kwin/effects/cube/cube.cpp
Martin Gräßlin 18cccad806 Introduce a templated animationTime overload for the KConfigXT case
This method can be used to get the animationTime in case a configuration
class generated through KConfigXT is used. In general the configuration
stores the magic value 0 for a property "duration". This magic value
indicates that a hard-coded default value should be used.

So the common logic to test the stored value for 0 and then either pass
the stored value or the default value to animationTime is encapsulated
in this method in a generic way.

A MyEffect can use it in the following way:
animationTime<MyEffectConfig>(200);

BUG: 310646
FIXED-IN: 4.10
REVIEW: 107460
2012-11-25 20:19:31 +01:00

2113 lines
87 KiB
C++

/********************************************************************
KWin - the KDE window manager
This file is part of the KDE project.
Copyright (C) 2008 Martin Gräßlin <ubuntu@martin-graesslin.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*********************************************************************/
#include "cube.h"
// KConfigSkeleton
#include "cubeconfig.h"
#include "cube_inside.h"
#include <kaction.h>
#include <kactioncollection.h>
#include <klocale.h>
#include <kwinconfig.h>
#include <kdebug.h>
#include <QColor>
#include <QRect>
#include <QEvent>
#include <QFutureWatcher>
#include <QKeyEvent>
#include <QtConcurrentRun>
#include <QVector2D>
#include <QVector3D>
#include <math.h>
#include <kwinglutils.h>
#include <kwinglplatform.h>
namespace KWin
{
KWIN_EFFECT(cube, CubeEffect)
KWIN_EFFECT_SUPPORTED(cube, CubeEffect::supported())
CubeEffect::CubeEffect()
: activated(false)
, mousePolling(false)
, cube_painting(false)
, keyboard_grab(false)
, schedule_close(false)
, painting_desktop(1)
, frontDesktop(0)
, cubeOpacity(1.0)
, opacityDesktopOnly(true)
, displayDesktopName(false)
, desktopNameFrame(NULL)
, reflection(true)
, rotating(false)
, desktopChangedWhileRotating(false)
, paintCaps(true)
, rotationDirection(Left)
, verticalRotationDirection(Upwards)
, verticalPosition(Normal)
, wallpaper(NULL)
, texturedCaps(true)
, capTexture(NULL)
, manualAngle(0.0)
, manualVerticalAngle(0.0)
, currentShape(QTimeLine::EaseInOutCurve)
, start(false)
, stop(false)
, reflectionPainting(false)
, activeScreen(0)
, bottomCap(false)
, closeOnMouseRelease(false)
, zoom(0.0)
, zPosition(0.0)
, useForTabBox(false)
, tabBoxMode(false)
, shortcutsRegistered(false)
, mode(Cube)
, useShaders(false)
, cylinderShader(0)
, sphereShader(0)
, zOrderingFactor(0.0f)
, mAddedHeightCoeff1(0.0f)
, mAddedHeightCoeff2(0.0f)
, m_cubeCapBuffer(NULL)
, m_proxy(this)
{
desktopNameFont.setBold(true);
desktopNameFont.setPointSize(14);
const QString fragmentshader = KGlobal::dirs()->findResource("data", "kwin/cube-reflection.glsl");
m_reflectionShader = ShaderManager::instance()->loadFragmentShader(ShaderManager::GenericShader, fragmentshader);
const QString capshader = KGlobal::dirs()->findResource("data", "kwin/cube-cap.glsl");
m_capShader = ShaderManager::instance()->loadFragmentShader(ShaderManager::GenericShader, capshader);
m_textureMirrorMatrix.scale(1.0, -1.0, 1.0);
m_textureMirrorMatrix.translate(0.0, -1.0, 0.0);
connect(effects, SIGNAL(tabBoxAdded(int)), this, SLOT(slotTabBoxAdded(int)));
