus_reply(connection(), m_reset_cookie, nullptr));
m_state = Ready;
}
// -----------------------------------------------------------------------
/**
* SyncManager manages a set of fences used for explicit synchronization
* with the X command stream.
*/
class SyncManager
{
public:
enum { MaxFences = 4 };
SyncManager();
~SyncManager();
SyncObject *nextFence();
bool updateFences();
private:
std::array<SyncObject, MaxFences> m_fences;
int m_next;
};
SyncManager::SyncManager()
: m_next(0)
{
}
SyncManager::~SyncManager()
{
}
SyncObject *SyncManager::nextFence()
{
SyncObject *fence = &m_fences[m_next];
m_next = (m_next + 1) % MaxFences;
return fence;
}
bool SyncManager::updateFences()
{
for (int i = 0; i < qMin(2, MaxFences - 1); i++) {
const int index = (m_next + i) % MaxFences;
SyncObject &fence = m_fences[index];
switch (fence.state()) {
case SyncObject::Ready:
break;
case SyncObject::TriggerSent:
case SyncObject::Waiting:
if (!fence.finish())
return false;
fence.reset();
break;
// Should not happen in practice since we always reset the fence
// after finishing it
case SyncObject::Done:
fence.reset();
break;
case SyncObject::Resetting:
fence.finishResetting();
break;
}
}
return true;
}
// -----------------------------------------------------------------------
//****************************************
// SceneOpenGL
//****************************************
OpenGLBackend::OpenGLBackend()
: m_syncsToVBlank(false)
, m_blocksForRetrace(false)
, m_directRendering(false)
, m_haveBufferAge(false)
, m_failed(false)
{
}
OpenGLBackend::~OpenGLBackend()
{
}
void OpenGLBackend::setFailed(const QString &reason)
{
qWarning() << "Creating the OpenGL rendering failed: " << reason;
m_failed = true;
}
void OpenGLBackend::idle()
{
if (hasPendingFlush()) {
effects->makeOpenGLContextCurrent();
present();
}
}
void OpenGLBackend::addToDamageHistory(const QRegion &region)
{
if (m_damageHistory.count() > 10)
m_damageHistory.removeLast();
m_damageHistory.prepend(region);
}
QRegion OpenGLBackend::accumulatedDamageHistory(int bufferAge) const
{
QRegion region;
// Note: An age of zero means the buffer contents are undefined
if (bufferAge > 0 && bufferAge <= m_damageHistory.count()) {
for (int i = 0; i < bufferAge - 1; i++)
region |= m_damageHistory[i];
} else {
region = QRegion(0, 0, displayWidth(), displayHeight());
}
return region;
}
OverlayWindow* OpenGLBackend::overlayWindow()
{
return NULL;
}
/************************************************
* SceneOpenGL
***********************************************/
SceneOpenGL::SceneOpenGL(Workspace* ws, OpenGLBackend *backend)
: Scene(ws)
, init_ok(true)
, m_backend(backend)
, m_syncManager(nullptr)
, m_currentFence(nullptr)
{
if (m_backend->isFailed()) {
init_ok = false;
return;
}
if (!viewportLimitsMatched(QSize(displayWidth(), displayHeight())))
return;
// perform Scene specific checks
GLPlatform *glPlatform = GLPlatform::instance();
#ifndef KWIN_HAVE_OPENGLES
if (!hasGLExtension(QByteArrayLiteral("GL_ARB_texture_non_power_of_two"))
&& !hasGLExtension(QByteArrayLiteral("GL_ARB_texture_rectangle"))) {
qCritical() << "GL_ARB_texture_non_power_of_two and GL_ARB_texture_rectangle missing";
init_ok = false;
return; // error
}
#endif
if (glPlatform->isMesaDriver() && glPlatform->mesaVersion() < kVersionNumber(8, 0)) {
qCritical() << "KWin requires at least Mesa 8.0 for OpenGL compositing.";
init_ok = false;
return;
}
#ifndef KWIN_HAVE_OPENGLES
glDrawBuffer(GL_BACK);
#endif
m_debug = qstrcmp(qgetenv("KWIN_GL_DEBUG"), "1") == 0;
// set strict binding
if (options->isGlStrictBindingFollowsDriver()) {
options->setGlStrictBinding(!glPlatform->supports(LooseBinding));
}
bool haveSyncObjects = glPlatform->isGLES()
? hasGLVersion(3, 0)
: hasGLVersion(3, 2) || hasGLExtension("GL_ARB_sync");
if (hasGLExtension("GL_EXT_x11_sync_object") && haveSyncObjects) {
const QByteArray useExplicitSync = qgetenv("KWIN_EXPLICIT_SYNC");
if (useExplicitSync != "0") {
qDebug() << "Initializing fences for synchronization with the X command stream";
m_syncManager = new SyncManager;
} else {
qDebug() << "Explicit synchronization with the X command stream disabled by environment variable";
}
}
}
SceneOpenGL::~SceneOpenGL()
{
// do cleanup after initBuffer()
SceneOpenGL::EffectFrame::cleanup();
if (init_ok) {
delete m_syncManager;
// backend might be still needed for a different scene
delete m_backend;
}
}
SceneOpenGL *SceneOpenGL::createScene()
{
OpenGLBackend *backend = NULL;
OpenGLPlatformInterface platformInterface = options->glPlatformInterface();
switch (platformInterface) {
case GlxPlatformInterface:
#ifndef KWIN_HAVE_OPENGLES
backend = new GlxBackend();
#endif
break;
case EglPlatformInterface:
#ifdef KWIN_HAVE_EGL
#if HAVE_WAYLAND_EGL
if (kwinApp()->shouldUseWaylandForCompositing()) {
backend = new EglWaylandBackend();
} else {
backend = new EglOnXBackend();
}
#else
backend = new EglOnXBackend();
#endif
#endif
break;
default:
// no backend available
return NULL;
}
if (!backend || backend->isFailed()) {
delete backend;
return NULL;
}
SceneOpenGL *scene = NULL;
// first let's try an OpenGL 2 scene
if (SceneOpenGL2::supported(backend)) {
scene = new SceneOpenGL2(backend);
if (scene->initFailed()) {
delete scene;
scene = NULL;
} else {
return scene;
}
}
if (!scene) {
if (GLPlatform::instance()->recommendedCompositor() == XRenderCompositing) {
qCritical() << "OpenGL driver recommends XRender based compositing. Falling back to XRender.";
qCritical() << "To overwrite the detection use the environment variable KWIN_COMPOSE";
qCritical() << "For more information see http://community.kde.org/KWin/Environment_Variables#KWIN_COMPOSE";
QTimer::singleShot(0, Compositor::self(), SLOT(fallbackToXRenderCompositing()));
}
delete backend;
}
return scene;
}
OverlayWindow *SceneOpenGL::overlayWindow()
{
return m_backend->overlayWindow();
}
bool SceneOpenGL::syncsToVBlank() const
{
return m_backend->syncsToVBlank();
}
bool SceneOpenGL::blocksForRetrace() const
{
return m_backend->blocksForRetrace();
}
void SceneOpenGL::idle()
{
m_backend->idle();
Scene::idle();
}
bool SceneOpenGL::initFailed() const
{
return !init_ok;
}
#ifndef KWIN_HAVE_OPENGLES
void SceneOpenGL::copyPixels(const QRegion &region)
{
foreach (const QRect &r, region.rects()) {
const int x0 = r.x();
const int y0 = displayHeight() - r.y() - r.height();
const int x1 = r.x() + r.width();
const int y1 = displayHeight() - r.y();
glBlitFramebuffer(x0, y0, x1, y1, x0, y0, x1, y1, GL_COLOR_BUFFER_BIT, GL_NEAREST);
}
}
#endif
#ifndef KWIN_HAVE_OPENGLES
# define GL_GUILTY_CONTEXT_RESET_KWIN GL_GUILTY_CONTEXT_RESET_ARB
# define GL_INNOCENT_CONTEXT_RESET_KWIN GL_INNOCENT_CONTEXT_RESET_ARB
# define GL_UNKNOWN_CONTEXT_RESET_KWIN GL_UNKNOWN_CONTEXT_RESET_ARB
#else
# define GL_GUILTY_CONTEXT_RESET_KWIN GL_GUILTY_CONTEXT_RESET_EXT
# define GL_INNOCENT_CONTEXT_RESET_KWIN GL_INNOCENT_CONTEXT_RESET_EXT
# define GL_UNKNOWN_CONTEXT_RESET_KWIN GL_UNKNOWN_CONTEXT_RESET_EXT
#endif
void SceneOpenGL::handleGraphicsReset(GLenum status)
{
switch (status) {
case GL_GUILTY_CONTEXT_RESET_KWIN:
qDebug() << "A graphics reset attributable to the current GL context occurred.";
break;
case GL_INNOCENT_CONTEXT_RESET_KWIN:
qDebug() << "A graphics reset not attributable to the current GL context occurred.";
break;
case GL_UNKNOWN_CONTEXT_RESET_KWIN:
qDebug() << "A graphics reset of an unknown cause occurred.";
break;
default:
break;
}
QElapsedTimer timer;
timer.start();
// Wait until the reset is completed or max 10 seconds
while (timer.elapsed() < 10000 && glGetGraphicsResetStatus() != GL_NO_ERROR)
usleep(50);
qDebug() << "Attempting to reset compositing.";
QMetaObject::invokeMethod(this, "resetCompositing", Qt::QueuedConnection);
KNotification::event(QStringLiteral("graphicsreset"), i18n("Desktop effects were restarted due to a graphics reset"));
}
void SceneOpenGL::triggerFence()
{
if (m_syncManager) {
m_currentFence = m_syncManager->nextFence();
m_currentFence->trigger();
}
}
void SceneOpenGL::insertWait()
{
if (m_currentFence && m_currentFence->state() != SyncObject::Waiting) {
m_currentFence->wait();
}
}
qint64 SceneOpenGL::paint(QRegion damage, ToplevelList toplevels)
{
// actually paint the frame, flushed with the NEXT frame
createStackingOrder(toplevels);
m_backend->makeCurrent();
QRegion repaint = m_backend->prepareRenderingFrame();
const GLenum status = glGetGraphicsResetStatus();
if (status != GL_NO_ERROR) {
handleGraphicsReset(status);
return 0;
}
int mask = 0;
#ifdef CHECK_GL_ERROR
checkGLError("Paint1");
#endif
// After this call, updateRegion will contain the damaged region in the
// back buffer. This is the region that needs to be posted to repair
// the front buffer. It doesn't include the additional damage returned
// by prepareRenderingFrame(). validRegion is the region that has been
// repainted, and may be larger than updateRegion.