connect(effects, SIGNAL(tabBoxClosed()), this, SLOT(slotTabBoxClosed()));
connect(effects, SIGNAL(tabBoxUpdated()), this, SLOT(slotTabBoxUpdated()));
connect(effects, SIGNAL(mouseChanged(QPoint,QPoint,Qt::MouseButtons,Qt::MouseButtons,Qt::KeyboardModifiers,Qt::KeyboardModifiers)),
this, SLOT(slotMouseChanged(QPoint,QPoint,Qt::MouseButtons,Qt::MouseButtons,Qt::KeyboardModifiers,Qt::KeyboardModifiers)));
reconfigure(ReconfigureAll);
}
bool CubeEffect::supported()
{
return effects->isOpenGLCompositing();
}
void CubeEffect::reconfigure(ReconfigureFlags)
{
CubeConfig::self()->readConfig();
foreach (ElectricBorder border, borderActivate) {
effects->unreserveElectricBorder(border);
}
foreach (ElectricBorder border, borderActivateCylinder) {
effects->unreserveElectricBorder(border);
}
foreach (ElectricBorder border, borderActivateSphere) {
effects->unreserveElectricBorder(border);
}
borderActivate.clear();
borderActivateCylinder.clear();
borderActivateSphere.clear();
QList<int> borderList = QList<int>();
borderList.append(int(ElectricNone));
borderList = CubeConfig::borderActivate();
foreach (int i, borderList) {
borderActivate.append(ElectricBorder(i));
effects->reserveElectricBorder(ElectricBorder(i));
}
borderList.clear();
borderList.append(int(ElectricNone));
borderList = CubeConfig::borderActivateCylinder();
foreach (int i, borderList) {
borderActivateCylinder.append(ElectricBorder(i));
effects->reserveElectricBorder(ElectricBorder(i));
}
borderList.clear();
borderList.append(int(ElectricNone));
borderList = CubeConfig::borderActivateSphere();
foreach (int i, borderList) {
borderActivateSphere.append(ElectricBorder(i));
effects->reserveElectricBorder(ElectricBorder(i));
}
cubeOpacity = (float)CubeConfig::opacity() / 100.0f;
opacityDesktopOnly = CubeConfig::opacityDesktopOnly();
displayDesktopName = CubeConfig::displayDesktopName();
reflection = CubeConfig::reflection();
// TODO: rename rotationDuration to duration
rotationDuration = animationTime(CubeConfig::rotationDuration() != 0 ? CubeConfig::rotationDuration() : 500);
backgroundColor = CubeConfig::backgroundColor();
capColor = CubeConfig::capColor();
paintCaps = CubeConfig::caps();
closeOnMouseRelease = CubeConfig::closeOnMouseRelease();
zPosition = CubeConfig::zPosition();
useForTabBox = CubeConfig::tabBox();
invertKeys = CubeConfig::invertKeys();
invertMouse = CubeConfig::invertMouse();
capDeformationFactor = (float)CubeConfig::capDeformation() / 100.0f;
useZOrdering = CubeConfig::zOrdering();
delete wallpaper;
wallpaper = NULL;
delete capTexture;
capTexture = NULL;
texturedCaps = CubeConfig::texturedCaps();
timeLine.setCurveShape(QTimeLine::EaseInOutCurve);
timeLine.setDuration(rotationDuration);
verticalTimeLine.setCurveShape(QTimeLine::EaseInOutCurve);
verticalTimeLine.setDuration(rotationDuration);
// do not connect the shortcut if we use cylinder or sphere
if (!shortcutsRegistered) {
KActionCollection* actionCollection = new KActionCollection(this);
KAction* cubeAction = static_cast< KAction* >(actionCollection->addAction("Cube"));
cubeAction->setText(i18n("Desktop Cube"));
cubeAction->setGlobalShortcut(KShortcut(Qt::CTRL + Qt::Key_F11));
cubeShortcut = cubeAction->globalShortcut();
KAction* cylinderAction = static_cast< KAction* >(actionCollection->addAction("Cylinder"));
cylinderAction->setText(i18n("Desktop Cylinder"));
cylinderAction->setGlobalShortcut(KShortcut(), KAction::ActiveShortcut);
cylinderShortcut = cylinderAction->globalShortcut();
KAction* sphereAction = static_cast< KAction* >(actionCollection->addAction("Sphere"));
sphereAction->setText(i18n("Desktop Sphere"));
sphereAction->setGlobalShortcut(KShortcut(), KAction::ActiveShortcut);
sphereShortcut = sphereAction->globalShortcut();
connect(cubeAction, SIGNAL(triggered(bool)), this, SLOT(toggleCube()));
connect(cylinderAction, SIGNAL(triggered(bool)), this, SLOT(toggleCylinder()));
connect(sphereAction, SIGNAL(triggered(bool)), this, SLOT(toggleSphere()));
connect(cubeAction, SIGNAL(globalShortcutChanged(QKeySequence)), this, SLOT(cubeShortcutChanged(QKeySequence)));
connect(cylinderAction, SIGNAL(globalShortcutChanged(QKeySequence)), this, SLOT(cylinderShortcutChanged(QKeySequence)));
connect(sphereAction, SIGNAL(globalShortcutChanged(QKeySequence)), this, SLOT(sphereShortcutChanged(QKeySequence)));
shortcutsRegistered = true;
}
// set the cap color on the shader
if (m_capShader->isValid()) {
ShaderBinder binder(m_capShader);
m_capShader->setUniform("u_capColor", capColor);
}
}
CubeEffect::~CubeEffect()
{
foreach (ElectricBorder border, borderActivate) {
effects->unreserveElectricBorder(border);
}
foreach (ElectricBorder border, borderActivateCylinder) {
effects->unreserveElectricBorder(border);
}
foreach (ElectricBorder border, borderActivateSphere) {
effects->unreserveElectricBorder(border);
}
delete wallpaper;
delete capTexture;
delete cylinderShader;
delete sphereShader;
delete desktopNameFrame;
delete m_reflectionShader;
delete m_capShader;
delete m_cubeCapBuffer;
}
QImage CubeEffect::loadCubeCap(const QString &capPath)
{
if (!texturedCaps) {
return QImage();
}
return QImage(capPath);
}
void CubeEffect::slotCubeCapLoaded()
{
QFutureWatcher<QImage> *watcher = dynamic_cast<QFutureWatcher<QImage>*>(sender());
if (!watcher) {
// not invoked from future watcher
return;
}
QImage img = watcher->result();
if (!img.isNull()) {
capTexture = new GLTexture(img);
capTexture->setFilter(GL_LINEAR);
#ifndef KWIN_HAVE_OPENGLES
capTexture->setWrapMode(GL_CLAMP_TO_BORDER);
#endif
// need to recreate the VBO for the cube cap
delete m_cubeCapBuffer;
m_cubeCapBuffer = NULL;
effects->addRepaintFull();
}
watcher->deleteLater();
}
QImage CubeEffect::loadWallPaper(const QString &file)
{
return QImage(file);
}
void CubeEffect::slotWallPaperLoaded()
{
QFutureWatcher<QImage> *watcher = dynamic_cast<QFutureWatcher<QImage>*>(sender());
if (!watcher) {
// not invoked from future watcher
return;
}
QImage img = watcher->result();
if (!img.isNull()) {
wallpaper = new GLTexture(img);
effects->addRepaintFull();
}
watcher->deleteLater();
}
bool CubeEffect::loadShader()
{
if (!(GLPlatform::instance()->supports(GLSL) &&
(effects->compositingType() == OpenGL2Compositing)))
return false;
QString fragmentshader = KGlobal::dirs()->findResource("data", "kwin/cylinder.frag");
QString cylinderVertexshader = KGlobal::dirs()->findResource("data", "kwin/cylinder.vert");
QString sphereVertexshader = KGlobal::dirs()->findResource("data", "kwin/sphere.vert");
if (fragmentshader.isEmpty() || cylinderVertexshader.isEmpty() || sphereVertexshader.isEmpty()) {
kError(1212) << "Couldn't locate shader files" << endl;