QRegion updateRegion, validRegion;
paintScreen(&mask, damage, repaint, &updateRegion, &validRegion); // call generic implementation
#ifndef KWIN_HAVE_OPENGLES
const QRegion displayRegion(0, 0, displayWidth(), displayHeight());
// copy dirty parts from front to backbuffer
if (!m_backend->supportsBufferAge() &&
options->glPreferBufferSwap() == Options::CopyFrontBuffer &&
validRegion != displayRegion) {
glReadBuffer(GL_FRONT);
copyPixels(displayRegion - validRegion);
glReadBuffer(GL_BACK);
validRegion = displayRegion;
}
#endif
#ifdef CHECK_GL_ERROR
checkGLError("Paint2");
#endif
m_backend->endRenderingFrame(validRegion, updateRegion);
if (m_currentFence) {
if (!m_syncManager->updateFences()) {
qDebug() << "Aborting explicit synchronization with the X command stream.";
qDebug() << "Future frames will be rendered unsynchronized.";
delete m_syncManager;
m_syncManager = nullptr;
}
m_currentFence = nullptr;
}
// do cleanup
clearStackingOrder();
checkGLError("PostPaint");
return m_backend->renderTime();
}
QMatrix4x4 SceneOpenGL::transformation(int mask, const ScreenPaintData &data) const
{
QMatrix4x4 matrix;
if (!(mask & PAINT_SCREEN_TRANSFORMED))
return matrix;
matrix.translate(data.translation());
data.scale().applyTo(&matrix);
if (data.rotationAngle() == 0.0)
return matrix;
// Apply the rotation
// cannot use data.rotation->applyTo(&matrix) as QGraphicsRotation uses projectedRotate to map back to 2D
matrix.translate(data.rotationOrigin());
const QVector3D axis = data.rotationAxis();
matrix.rotate(data.rotationAngle(), axis.x(), axis.y(), axis.z());
matrix.translate(-data.rotationOrigin());
return matrix;
}
void SceneOpenGL::paintBackground(QRegion region)
{
PaintClipper pc(region);
if (!PaintClipper::clip()) {
glClearColor(0, 0, 0, 1);
glClear(GL_COLOR_BUFFER_BIT);
return;
}
if (pc.clip() && pc.paintArea().isEmpty())
return; // no background to paint
QVector<float> verts;
for (PaintClipper::Iterator iterator; !iterator.isDone(); iterator.next()) {
QRect r = iterator.boundingRect();
verts << r.x() + r.width() << r.y();
verts << r.x() << r.y();
verts << r.x() << r.y() + r.height();
verts << r.x() << r.y() + r.height();
verts << r.x() + r.width() << r.y() + r.height();
verts << r.x() + r.width() << r.y();
}
doPaintBackground(verts);
}
void SceneOpenGL::extendPaintRegion(QRegion &region, bool opaqueFullscreen)
{
if (m_backend->supportsBufferAge())
return;
if (options->glPreferBufferSwap() == Options::ExtendDamage) { // only Extend "large" repaints
const QRegion displayRegion(0, 0, displayWidth(), displayHeight());
uint damagedPixels = 0;
const uint fullRepaintLimit = (opaqueFullscreen?0.49f:0.748f)*displayWidth()*displayHeight();
// 16:9 is 75% of 4:3 and 2.55:1 is 49.01% of 5:4
// (5:4 is the most square format and 2.55:1 is Cinemascope55 - the widest ever shot
// movie aspect - two times ;-) It's a Fox format, though, so maybe we want to restrict
// to 2.20:1 - Panavision - which has actually been used for interesting movies ...)
// would be 57% of 5/4
foreach (const QRect &r, region.rects()) {
// damagedPixels += r.width() * r.height(); // combined window damage test
damagedPixels = r.width() * r.height(); // experimental single window damage testing
if (damagedPixels > fullRepaintLimit) {
region = displayRegion;
return;
}
}
} else if (options->glPreferBufferSwap() == Options::PaintFullScreen) { // forced full rePaint
region = QRegion(0, 0, displayWidth(), displayHeight());
}
}
SceneOpenGL::Texture *SceneOpenGL::createTexture()
{
return new Texture(m_backend);
}
SceneOpenGL::Texture *SceneOpenGL::createTexture(const QPixmap &pix, GLenum target)
{
return new Texture(m_backend, pix, target);
}
bool SceneOpenGL::viewportLimitsMatched(const QSize &size) const {
GLint limit[2];
glGetIntegerv(GL_MAX_VIEWPORT_DIMS, limit);
if (limit[0] < size.width() || limit[1] < size.height()) {
QMetaObject::invokeMethod(Compositor::self(), "suspend",
Qt::QueuedConnection, Q_ARG(Compositor::SuspendReason, Compositor::AllReasonSuspend));
const QString message = i18n("<h1>OpenGL desktop effects not possible</h1>"
"Your system cannot perform OpenGL Desktop Effects at the "
"current resolution<br><br>"
"You can try to select the XRender backend, but it "
"might be very slow for this resolution as well.<br>"
"Alternatively, lower the combined resolution of all screens "
"to %1x%2 ", limit[0], limit[1]);
const QString details = i18n("The demanded resolution exceeds the GL_MAX_VIEWPORT_DIMS "
"limitation of your GPU and is therefore not compatible "
"with the OpenGL compositor.<br>"
"XRender does not know such limitation, but the performance "
"will usually be impacted by the hardware limitations that "
"restrict the OpenGL viewport size.");
const int oldTimeout = QDBusConnection::sessionBus().interface()->timeout();
QDBusConnection::sessionBus().interface()->setTimeout(500);
if (QDBusConnection::sessionBus().interface()->isServiceRegistered(QStringLiteral("org.kde.kwinCompositingDialog")).value()) {
QDBusInterface dialog( QStringLiteral("org.kde.kwinCompositingDialog"), QStringLiteral("/CompositorSettings"), QStringLiteral("org.kde.kwinCompositingDialog") );
dialog.asyncCall(QStringLiteral("warn"), message, details, QString());
} else {
const QString args = QStringLiteral("warn ") + QString::fromUtf8(message.toLocal8Bit().toBase64()) + QStringLiteral(" details ") + QString::fromUtf8(details.toLocal8Bit().toBase64());
KProcess::startDetached(QStringLiteral("kcmshell5"), QStringList() << QStringLiteral("kwincompositing") << QStringLiteral("--args") << args);
}
QDBusConnection::sessionBus().interface()->setTimeout(oldTimeout);
return false;
}
glGetIntegerv(GL_MAX_TEXTURE_SIZE, limit);
if (limit[0] < size.width() || limit[0] < size.height()) {
KConfig cfg(QStringLiteral("kwin_dialogsrc"));
if (!KConfigGroup(&cfg, "Notification Messages").readEntry("max_tex_warning", true))
return true;
const QString message = i18n("<h1>OpenGL desktop effects might be unusable</h1>"
"OpenGL Desktop Effects at the current resolution are supported "
"but might be exceptionally slow.<br>"
"Also large windows will turn entirely black.<br><br>"
"Consider to suspend compositing, switch to the XRender backend "
"or lower the resolution to %1x%1." , limit[0]);
const QString details = i18n("The demanded resolution exceeds the GL_MAX_TEXTURE_SIZE "
"limitation of your GPU, thus windows of that size cannot be "
"assigned to textures and will be entirely black.<br>"
"Also this limit will often be a performance level barrier despite "
"below GL_MAX_VIEWPORT_DIMS, because the driver might fall back to "
"software rendering in this case.");
const int oldTimeout = QDBusConnection::sessionBus().interface()->timeout();