return false;
}
// TODO: use generic shader - currently it is failing in alpha/brightness manipulation
cylinderShader = new GLShader(cylinderVertexshader, fragmentshader);
if (!cylinderShader->isValid()) {
kError(1212) << "The cylinder shader failed to load!" << endl;
return false;
} else {
ShaderBinder binder(cylinderShader);
cylinderShader->setUniform("sampler", 0);
QMatrix4x4 projection;
float fovy = 60.0f;
float aspect = 1.0f;
float zNear = 0.1f;
float zFar = 100.0f;
float ymax = zNear * tan(fovy * M_PI / 360.0f);
float ymin = -ymax;
float xmin = ymin * aspect;
float xmax = ymax * aspect;
projection.frustum(xmin, xmax, ymin, ymax, zNear, zFar);
cylinderShader->setUniform(GLShader::ProjectionMatrix, projection);
QMatrix4x4 modelview;
float scaleFactor = 1.1 * tan(fovy * M_PI / 360.0f) / ymax;
modelview.translate(xmin * scaleFactor, ymax * scaleFactor, -1.1);
modelview.scale((xmax - xmin)*scaleFactor / displayWidth(), -(ymax - ymin)*scaleFactor / displayHeight(), 0.001);
cylinderShader->setUniform(GLShader::ModelViewMatrix, modelview);
const QMatrix4x4 identity;
cylinderShader->setUniform(GLShader::ScreenTransformation, identity);
cylinderShader->setUniform(GLShader::WindowTransformation, identity);
QRect rect = effects->clientArea(FullArea, activeScreen, effects->currentDesktop());
cylinderShader->setUniform("width", (float)rect.width() * 0.5f);
}
// TODO: use generic shader - currently it is failing in alpha/brightness manipulation
sphereShader = new GLShader(sphereVertexshader, fragmentshader);
if (!sphereShader->isValid()) {
kError(1212) << "The sphere shader failed to load!" << endl;
return false;
} else {
ShaderBinder binder(sphereShader);
sphereShader->setUniform("sampler", 0);
QMatrix4x4 projection;
float fovy = 60.0f;
float aspect = 1.0f;
float zNear = 0.1f;
float zFar = 100.0f;
float ymax = zNear * tan(fovy * M_PI / 360.0f);
float ymin = -ymax;
float xmin = ymin * aspect;
float xmax = ymax * aspect;
projection.frustum(xmin, xmax, ymin, ymax, zNear, zFar);
sphereShader->setUniform(GLShader::ProjectionMatrix, projection);
QMatrix4x4 modelview;
float scaleFactor = 1.1 * tan(fovy * M_PI / 360.0f) / ymax;
modelview.translate(xmin * scaleFactor, ymax * scaleFactor, -1.1);
modelview.scale((xmax - xmin)*scaleFactor / displayWidth(), -(ymax - ymin)*scaleFactor / displayHeight(), 0.001);
sphereShader->setUniform(GLShader::ModelViewMatrix, modelview);
const QMatrix4x4 identity;
sphereShader->setUniform(GLShader::ScreenTransformation, identity);
sphereShader->setUniform(GLShader::WindowTransformation, identity);
QRect rect = effects->clientArea(FullArea, activeScreen, effects->currentDesktop());
sphereShader->setUniform("width", (float)rect.width() * 0.5f);
sphereShader->setUniform("height", (float)rect.height() * 0.5f);
sphereShader->setUniform("u_offset", QVector2D(0, 0));
checkGLError("Loading Sphere Shader");
}
return true;
}
void CubeEffect::prePaintScreen(ScreenPrePaintData& data, int time)
{
if (activated) {
data.mask |= PAINT_SCREEN_TRANSFORMED | Effect::PAINT_SCREEN_WITH_TRANSFORMED_WINDOWS | PAINT_SCREEN_BACKGROUND_FIRST;
if (rotating || start || stop) {
timeLine.setCurrentTime(timeLine.currentTime() + time);
rotateCube();
}
if (verticalRotating) {
verticalTimeLine.setCurrentTime(verticalTimeLine.currentTime() + time);
rotateCube();
}
}
effects->prePaintScreen(data, time);
}
void CubeEffect::paintScreen(int mask, QRegion region, ScreenPaintData& data)
{
if (activated) {
QRect rect = effects->clientArea(FullArea, activeScreen, effects->currentDesktop());
// background
float clearColor[4];
glGetFloatv(GL_COLOR_CLEAR_VALUE, clearColor);
glClearColor(backgroundColor.redF(), backgroundColor.greenF(), backgroundColor.blueF(), 1.0);
glClear(GL_COLOR_BUFFER_BIT);
glClearColor(clearColor[0], clearColor[1], clearColor[2], clearColor[3]);
// wallpaper
if (wallpaper) {
ShaderBinder binder(ShaderManager::SimpleShader);
wallpaper->bind();
wallpaper->render(region, rect);
wallpaper->unbind();
}
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
// some veriables needed for painting the caps
float cubeAngle = (float)((float)(effects->numberOfDesktops() - 2) / (float)effects->numberOfDesktops() * 180.0f);
float point = rect.width() / 2 * tan(cubeAngle * 0.5f * M_PI / 180.0f);
float zTranslate = zPosition + zoom;
if (start)
zTranslate *= timeLine.currentValue();
if (stop)
zTranslate *= (1.0 - timeLine.currentValue());
// reflection
if (reflection && mode != Sphere) {
// we can use a huge scale factor (needed to calculate the rearground vertices)
float scaleFactor = 1000000 * tan(60.0 * M_PI / 360.0f) / rect.height();
m_reflectionMatrix.setToIdentity();
m_reflectionMatrix.scale(1.0, -1.0, 1.0);
// TODO reflection is not correct when mixing manual (mouse) rotating with rotation by cursor keys
// there's also a small bug when zooming
float addedHeight1 = -sin(asin(float(rect.height()) / mAddedHeightCoeff1) + fabs(manualVerticalAngle) * M_PI / 180.0f) * mAddedHeightCoeff1;
float addedHeight2 = -sin(asin(float(rect.height()) / mAddedHeightCoeff2) + fabs(manualVerticalAngle) * M_PI / 180.0f) * mAddedHeightCoeff2 - addedHeight1;
if (manualVerticalAngle > 0.0f && effects->numberOfDesktops() & 1) {
m_reflectionMatrix.translate(0.0, cos(fabs(manualAngle) * M_PI / 360.0f * float(effects->numberOfDesktops())) * addedHeight2 + addedHeight1 - float(rect.height()), 0.0);
} else {
m_reflectionMatrix.translate(0.0, sin(fabs(manualAngle) * M_PI / 360.0f * float(effects->numberOfDesktops())) * addedHeight2 + addedHeight1 - float(rect.height()), 0.0);
}
pushMatrix(m_reflectionMatrix);
#ifndef KWIN_HAVE_OPENGLES
// TODO: find a solution for GLES
glEnable(GL_CLIP_PLANE0);
#endif
reflectionPainting = true;
glEnable(GL_CULL_FACE);
paintCap(true, -point - zTranslate);
// cube
glCullFace(GL_BACK);
pushMatrix(m_rotationMatrix);
paintCube(mask, region, data);
popMatrix();
// call the inside cube effects
#ifdef KWIN_HAVE_OPENGL_1
foreach (CubeInsideEffect * inside, m_cubeInsideEffects) {
pushMatrix(m_rotationMatrix);
glTranslatef(rect.width() / 2, rect.height() / 2, -point - zTranslate);
glRotatef((1 - frontDesktop) * 360.0f / effects->numberOfDesktops(), 0.0, 1.0, 0.0);
inside->paint();
popMatrix();
}
#endif
glCullFace(GL_FRONT);
pushMatrix(m_rotationMatrix);
paintCube(mask, region, data);
popMatrix();
paintCap(false, -point - zTranslate);
glDisable(GL_CULL_FACE);
reflectionPainting = false;
#ifndef KWIN_HAVE_OPENGLES
// TODO: find a solution for GLES
glDisable(GL_CLIP_PLANE0);
#endif
popMatrix();
float vertices[] = {
-rect.width() * 0.5f, rect.height(), 0.0,
rect.width() * 0.5f, rect.height(), 0.0,