QDBusConnection::sessionBus().interface()->setTimeout(500);
if (QDBusConnection::sessionBus().interface()->isServiceRegistered(QStringLiteral("org.kde.kwinCompositingDialog")).value()) {
QDBusInterface dialog( QStringLiteral("org.kde.kwinCompositingDialog"), QStringLiteral("/CompositorSettings"), QStringLiteral("org.kde.kwinCompositingDialog") );
dialog.asyncCall(QStringLiteral("warn"), message, details, QStringLiteral("kwin_dialogsrc:max_tex_warning"));
} else {
const QString args = QStringLiteral("warn ") + QString::fromUtf8(message.toLocal8Bit().toBase64()) + QStringLiteral(" details ") +
QString::fromUtf8(details.toLocal8Bit().toBase64()) + QStringLiteral(" dontagain kwin_dialogsrc:max_tex_warning");
KProcess::startDetached(QStringLiteral("kcmshell5"), QStringList() << QStringLiteral("kwincompositing") << QStringLiteral("--args") << args);
}
QDBusConnection::sessionBus().interface()->setTimeout(oldTimeout);
}
return true;
}
void SceneOpenGL::screenGeometryChanged(const QSize &size)
{
if (!viewportLimitsMatched(size))
return;
Scene::screenGeometryChanged(size);
glViewport(0,0, size.width(), size.height());
m_backend->screenGeometryChanged(size);
ShaderManager::instance()->resetAllShaders();
}
void SceneOpenGL::paintDesktop(int desktop, int mask, const QRegion &region, ScreenPaintData &data)
{
const QRect r = region.boundingRect();
glEnable(GL_SCISSOR_TEST);
glScissor(r.x(), displayHeight() - r.y() - r.height(), r.width(), r.height());
KWin::Scene::paintDesktop(desktop, mask, region, data);
glDisable(GL_SCISSOR_TEST);
}
bool SceneOpenGL::makeOpenGLContextCurrent()
{
return m_backend->makeCurrent();
}
void SceneOpenGL::doneOpenGLContextCurrent()
{
m_backend->doneCurrent();
}
Scene::EffectFrame *SceneOpenGL::createEffectFrame(EffectFrameImpl *frame)
{
return new SceneOpenGL::EffectFrame(frame, this);
}
Shadow *SceneOpenGL::createShadow(Toplevel *toplevel)
{
return new SceneOpenGLShadow(toplevel);
}
//****************************************
// SceneOpenGL2
//****************************************
bool SceneOpenGL2::supported(OpenGLBackend *backend)
{
const QByteArray forceEnv = qgetenv("KWIN_COMPOSE");
if (!forceEnv.isEmpty()) {
if (qstrcmp(forceEnv, "O2") == 0) {
qDebug() << "OpenGL 2 compositing enforced by environment variable";
return true;
} else {
// OpenGL 2 disabled by environment variable
return false;
}
}
if (!backend->isDirectRendering()) {
return false;
}
if (GLPlatform::instance()->recommendedCompositor() < OpenGL2Compositing) {
qDebug() << "Driver does not recommend OpenGL 2 compositing";
#ifndef KWIN_HAVE_OPENGLES
return false;
#endif
}
return true;
}
SceneOpenGL2::SceneOpenGL2(OpenGLBackend *backend)
: SceneOpenGL(Workspace::self(), backend)
, m_lanczosFilter(NULL)
, m_colorCorrection()
{
if (!init_ok) {
// base ctor already failed
return;
}
// Initialize color correction before the shaders
slotColorCorrectedChanged(false);
connect(options, SIGNAL(colorCorrectedChanged()), this, SLOT(slotColorCorrectedChanged()), Qt::QueuedConnection);
if (!ShaderManager::instance()->isValid()) {
qDebug() << "No Scene Shaders available";
init_ok = false;
return;
}
// push one shader on the stack so that one is always bound
ShaderManager::instance()->pushShader(ShaderManager::SimpleShader);
if (checkGLError("Init")) {
qCritical() << "OpenGL 2 compositing setup failed";
init_ok = false;
return; // error
}
qDebug() << "OpenGL 2 compositing successfully initialized";
#ifndef KWIN_HAVE_OPENGLES
// It is not legal to not have a vertex array object bound in a core context
if (hasGLExtension(QByteArrayLiteral("GL_ARB_vertex_array_object"))) {
glGenVertexArrays(1, &vao);
glBindVertexArray(vao);
}
#endif
init_ok = true;
}
SceneOpenGL2::~SceneOpenGL2()
{
}
void SceneOpenGL2::paintGenericScreen(int mask, ScreenPaintData data)
{
ShaderBinder binder(ShaderManager::GenericShader);
binder.shader()->setUniform(GLShader::ScreenTransformation, transformation(mask, data));
Scene::paintGenericScreen(mask, data);
}
void SceneOpenGL2::paintDesktop(int desktop, int mask, const QRegion &region, ScreenPaintData &data)
{
ShaderBinder binder(ShaderManager::GenericShader);
GLShader *shader = binder.shader();
QMatrix4x4 screenTransformation = shader->getUniformMatrix4x4("screenTransformation");
KWin::SceneOpenGL::paintDesktop(desktop, mask, region, data);
shader->setUniform(GLShader::ScreenTransformation, screenTransformation);
}
void SceneOpenGL2::doPaintBackground(const QVector< float >& vertices)
{
GLVertexBuffer *vbo = GLVertexBuffer::streamingBuffer();
vbo->reset();
vbo->setUseColor(true);
vbo->setData(vertices.count() / 2, 2, vertices.data(), NULL);
ShaderBinder binder(ShaderManager::ColorShader);
binder.shader()->setUniform(GLShader::Offset, QVector2D(0, 0));
vbo->render(GL_TRIANGLES);
}
Scene::Window *SceneOpenGL2::createWindow(Toplevel *t)
{
SceneOpenGL2Window *w = new SceneOpenGL2Window(t);
w->setScene(this);
return w;
}
void SceneOpenGL2::finalDrawWindow(EffectWindowImpl* w, int mask, QRegion region, WindowPaintData& data)
{
if (!m_colorCorrection.isNull() && m_colorCorrection->isEnabled()) {
// Split the painting for separate screens
const int numScreens = screens()->count();
for (int screen = 0; screen < numScreens; ++ screen) {
QRegion regionForScreen(region);
if (numScreens > 1)
regionForScreen = region.intersected(screens()->geometry(screen));
data.setScreen(screen);
performPaintWindow(w, mask, regionForScreen, data);
}
} else {
performPaintWindow(w, mask, region, data);
}
}
void SceneOpenGL2::performPaintWindow(EffectWindowImpl* w, int mask, QRegion region, WindowPaintData& data)
{
if (mask & PAINT_WINDOW_LANCZOS) {
if (!m_lanczosFilter) {
m_lanczosFilter = new LanczosFilter(this);
// recreate the lanczos filter when the screen gets resized
connect(screens(), SIGNAL(changed()), SLOT(resetLanczosFilter()));
}
m_lanczosFilter->performPaint(w, mask, region, data);
} else
w->sceneWindow()->performPaint(mask, region, data);
}
void SceneOpenGL2::resetLanczosFilter()
{
// TODO: Qt5 - replace by a lambda slot
delete m_lanczosFilter;
m_lanczosFilter = NULL;
}
ColorCorrection *SceneOpenGL2::colorCorrection()
{
return m_colorCorrection.data();
}
void SceneOpenGL2::slotColorCorrectedChanged(bool recreateShaders)
{
qDebug() << "Color correction:" << options->isColorCorrected();
if (options->isColorCorrected() && m_colorCorrection.isNull()) {
m_colorCorrection.reset(new ColorCorrection(this));
if (!m_colorCorrection->setEnabled(true)) {
m_colorCorrection.reset();
return;
}
connect(m_colorCorrection.data(), SIGNAL(changed()), Compositor::self(), SLOT(addRepaintFull()));
connect(m_colorCorrection.data(), SIGNAL(errorOccured()), options, SLOT(setColorCorrected()), Qt::QueuedConnection);
if (recreateShaders) {
// Reload all shaders
ShaderManager::cleanup();
ShaderManager::instance();
}
} else {
m_colorCorrection.reset();
}
Compositor::self()->addRepaintFull();
}
//****************************************
// SceneOpenGL::Texture
//****************************************
SceneOpenGL::Texture::Texture(OpenGLBackend *backend)
: GLTexture(*backend->createBackendTexture(this))
{
}
SceneOpenGL::Texture::Texture(OpenGLBackend *backend, const QPixmap &pix, GLenum target)
: GLTexture(*backend->createBackendTexture(this))
{
GLTexture::load(pix.toImage(), target);
}
SceneOpenGL::Texture::~Texture()
{
}
SceneOpenGL::Texture& SceneOpenGL::Texture::operator = (const SceneOpenGL::Texture& tex)
{
d_ptr = tex.d_ptr;
return *this;
}
void SceneOpenGL::Texture::discard()
{
d_ptr = d_func()->backend()->createBackendTexture(this);
}
bool SceneOpenGL::Texture::load(xcb_pixmap_t pix, const QSize &size,
xcb_visualid_t visual)
{
if (pix == XCB_NONE)
return false;
// decrease the reference counter for the old texture
d_ptr = d_func()->backend()->createBackendTexture(this); //new TexturePrivate();
Q_D(Texture);
return d->loadTexture(pix, size, visual);
}
//****************************************
// SceneOpenGL::Texture
//****************************************
SceneOpenGL::TexturePrivate::TexturePrivate()
{
}
SceneOpenGL::TexturePrivate::~TexturePrivate()
{
}
//****************************************
// SceneOpenGL::Window
//****************************************
SceneOpenGL::Window::Window(Toplevel* c)
: Scene::Window(c)
, m_scene(NULL)
{
}
SceneOpenGL::Window::~Window()
{
}
static SceneOpenGL::Texture *s_frameTexture = NULL;
// Bind the window pixmap to an OpenGL texture.
bool SceneOpenGL::Window::bindTexture()
{
s_frameTexture = NULL;
OpenGLWindowPixmap *pixmap = windowPixmap<OpenGLWindowPixmap>();
if (!pixmap) {
return false;
}
s_frameTexture = pixmap->texture();
if (pixmap->isDiscarded()) {
return !pixmap->texture()->isNull();
}
if (!window()->damage().isEmpty())
m_scene->insertWait();
return pixmap->bind();
}
QMatrix4x4 SceneOpenGL::Window::transformation(int mask, const WindowPaintData &data) const
{
QMatrix4x4 matrix;
matrix.translate(x(), y());
if (!(mask & PAINT_WINDOW_TRANSFORMED))
return matrix;
matrix.translate(data.translation());
data.scale().applyTo(&matrix);
if (data.rotationAngle() == 0.0)
return matrix;
// Apply the rotation
// cannot use data.rotation.applyTo(&matrix) as QGraphicsRotation uses projectedRotate to map back to 2D
matrix.translate(data.rotationOrigin());
const QVector3D axis = data.rotationAxis();
matrix.rotate(data.rotationAngle(), axis.x(), axis.y(), axis.z());
matrix.translate(-data.rotationOrigin());
return matrix;
}
bool SceneOpenGL::Window::beginRenderWindow(int mask, const QRegion &region, WindowPaintData &data)
{
if (region.isEmpty())
return false;
m_hardwareClipping = region != infiniteRegion() && (mask & PAINT_WINDOW_TRANSFORMED) && !(mask & PAINT_SCREEN_TRANSFORMED);
if (region != infiniteRegion() && !m_hardwareClipping) {
WindowQuadList quads;
quads.reserve(data.quads.count());
const QRegion filterRegion = region.translated(-x(), -y());
// split all quads in bounding rect with the actual rects in the region
foreach (const WindowQuad &quad, data.quads) {
foreach (const QRect &r, filterRegion.rects()) {
const QRectF rf(r);
const QRectF quadRect(QPointF(quad.left(), quad.top()), QPointF(quad.right(), quad.bottom()));
const QRectF &intersected = rf.intersected(quadRect);
if (intersected.isValid()) {
if (quadRect == intersected) {
// case 1: completely contains, include and do not check other rects
quads << quad;
break;
}
// case 2: intersection
quads << quad.makeSubQuad(intersected.left(), intersected.top(), intersected.right(), intersected.bottom());
}
}
}
data.quads = quads;
}
if (data.quads.isEmpty())
return false;
if (!bindTexture() || !s_frameTexture) {
return false;
}
if (m_hardwareClipping) {
glEnable(GL_SCISSOR_TEST);
}
// Update the texture filter
if (options->glSmoothScale() != 0 &&
(mask & (PAINT_WINDOW_TRANSFORMED | PAINT_SCREEN_TRANSFORMED)))
filter = ImageFilterGood;
else
filter = ImageFilterFast;
s_frameTexture->setFilter(filter == ImageFilterGood ? GL_LINEAR : GL_NEAREST);
const GLVertexAttrib attribs[] = {
{ VA_Position, 2, GL_FLOAT, offsetof(GLVertex2D, position) },
{ VA_TexCoord, 2, GL_FLOAT, offsetof(GLVertex2D, texcoord) },
};
GLVertexBuffer *vbo = GLVertexBuffer::streamingBuffer();
vbo->reset();
vbo->setAttribLayout(attribs, 2, sizeof(GLVertex2D));
return true;
}
void SceneOpenGL::Window::endRenderWindow()
{
if (m_hardwareClipping) {
glDisable(GL_SCISSOR_TEST);
}
}
OpenGLPaintRedirector *SceneOpenGL::Window::paintRedirector() const
{
if (toplevel->isClient()) {
Client *client = static_cast<Client *>(toplevel);
if (client->noBorder())
return 0;
return static_cast<OpenGLPaintRedirector *>(client->decorationPaintRedirector());
}
if (toplevel->isDeleted()) {
Deleted *deleted = static_cast<Deleted *>(toplevel);
if (deleted->noBorder())
return 0;
return static_cast<OpenGLPaintRedirector *>(deleted->decorationPaintRedirector());
}
return 0;
}
GLTexture *SceneOpenGL::Window::getDecorationTexture() const
{
OpenGLPaintRedirector *redirector = paintRedirector();
if (!redirector)
return 0;
redirector->ensurePixmapsPainted();
GLTexture *texture = redirector->decorationTexture();
redirector->markAsRepainted();
return texture;
}
WindowPixmap* SceneOpenGL::Window::createWindowPixmap()
{
return new OpenGLWindowPixmap(this, m_scene);
}
//***************************************
// SceneOpenGL2Window
//***************************************
SceneOpenGL2Window::SceneOpenGL2Window(Toplevel *c)
: SceneOpenGL::Window(c)
, m_blendingEnabled(false)
{
}
SceneOpenGL2Window::~SceneOpenGL2Window()
{
}
QVector4D SceneOpenGL2Window::modulate(float opacity, float brightness) const
{
const float a = opacity;
const float rgb = opacity * brightness;
return QVector4D(rgb, rgb, rgb, a);
}
void SceneOpenGL2Window::setBlendEnabled(bool enabled)
{
if (enabled && !m_blendingEnabled)
glEnable(GL_BLEND);
else if (!enabled && m_blendingEnabled)
glDisable(GL_BLEND);
m_blendingEnabled = enabled;
}
void SceneOpenGL2Window::setupLeafNodes(LeafNode *nodes, const WindowQuadList *quads, const WindowPaintData &data)
{
if (!quads[ShadowLeaf].isEmpty()) {
nodes[ShadowLeaf].texture = static_cast<SceneOpenGLShadow *>(m_shadow)->shadowTexture();
nodes[ShadowLeaf].opacity = data.opacity();
nodes[ShadowLeaf].hasAlpha = true;
nodes[ShadowLeaf].coordinateType = NormalizedCoordinates;
}
if (!quads[DecorationLeaf].isEmpty()) {
nodes[DecorationLeaf].texture = getDecorationTexture();
nodes[DecorationLeaf].opacity = data.opacity();