(float)rect.width()*scaleFactor, rect.height(), -5000,
-(float)rect.width()*scaleFactor, rect.height(), -5000
};
// foreground
float alpha = 0.7;
if (start)
alpha = 0.3 + 0.4 * timeLine.currentValue();
if (stop)
alpha = 0.3 + 0.4 * (1.0 - timeLine.currentValue());
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
ShaderManager *shaderManager = ShaderManager::instance();
if (shaderManager->isValid() && m_reflectionShader->isValid()) {
// ensure blending is enabled - no attribute stack
ShaderBinder binder(m_reflectionShader);
QMatrix4x4 windowTransformation;
windowTransformation.translate(rect.x() + rect.width() * 0.5f, 0.0, 0.0);
m_reflectionShader->setUniform("windowTransformation", windowTransformation);
m_reflectionShader->setUniform("u_alpha", alpha);
QVector<float> verts;
QVector<float> texcoords;
verts.reserve(18);
texcoords.reserve(12);
texcoords << 0.0 << 0.0;
verts << vertices[6] << vertices[7] << vertices[8];
texcoords << 0.0 << 0.0;
verts << vertices[9] << vertices[10] << vertices[11];
texcoords << 1.0 << 0.0;
verts << vertices[0] << vertices[1] << vertices[2];
texcoords << 1.0 << 0.0;
verts << vertices[0] << vertices[1] << vertices[2];
texcoords << 1.0 << 0.0;
verts << vertices[3] << vertices[4] << vertices[5];
texcoords << 0.0 << 0.0;
verts << vertices[6] << vertices[7] << vertices[8];
GLVertexBuffer *vbo = GLVertexBuffer::streamingBuffer();
vbo->reset();
vbo->setData(6, 3, verts.data(), texcoords.data());
vbo->render(GL_TRIANGLES);
} else {
#ifdef KWIN_HAVE_OPENGL_1
glColor4f(0.0, 0.0, 0.0, alpha);
glPushMatrix();
glTranslatef(rect.x() + rect.width() * 0.5f, 0.0, 0.0);
glBegin(GL_POLYGON);
glVertex3f(vertices[0], vertices[1], vertices[2]);
glVertex3f(vertices[3], vertices[4], vertices[5]);
// rearground
alpha = -1.0;
glColor4f(0.0, 0.0, 0.0, alpha);
glVertex3f(vertices[6], vertices[7], vertices[8]);
glVertex3f(vertices[9], vertices[10], vertices[11]);
glEnd();
glPopMatrix();
#endif
}
glDisable(GL_BLEND);
}
glEnable(GL_CULL_FACE);
// caps
paintCap(false, -point - zTranslate);
// cube
glCullFace(GL_FRONT);
pushMatrix(m_rotationMatrix);
paintCube(mask, region, data);
popMatrix();
// call the inside cube effects
#ifdef KWIN_HAVE_OPENGL_1
foreach (CubeInsideEffect * inside, m_cubeInsideEffects) {
pushMatrix(m_rotationMatrix);
glTranslatef(rect.width() / 2, rect.height() / 2, -point - zTranslate);
glRotatef((1 - frontDesktop) * 360.0f / effects->numberOfDesktops(), 0.0, 1.0, 0.0);
inside->paint();
popMatrix();
}
#endif
glCullFace(GL_BACK);
pushMatrix(m_rotationMatrix);
paintCube(mask, region, data);
popMatrix();
// cap
paintCap(true, -point - zTranslate);
glDisable(GL_CULL_FACE);
glDisable(GL_BLEND);
// desktop name box - inspired from coverswitch
if (displayDesktopName) {
double opacity = 1.0;
if (start)
opacity = timeLine.currentValue();
if (stop)
opacity = 1.0 - timeLine.currentValue();
QRect screenRect = effects->clientArea(ScreenArea, activeScreen, frontDesktop);
QRect frameRect = QRect(screenRect.width() * 0.33f + screenRect.x(), screenRect.height() * 0.95f + screenRect.y(),
screenRect.width() * 0.34f, QFontMetrics(desktopNameFont).height());
if (!desktopNameFrame) {
desktopNameFrame = effects->effectFrame(EffectFrameStyled);
desktopNameFrame->setFont(desktopNameFont);
}
desktopNameFrame->setGeometry(frameRect);