nodes[DecorationLeaf].hasAlpha = true;
nodes[DecorationLeaf].coordinateType = UnnormalizedCoordinates;
}
nodes[ContentLeaf].texture = s_frameTexture;
nodes[ContentLeaf].hasAlpha = !isOpaque();
// TODO: ARGB crsoofading is atm. a hack, playing on opacities for two dumb SrcOver operations
// Should be a shader
if (data.crossFadeProgress() != 1.0 && (data.opacity() < 0.95 || toplevel->hasAlpha())) {
const float opacity = 1.0 - data.crossFadeProgress();
nodes[ContentLeaf].opacity = data.opacity() * (1 - pow(opacity, 1.0f + 2.0f * data.opacity()));
} else {
nodes[ContentLeaf].opacity = data.opacity();
}
nodes[ContentLeaf].coordinateType = UnnormalizedCoordinates;
if (data.crossFadeProgress() != 1.0) {
OpenGLWindowPixmap *previous = previousWindowPixmap<OpenGLWindowPixmap>();
nodes[PreviousContentLeaf].texture = previous ? previous->texture() : NULL;
nodes[PreviousContentLeaf].hasAlpha = !isOpaque();
nodes[PreviousContentLeaf].opacity = data.opacity() * (1.0 - data.crossFadeProgress());
nodes[PreviousContentLeaf].coordinateType = NormalizedCoordinates;
}
}
void SceneOpenGL2Window::performPaint(int mask, QRegion region, WindowPaintData data)
{
if (!beginRenderWindow(mask, region, data))
return;
GLShader *shader = data.shader;
if (!shader) {
if ((mask & Scene::PAINT_WINDOW_TRANSFORMED) || (mask & Scene::PAINT_SCREEN_TRANSFORMED)) {
shader = ShaderManager::instance()->pushShader(ShaderManager::GenericShader);
} else {
shader = ShaderManager::instance()->pushShader(ShaderManager::SimpleShader);
shader->setUniform(GLShader::Offset, QVector2D(x(), y()));
}
}
if (ColorCorrection *cc = static_cast<SceneOpenGL2*>(m_scene)->colorCorrection()) {
cc->setupForOutput(data.screen());
}
shader->setUniform(GLShader::WindowTransformation, transformation(mask, data));
shader->setUniform(GLShader::Saturation, data.saturation());
const GLenum filter = (mask & (Effect::PAINT_WINDOW_TRANSFORMED | Effect::PAINT_SCREEN_TRANSFORMED))
&& options->glSmoothScale() != 0 ? GL_LINEAR : GL_NEAREST;
WindowQuadList quads[LeafCount];
// Split the quads into separate lists for each type
foreach (const WindowQuad &quad, data.quads) {
switch (quad.type()) {
case WindowQuadDecoration:
quads[DecorationLeaf].append(quad);
continue;
case WindowQuadContents:
quads[ContentLeaf].append(quad);
continue;
case WindowQuadShadow:
quads[ShadowLeaf].append(quad);
continue;
default:
continue;
}
}
if (data.crossFadeProgress() != 1.0) {
OpenGLWindowPixmap *previous = previousWindowPixmap<OpenGLWindowPixmap>();
if (previous) {
const QRect &oldGeometry = previous->contentsRect();
for (const WindowQuad &quad : quads[ContentLeaf]) {
// we need to create new window quads with normalize texture coordinates
// normal quads divide the x/y position by width/height. This would not work as the texture
// is larger than the visible content in case of a decorated Client resulting in garbage being shown.
// So we calculate the normalized texture coordinate in the Client's new content space and map it to
// the previous Client's content space.
WindowQuad newQuad(WindowQuadContents);
for (int i = 0; i < 4; ++i) {
const qreal xFactor = qreal(quad[i].textureX() - toplevel->clientPos().x())/qreal(toplevel->clientSize().width());
const qreal yFactor = qreal(quad[i].textureY() - toplevel->clientPos().y())/qreal(toplevel->clientSize().height());
WindowVertex vertex(quad[i].x(), quad[i].y(),
(xFactor * oldGeometry.width() + oldGeometry.x())/qreal(previous->size().width()),
(yFactor * oldGeometry.height() + oldGeometry.y())/qreal(previous->size().height()));
newQuad[i] = vertex;
}
quads[PreviousContentLeaf].append(newQuad);
}
}
}
const bool indexedQuads = GLVertexBuffer::supportsIndexedQuads();
const GLenum primitiveType = indexedQuads ? GL_QUADS : GL_TRIANGLES;
const int verticesPerQuad = indexedQuads ? 4 : 6;
const size_t size = verticesPerQuad *
(quads[0].count() + quads[1].count() + quads[2].count() + quads[3].count()) * sizeof(GLVertex2D);
GLVertexBuffer *vbo = GLVertexBuffer::streamingBuffer();
GLVertex2D *map = (GLVertex2D *) vbo->map(size);
LeafNode nodes[LeafCount];
setupLeafNodes(nodes, quads, data);
for (int i = 0, v = 0; i < LeafCount; i++) {
if (quads[i].isEmpty() || !nodes[i].texture)
continue;
nodes[i].firstVertex = v;
nodes[i].vertexCount = quads[i].count() * verticesPerQuad;
const QMatrix4x4 matrix = nodes[i].texture->matrix(nodes[i].coordinateType);
quads[i].makeInterleavedArrays(primitiveType, &map[v], matrix);
v += quads[i].count() * verticesPerQuad;
}
vbo->unmap();
vbo->bindArrays();
// Make sure the blend function is set up correctly in case we will be doing blending
glBlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
float opacity = -1.0;
for (int i = 0; i < LeafCount; i++) {
if (nodes[i].vertexCount == 0)
continue;
setBlendEnabled(nodes[i].hasAlpha || nodes[i].opacity < 1.0);
if (opacity != nodes[i].opacity) {
shader->setUniform(GLShader::ModulationConstant,
modulate(nodes[i].opacity, data.brightness()));
opacity = nodes[i].opacity;
}
nodes[i].texture->setFilter(filter);
nodes[i].texture->setWrapMode(GL_CLAMP_TO_EDGE);
nodes[i].texture->bind();
vbo->draw(region, primitiveType, nodes[i].firstVertex, nodes[i].vertexCount, m_hardwareClipping);
}
vbo->unbindArrays();
setBlendEnabled(false);
if (!data.shader)
ShaderManager::instance()->popShader();
endRenderWindow();
}
//****************************************
// OpenGLWindowPixmap
//****************************************
OpenGLWindowPixmap::OpenGLWindowPixmap(Scene::Window *window, SceneOpenGL* scene)
: WindowPixmap(window)
, m_texture(scene->createTexture())
{
}
OpenGLWindowPixmap::~OpenGLWindowPixmap()
{
}
bool OpenGLWindowPixmap::bind()
{
if (!m_texture->isNull()) {
if (!toplevel()->damage().isEmpty()) {
// mipmaps need to be updated
m_texture->setDirty();
toplevel()->resetDamage();
}
return true;
}
if (!isValid()) {
return false;
}
bool success = m_texture->load(pixmap(), toplevel()->size(), toplevel()->visual());
if (success)
toplevel()->resetDamage();
else
qDebug() << "Failed to bind window";
return success;
}
//****************************************
// SceneOpenGL::EffectFrame
//****************************************
GLTexture* SceneOpenGL::EffectFrame::m_unstyledTexture = NULL;
QPixmap* SceneOpenGL::EffectFrame::m_unstyledPixmap = NULL;
SceneOpenGL::EffectFrame::EffectFrame(EffectFrameImpl* frame, SceneOpenGL *scene)
: Scene::EffectFrame(frame)
, m_texture(NULL)
, m_textTexture(NULL)
, m_oldTextTexture(NULL)
, m_textPixmap(NULL)
, m_iconTexture(NULL)
, m_oldIconTexture(NULL)
, m_selectionTexture(NULL)
, m_unstyledVBO(NULL)
, m_scene(scene)
{
if (m_effectFrame->style() == EffectFrameUnstyled && !m_unstyledTexture) {
updateUnstyledTexture();
}
}
SceneOpenGL::EffectFrame::~EffectFrame()
{
delete m_texture;
delete m_textTexture;
delete m_textPixmap;
delete m_oldTextTexture;
delete m_iconTexture;
delete m_oldIconTexture;
delete m_selectionTexture;
delete m_unstyledVBO;
}
void SceneOpenGL::EffectFrame::free()
{
glFlush();
delete m_texture;
m_texture = NULL;
delete m_textTexture;
m_textTexture = NULL;
delete m_textPixmap;
m_textPixmap = NULL;
delete m_iconTexture;
m_iconTexture = NULL;
delete m_selectionTexture;
m_selectionTexture = NULL;
delete m_unstyledVBO;
m_unstyledVBO = NULL;
delete m_oldIconTexture;
m_oldIconTexture = NULL;
delete m_oldTextTexture;
m_oldTextTexture = NULL;
}
void SceneOpenGL::EffectFrame::freeIconFrame()
{
delete m_iconTexture;
m_iconTexture = NULL;
}
void SceneOpenGL::EffectFrame::freeTextFrame()
{
delete m_textTexture;
m_textTexture = NULL;
delete m_textPixmap;
m_textPixmap = NULL;
}
void SceneOpenGL::EffectFrame::freeSelection()
{
delete m_selectionTexture;
m_selectionTexture = NULL;
}
void SceneOpenGL::EffectFrame::crossFadeIcon()
{
delete m_oldIconTexture;
m_oldIconTexture = m_iconTexture;
m_iconTexture = NULL;
}
void SceneOpenGL::EffectFrame::crossFadeText()
{
delete m_oldTextTexture;
m_oldTextTexture = m_textTexture;
m_textTexture = NULL;
}
void SceneOpenGL::EffectFrame::render(QRegion region, double opacity, double frameOpacity)
{
if (m_effectFrame->geometry().isEmpty())
return; // Nothing to display
region = infiniteRegion(); // TODO: Old region doesn't seem to work with OpenGL
GLShader* shader = m_effectFrame->shader();
bool sceneShader = false;
if (!shader) {
shader = ShaderManager::instance()->pushShader(ShaderManager::SimpleShader);
sceneShader = true;
} else if (shader) {
ShaderManager::instance()->pushShader(shader);
}
if (shader) {
if (sceneShader)
shader->setUniform(GLShader::Offset, QVector2D(0, 0));
shader->setUniform(GLShader::ModulationConstant, QVector4D(1.0, 1.0, 1.0, 1.0));
shader->setUniform(GLShader::Saturation, 1.0f);
}
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
// Render the actual frame
if (m_effectFrame->style() == EffectFrameUnstyled) {
if (!m_unstyledVBO) {
m_unstyledVBO = new GLVertexBuffer(GLVertexBuffer::Static);
QRect area = m_effectFrame->geometry();
area.moveTo(0, 0);
area.adjust(-5, -5, 5, 5);
const int roundness = 5;
QVector<float> verts, texCoords;
verts.reserve(84);
texCoords.reserve(84);
// top left
verts << area.left() << area.top();
texCoords << 0.0f << 0.0f;
verts << area.left() << area.top() + roundness;
texCoords << 0.0f << 0.5f;
verts << area.left() + roundness << area.top();
texCoords << 0.5f << 0.0f;
verts << area.left() + roundness << area.top() + roundness;
texCoords << 0.5f << 0.5f;
verts << area.left() << area.top() + roundness;
texCoords << 0.0f << 0.5f;
verts << area.left() + roundness << area.top();
texCoords << 0.5f << 0.0f;
// top
verts << area.left() + roundness << area.top();
texCoords << 0.5f << 0.0f;
verts << area.left() + roundness << area.top() + roundness;
texCoords << 0.5f << 0.5f;
verts << area.right() - roundness << area.top();
texCoords << 0.5f << 0.0f;
verts << area.left() + roundness << area.top() + roundness;
texCoords << 0.5f << 0.5f;
verts << area.right() - roundness << area.top() + roundness;
texCoords << 0.5f << 0.5f;
verts << area.right() - roundness << area.top();
texCoords << 0.5f << 0.0f;
// top right
verts << area.right() - roundness << area.top();
texCoords << 0.5f << 0.0f;
verts << area.right() - roundness << area.top() + roundness;
texCoords << 0.5f << 0.5f;
verts << area.right() << area.top();
texCoords << 1.0f << 0.0f;
verts << area.right() - roundness << area.top() + roundness;
texCoords << 0.5f << 0.5f;
verts << area.right() << area.top() + roundness;
texCoords << 1.0f << 0.5f;
verts << area.right() << area.top();
texCoords << 1.0f << 0.0f;
// bottom left
verts << area.left() << area.bottom() - roundness;
texCoords << 0.0f << 0.5f;
verts << area.left() << area.bottom();
texCoords << 0.0f << 1.0f;
verts << area.left() + roundness << area.bottom() - roundness;
texCoords << 0.5f << 0.5f;
verts << area.left() + roundness << area.bottom();
texCoords << 0.5f << 1.0f;
verts << area.left() << area.bottom();
texCoords << 0.0f << 1.0f;
verts << area.left() + roundness << area.bottom() - roundness;
texCoords << 0.5f << 0.5f;
// bottom
verts << area.left() + roundness << area.bottom() - roundness;
texCoords << 0.5f << 0.5f;
verts << area.left() + roundness << area.bottom();
texCoords << 0.5f << 1.0f;
verts << area.right() - roundness << area.bottom() - roundness;
texCoords << 0.5f << 0.5f;
verts << area.left() + roundness << area.bottom();
texCoords << 0.5f << 1.0f;
verts << area.right() - roundness << area.bottom();
texCoords << 0.5f << 1.0f;
verts << area.right() - roundness << area.bottom() - roundness;
texCoords << 0.5f << 0.5f;
// bottom right
verts << area.right() - roundness << area.bottom() - roundness;
texCoords << 0.5f << 0.5f;
verts << area.right() - roundness << area.bottom();
texCoords << 0.5f << 1.0f;
verts << area.right() << area.bottom() - roundness;
texCoords << 1.0f << 0.5f;
verts << area.right() - roundness << area.bottom();
texCoords << 0.5f << 1.0f;
verts << area.right() << area.bottom();
texCoords << 1.0f << 1.0f;
verts << area.right() << area.bottom() - roundness;
texCoords << 1.0f << 0.5f;
// center
verts << area.left() << area.top() + roundness;
texCoords << 0.0f << 0.5f;
verts << area.left() << area.bottom() - roundness;
texCoords << 0.0f << 0.5f;
verts << area.right() << area.top() + roundness;
texCoords << 1.0f << 0.5f;
verts << area.left() << area.bottom() - roundness;
texCoords << 0.0f << 0.5f;
verts << area.right() << area.bottom() - roundness;
texCoords << 1.0f << 0.5f;
verts << area.right() << area.top() + roundness;
texCoords << 1.0f << 0.5f;
m_unstyledVBO->setData(verts.count() / 2, 2, verts.data(), texCoords.data());
}
if (shader) {
const float a = opacity * frameOpacity;
shader->setUniform(GLShader::ModulationConstant, QVector4D(a, a, a, a));
}
m_unstyledTexture->bind();
const QPoint pt = m_effectFrame->geometry().topLeft();
if (sceneShader) {
shader->setUniform(GLShader::Offset, QVector2D(pt.x(), pt.y()));
} else {
QMatrix4x4 translation;
translation.translate(pt.x(), pt.y());
if (shader) {
shader->setUniform(GLShader::WindowTransformation, translation);
}
}
m_unstyledVBO->render(region, GL_TRIANGLES);
if (!sceneShader) {
if (shader) {
shader->setUniform(GLShader::WindowTransformation, QMatrix4x4());
}
}
m_unstyledTexture->unbind();
} else if (m_effectFrame->style() == EffectFrameStyled) {
if (!m_texture) // Lazy creation
updateTexture();
if (shader) {
const float a = opacity * frameOpacity;