desktopNameFrame->setText(effects->desktopName(frontDesktop));
desktopNameFrame->render(region, opacity);
}
// restore the ScreenTransformation after all desktops are painted
// if not done GenericShader keeps the rotation data and transforms windows incorrectly in other rendering calls
if (effects->compositingType() == OpenGL2Compositing) {
GLShader *shader = ShaderManager::instance()->pushShader(KWin::ShaderManager::GenericShader);
shader->setUniform(GLShader::ScreenTransformation, QMatrix4x4());
ShaderManager::instance()->popShader();
}
} else {
effects->paintScreen(mask, region, data);
}
}
void CubeEffect::rotateCube()
{
QRect rect = effects->clientArea(FullArea, activeScreen, effects->currentDesktop());
m_rotationMatrix.setToIdentity();
float internalCubeAngle = 360.0f / effects->numberOfDesktops();
float zTranslate = zPosition + zoom;
if (start)
zTranslate *= timeLine.currentValue();
if (stop)
zTranslate *= (1.0 - timeLine.currentValue());
// Rotation of the cube
float cubeAngle = (float)((float)(effects->numberOfDesktops() - 2) / (float)effects->numberOfDesktops() * 180.0f);
float point = rect.width() / 2 * tan(cubeAngle * 0.5f * M_PI / 180.0f);
if (verticalRotating || verticalPosition != Normal || manualVerticalAngle != 0.0) {
// change the verticalPosition if manualVerticalAngle > 90 or < -90 degrees
if (manualVerticalAngle <= -90.0) {
manualVerticalAngle += 90.0;
if (verticalPosition == Normal)
verticalPosition = Down;
if (verticalPosition == Up)
verticalPosition = Normal;
}
if (manualVerticalAngle >= 90.0) {
manualVerticalAngle -= 90.0;
if (verticalPosition == Normal)
verticalPosition = Up;
if (verticalPosition == Down)
verticalPosition = Normal;
}
float angle = 0.0;
if (verticalPosition == Up) {
angle = 90.0;
if (!verticalRotating) {
if (manualVerticalAngle < 0.0)
angle += manualVerticalAngle;
else
manualVerticalAngle = 0.0;
}
} else if (verticalPosition == Down) {
angle = -90.0;
if (!verticalRotating) {
if (manualVerticalAngle > 0.0)
angle += manualVerticalAngle;
else
manualVerticalAngle = 0.0;
}
} else {
angle = manualVerticalAngle;
}
if (verticalRotating) {
angle *= verticalTimeLine.currentValue();
if (verticalPosition == Normal && verticalRotationDirection == Upwards)
angle = -90.0 + 90 * verticalTimeLine.currentValue();
if (verticalPosition == Normal && verticalRotationDirection == Downwards)
angle = 90.0 - 90 * verticalTimeLine.currentValue();
angle += manualVerticalAngle * (1.0 - verticalTimeLine.currentValue());
}
if (stop)
angle *= (1.0 - timeLine.currentValue());
m_rotationMatrix.translate(rect.width() / 2, rect.height() / 2, -point - zTranslate);
m_rotationMatrix.rotate(angle, 1.0, 0.0, 0.0);
m_rotationMatrix.translate(-rect.width() / 2, -rect.height() / 2, point + zTranslate);
}
if (rotating || (manualAngle != 0.0)) {
int tempFrontDesktop = frontDesktop;
if (manualAngle > internalCubeAngle * 0.5f) {
manualAngle -= internalCubeAngle;
tempFrontDesktop--;
if (tempFrontDesktop == 0)
tempFrontDesktop = effects->numberOfDesktops();
}
if (manualAngle < -internalCubeAngle * 0.5f) {
manualAngle += internalCubeAngle;
tempFrontDesktop++;
if (tempFrontDesktop > effects->numberOfDesktops())
tempFrontDesktop = 1;
}
float rotationAngle = internalCubeAngle * timeLine.currentValue();
if (rotationAngle > internalCubeAngle * 0.5f) {