shader->setUniform(GLShader::ModulationConstant, QVector4D(a, a, a, a));
}
m_texture->bind();
qreal left, top, right, bottom;
m_effectFrame->frame().getMargins(left, top, right, bottom); // m_geometry is the inner geometry
m_texture->render(region, m_effectFrame->geometry().adjusted(-left, -top, right, bottom));
m_texture->unbind();
}
if (!m_effectFrame->selection().isNull()) {
if (!m_selectionTexture) { // Lazy creation
QPixmap pixmap = m_effectFrame->selectionFrame().framePixmap();
if (!pixmap.isNull())
m_selectionTexture = m_scene->createTexture(pixmap);
}
if (m_selectionTexture) {
if (shader) {
const float a = opacity * frameOpacity;
shader->setUniform(GLShader::ModulationConstant, QVector4D(a, a, a, a));
}
glBlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
m_selectionTexture->bind();
m_selectionTexture->render(region, m_effectFrame->selection());
m_selectionTexture->unbind();
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
}
}
// Render icon
if (!m_effectFrame->icon().isNull() && !m_effectFrame->iconSize().isEmpty()) {
QPoint topLeft(m_effectFrame->geometry().x(),
m_effectFrame->geometry().center().y() - m_effectFrame->iconSize().height() / 2);
if (m_effectFrame->isCrossFade() && m_oldIconTexture) {
if (shader) {
const float a = opacity * (1.0 - m_effectFrame->crossFadeProgress());
shader->setUniform(GLShader::ModulationConstant, QVector4D(a, a, a, a));
}
m_oldIconTexture->bind();
m_oldIconTexture->render(region, QRect(topLeft, m_effectFrame->iconSize()));
m_oldIconTexture->unbind();
if (shader) {
const float a = opacity * m_effectFrame->crossFadeProgress();
shader->setUniform(GLShader::ModulationConstant, QVector4D(a, a, a, a));
}
} else {
if (shader) {
const QVector4D constant(opacity, opacity, opacity, opacity);
shader->setUniform(GLShader::ModulationConstant, constant);
}
}
if (!m_iconTexture) { // lazy creation
m_iconTexture = m_scene->createTexture(m_effectFrame->icon().pixmap(m_effectFrame->iconSize()));
}
m_iconTexture->bind();
m_iconTexture->render(region, QRect(topLeft, m_effectFrame->iconSize()));
m_iconTexture->unbind();
}
// Render text
if (!m_effectFrame->text().isEmpty()) {
if (m_effectFrame->isCrossFade() && m_oldTextTexture) {
if (shader) {
const float a = opacity * (1.0 - m_effectFrame->crossFadeProgress());
shader->setUniform(GLShader::ModulationConstant, QVector4D(a, a, a, a));
}
m_oldTextTexture->bind();
m_oldTextTexture->render(region, m_effectFrame->geometry());
m_oldTextTexture->unbind();
if (shader) {
const float a = opacity * m_effectFrame->crossFadeProgress();
shader->setUniform(GLShader::ModulationConstant, QVector4D(a, a, a, a));
}
} else {
if (shader) {
const QVector4D constant(opacity, opacity, opacity, opacity);
shader->setUniform(GLShader::ModulationConstant, constant);
}
}
if (!m_textTexture) // Lazy creation
updateTextTexture();
m_textTexture->bind();
m_textTexture->render(region, m_effectFrame->geometry());
m_textTexture->unbind();
}
if (shader) {
ShaderManager::instance()->popShader();
}
glDisable(GL_BLEND);
}
void SceneOpenGL::EffectFrame::updateTexture()
{
delete m_texture;
m_texture = 0L;
if (m_effectFrame->style() == EffectFrameStyled) {
QPixmap pixmap = m_effectFrame->frame().framePixmap();
m_texture = m_scene->createTexture(pixmap);
}
}
void SceneOpenGL::EffectFrame::updateTextTexture()
{
delete m_textTexture;
m_textTexture = 0L;
delete m_textPixmap;
m_textPixmap = 0L;
if (m_effectFrame->text().isEmpty())
return;
// Determine position on texture to paint text
QRect rect(QPoint(0, 0), m_effectFrame->geometry().size());
if (!m_effectFrame->icon().isNull() && !m_effectFrame->iconSize().isEmpty())
rect.setLeft(m_effectFrame->iconSize().width());
// If static size elide text as required
QString text = m_effectFrame->text();
if (m_effectFrame->isStatic()) {
QFontMetrics metrics(m_effectFrame->font());
text = metrics.elidedText(text, Qt::ElideRight, rect.width());
}
m_textPixmap = new QPixmap(m_effectFrame->geometry().size());
m_textPixmap->fill(Qt::transparent);
QPainter p(m_textPixmap);
p.setFont(m_effectFrame->font());
if (m_effectFrame->style() == EffectFrameStyled)
p.setPen(m_effectFrame->styledTextColor());
else // TODO: What about no frame? Custom color setting required
p.setPen(Qt::white);
p.drawText(rect, m_effectFrame->alignment(), text);
p.end();
m_textTexture = m_scene->createTexture(*m_textPixmap);
}
void SceneOpenGL::EffectFrame::updateUnstyledTexture()
{
delete m_unstyledTexture;
m_unstyledTexture = 0L;
delete m_unstyledPixmap;
m_unstyledPixmap = 0L;
// Based off circle() from kwinxrenderutils.cpp
#define CS 8
m_unstyledPixmap = new QPixmap(2 * CS, 2 * CS);
m_unstyledPixmap->fill(Qt::transparent);
QPainter p(m_unstyledPixmap);
p.setRenderHint(QPainter::Antialiasing);
p.setPen(Qt::NoPen);
p.setBrush(Qt::black);
p.drawEllipse(m_unstyledPixmap->rect());
p.end();
#undef CS
m_unstyledTexture = new GLTexture(*m_unstyledPixmap);
}
void SceneOpenGL::EffectFrame::cleanup()
{
delete m_unstyledTexture;
m_unstyledTexture = NULL;
delete m_unstyledPixmap;
m_unstyledPixmap = NULL;
}
//****************************************
// SceneOpenGL::Shadow
//****************************************
SceneOpenGLShadow::SceneOpenGLShadow(Toplevel *toplevel)
: Shadow(toplevel)
, m_texture(NULL)
{
}
SceneOpenGLShadow::~SceneOpenGLShadow()
{
effects->makeOpenGLContextCurrent();
delete m_texture;
}
void SceneOpenGLShadow::buildQuads()
{
// prepare window quads
m_shadowQuads.clear();
const QSizeF top(shadowPixmap(ShadowElementTop).size());
const QSizeF topRight(shadowPixmap(ShadowElementTopRight).size());
const QSizeF right(shadowPixmap(ShadowElementRight).size());
const QSizeF bottomRight(shadowPixmap(ShadowElementBottomRight).size());
const QSizeF bottom(shadowPixmap(ShadowElementBottom).size());
const QSizeF bottomLeft(shadowPixmap(ShadowElementBottomLeft).size());
const QSizeF left(shadowPixmap(ShadowElementLeft).size());
const QSizeF topLeft(shadowPixmap(ShadowElementTopLeft).size());
if ((left.width() - leftOffset() > topLevel()->width()) ||
(right.width() - rightOffset() > topLevel()->width()) ||
(top.height() - topOffset() > topLevel()->height()) ||
(bottom.height() - bottomOffset() > topLevel()->height())) {
// if our shadow is bigger than the window, we don't render the shadow
setShadowRegion(QRegion());
return;
}
const QRectF outerRect(QPointF(-leftOffset(), -topOffset()),
QPointF(topLevel()->width() + rightOffset(), topLevel()->height() + bottomOffset()));
const qreal width = topLeft.width() + top.width() + topRight.width();
const qreal height = topLeft.height() + left.height() + bottomLeft.height();
qreal tx1(0.0), tx2(0.0), ty1(0.0), ty2(0.0);
tx2 = topLeft.width()/width;
ty2 = topLeft.height()/height;
WindowQuad topLeftQuad(WindowQuadShadow);
topLeftQuad[ 0 ] = WindowVertex(outerRect.x(), outerRect.y(), tx1, ty1);
topLeftQuad[ 1 ] = WindowVertex(outerRect.x() + topLeft.width(), outerRect.y(), tx2, ty1);
topLeftQuad[ 2 ] = WindowVertex(outerRect.x() + topLeft.width(), outerRect.y() + topLeft.height(), tx2, ty2);
topLeftQuad[ 3 ] = WindowVertex(outerRect.x(), outerRect.y() + topLeft.height(), tx1, ty2);
m_shadowQuads.append(topLeftQuad);
tx1 = tx2;
tx2 = (topLeft.width() + top.width())/width;
ty2 = top.height()/height;
WindowQuad topQuad(WindowQuadShadow);
topQuad[ 0 ] = WindowVertex(outerRect.x() + topLeft.width(), outerRect.y(), tx1, ty1);
topQuad[ 1 ] = WindowVertex(outerRect.right() - topRight.width(), outerRect.y(), tx2, ty1);
topQuad[ 2 ] = WindowVertex(outerRect.right() - topRight.width(), outerRect.y() + top.height(),tx2, ty2);
topQuad[ 3 ] = WindowVertex(outerRect.x() + topLeft.width(), outerRect.y() + top.height(), tx1, ty2);
m_shadowQuads.append(topQuad);
tx1 = tx2;
tx2 = 1.0;
ty2 = topRight.height()/height;
WindowQuad topRightQuad(WindowQuadShadow);
topRightQuad[ 0 ] = WindowVertex(outerRect.right() - topRight.width(), outerRect.y(), tx1, ty1);
topRightQuad[ 1 ] = WindowVertex(outerRect.right(), outerRect.y(), tx2, ty1);
topRightQuad[ 2 ] = WindowVertex(outerRect.right(), outerRect.y() + topRight.height(), tx2, ty2);
topRightQuad[ 3 ] = WindowVertex(outerRect.right() - topRight.width(), outerRect.y() + topRight.height(), tx1, ty2);
m_shadowQuads.append(topRightQuad);
tx1 = (width - right.width())/width;
ty1 = topRight.height()/height;
ty2 = (topRight.height() + right.height())/height;
WindowQuad rightQuad(WindowQuadShadow);
rightQuad[ 0 ] = WindowVertex(outerRect.right() - right.width(), outerRect.y() + topRight.height(), tx1, ty1);
rightQuad[ 1 ] = WindowVertex(outerRect.right(), outerRect.y() + topRight.height(), tx2, ty1);
rightQuad[ 2 ] = WindowVertex(outerRect.right(), outerRect.bottom() - bottomRight.height(), tx2, ty2);
rightQuad[ 3 ] = WindowVertex(outerRect.right() - right.width(), outerRect.bottom() - bottomRight.height(), tx1, ty2);
m_shadowQuads.append(rightQuad);
tx1 = (width - bottomRight.width())/width;
ty1 = ty2;
ty2 = 1.0;
WindowQuad bottomRightQuad(WindowQuadShadow);
bottomRightQuad[ 0 ] = WindowVertex(outerRect.right() - bottomRight.width(), outerRect.bottom() - bottomRight.height(), tx1, ty1);
bottomRightQuad[ 1 ] = WindowVertex(outerRect.right(), outerRect.bottom() - bottomRight.height(), tx2, ty1);
bottomRightQuad[ 2 ] = WindowVertex(outerRect.right(), outerRect.bottom(), tx2, ty2);
bottomRightQuad[ 3 ] = WindowVertex(outerRect.right() - bottomRight.width(), outerRect.bottom(), tx1, ty2);
m_shadowQuads.append(bottomRightQuad);
tx2 = tx1;
tx1 = bottomLeft.width()/width;
ty1 = (height - bottom.height())/height;
WindowQuad bottomQuad(WindowQuadShadow);
bottomQuad[ 0 ] = WindowVertex(outerRect.x() + bottomLeft.width(), outerRect.bottom() - bottom.height(), tx1, ty1);
bottomQuad[ 1 ] = WindowVertex(outerRect.right() - bottomRight.width(), outerRect.bottom() - bottom.height(), tx2, ty1);
bottomQuad[ 2 ] = WindowVertex(outerRect.right() - bottomRight.width(), outerRect.bottom(), tx2, ty2);
bottomQuad[ 3 ] = WindowVertex(outerRect.x() + bottomLeft.width(), outerRect.bottom(), tx1, ty2);
m_shadowQuads.append(bottomQuad);
tx1 = 0.0;
tx2 = bottomLeft.width()/width;
ty1 = (height - bottomLeft.height())/height;
WindowQuad bottomLeftQuad(WindowQuadShadow);
bottomLeftQuad[ 0 ] = WindowVertex(outerRect.x(), outerRect.bottom() - bottomLeft.height(), tx1, ty1);
bottomLeftQuad[ 1 ] = WindowVertex(outerRect.x() + bottomLeft.width(), outerRect.bottom() - bottomLeft.height(), tx2, ty1);
bottomLeftQuad[ 2 ] = WindowVertex(outerRect.x() + bottomLeft.width(), outerRect.bottom(), tx2, ty2);
bottomLeftQuad[ 3 ] = WindowVertex(outerRect.x(), outerRect.bottom(), tx1, ty2);
m_shadowQuads.append(bottomLeftQuad);
tx2 = left.width()/width;
ty2 = ty1;
ty1 = topLeft.height()/height;
WindowQuad leftQuad(WindowQuadShadow);
leftQuad[ 0 ] = WindowVertex(outerRect.x(), outerRect.y() + topLeft.height(), tx1, ty1);
leftQuad[ 1 ] = WindowVertex(outerRect.x() + left.width(), outerRect.y() + topLeft.height(), tx2, ty1);
leftQuad[ 2 ] = WindowVertex(outerRect.x() + left.width(), outerRect.bottom() - bottomLeft.height(), tx2, ty2);
leftQuad[ 3 ] = WindowVertex(outerRect.x(), outerRect.bottom() - bottomLeft.height(), tx1, ty2);
m_shadowQuads.append(leftQuad);
}
bool SceneOpenGLShadow::prepareBackend()
{
const QSize top(shadowPixmap(ShadowElementTop).size());
const QSize topRight(shadowPixmap(ShadowElementTopRight).size());
const QSize right(shadowPixmap(ShadowElementRight).size());
const QSize bottom(shadowPixmap(ShadowElementBottom).size());
const QSize bottomLeft(shadowPixmap(ShadowElementBottomLeft).size());
const QSize left(shadowPixmap(ShadowElementLeft).size());
const QSize topLeft(shadowPixmap(ShadowElementTopLeft).size());
const int width = topLeft.width() + top.width() + topRight.width();
const int height = topLeft.height() + left.height() + bottomLeft.height();
QImage image(width, height, QImage::Format_ARGB32);
image.fill(Qt::transparent);
QPainter p;
p.begin(&image);
p.drawPixmap(0, 0, shadowPixmap(ShadowElementTopLeft));
p.drawPixmap(topLeft.width(), 0, shadowPixmap(ShadowElementTop));
p.drawPixmap(topLeft.width() + top.width(), 0, shadowPixmap(ShadowElementTopRight));
p.drawPixmap(0, topLeft.height(), shadowPixmap(ShadowElementLeft));
p.drawPixmap(width - right.width(), topRight.height(), shadowPixmap(ShadowElementRight));
p.drawPixmap(0, topLeft.height() + left.height(), shadowPixmap(ShadowElementBottomLeft));
p.drawPixmap(bottomLeft.width(), height - bottom.height(), shadowPixmap(ShadowElementBottom));
p.drawPixmap(bottomLeft.width() + bottom.width(), topRight.height() + right.height(), shadowPixmap(ShadowElementBottomRight));
p.end();
effects->makeOpenGLContextCurrent();
delete m_texture;
m_texture = new GLTexture(image);
return true;
}
SwapProfiler::SwapProfiler()
{
init();
}
void SwapProfiler::init()
{
m_time = 2 * 1000*1000; // we start with a long time mean of 2ms ...
m_counter = 0;
}
void SwapProfiler::begin()
{
m_timer.start();
}
char SwapProfiler::end()
{
// .. and blend in actual values.
// this way we prevent extremes from killing our long time mean
m_time = (10*m_time + m_timer.nsecsElapsed())/11;
if (++m_counter > 500) {
const bool blocks = m_time > 1000 * 1000; // 1ms, i get ~250µs and ~7ms w/o triple buffering...
qDebug() << "Triple buffering detection:" << QString(blocks ? QStringLiteral("NOT available") : QStringLiteral("Available")) <<
" - Mean block time:" << m_time/(1000.0*1000.0) << "ms";
return blocks ? 'd' : 't';
}
return 0;
}
} // namespace