rotationAngle -= internalCubeAngle;
if (!desktopChangedWhileRotating) {
desktopChangedWhileRotating = true;
if (rotationDirection == Left) {
tempFrontDesktop++;
} else if (rotationDirection == Right) {
tempFrontDesktop--;
}
if (tempFrontDesktop > effects->numberOfDesktops())
tempFrontDesktop = 1;
else if (tempFrontDesktop == 0)
tempFrontDesktop = effects->numberOfDesktops();
}
}
// don't change front desktop during stop animation as this would break some logic
if (!stop)
frontDesktop = tempFrontDesktop;
if (rotationDirection == Left) {
rotationAngle *= -1;
}
if (stop)
rotationAngle = manualAngle * (1.0 - timeLine.currentValue());
else
rotationAngle += manualAngle * (1.0 - timeLine.currentValue());
m_rotationMatrix.translate(rect.width() / 2, rect.height() / 2, -point - zTranslate);
m_rotationMatrix.rotate(rotationAngle, 0.0, 1.0, 0.0);
m_rotationMatrix.translate(-rect.width() / 2, -rect.height() / 2, point + zTranslate);
}
}
void CubeEffect::paintCube(int mask, QRegion region, ScreenPaintData& data)
{
QRect rect = effects->clientArea(FullArea, activeScreen, effects->currentDesktop());
float internalCubeAngle = 360.0f / effects->numberOfDesktops();
cube_painting = true;
float zTranslate = zPosition + zoom;
if (start)
zTranslate *= timeLine.currentValue();
if (stop)
zTranslate *= (1.0 - timeLine.currentValue());
// Rotation of the cube
float cubeAngle = (float)((float)(effects->numberOfDesktops() - 2) / (float)effects->numberOfDesktops() * 180.0f);
float point = rect.width() / 2 * tan(cubeAngle * 0.5f * M_PI / 180.0f);
for (int i = 0; i < effects->numberOfDesktops(); i++) {
// start painting the cube
painting_desktop = (i + frontDesktop) % effects->numberOfDesktops();
if (painting_desktop == 0) {
painting_desktop = effects->numberOfDesktops();
}
ScreenPaintData newData = data;
newData.setRotationAxis(Qt::YAxis);
newData.setRotationAngle(internalCubeAngle * i);
newData.setRotationOrigin(QVector3D(rect.width() / 2, 0.0, -point));
newData.setZTranslation(-zTranslate);
effects->paintScreen(mask, region, newData);
}
cube_painting = false;
painting_desktop = effects->currentDesktop();
}
void CubeEffect::paintCap(bool frontFirst, float zOffset)
{
if ((!paintCaps) || effects->numberOfDesktops() <= 2)
return;
GLenum firstCull = frontFirst ? GL_FRONT : GL_BACK;
GLenum secondCull = frontFirst ? GL_BACK : GL_FRONT;
const QRect rect = effects->clientArea(FullArea, activeScreen, effects->currentDesktop());
// create the VBO if not yet created
if (!m_cubeCapBuffer) {
switch(mode) {
case Cube:
paintCubeCap();
break;
case Cylinder:
paintCylinderCap();
break;
case Sphere:
paintSphereCap();
break;
default:
// impossible
break;
}
}
QMatrix4x4 capMatrix;
capMatrix.translate(rect.width() / 2, 0.0, zOffset);
capMatrix.rotate((1 - frontDesktop) * 360.0f / effects->numberOfDesktops(), 0.0, 1.0, 0.0);
capMatrix.translate(0.0, rect.height(), 0.0);
if (mode == Sphere) {
capMatrix.scale(1.0, -1.0, 1.0);
}
bool capShader = false;
if (effects->compositingType() == OpenGL2Compositing && m_capShader->isValid()) {
capShader = true;
ShaderManager::instance()->pushShader(m_capShader);
float opacity = cubeOpacity;
if (start) {
opacity *= timeLine.currentValue();
} else if (stop) {
opacity *= (1.0 - timeLine.currentValue());
}
m_capShader->setUniform("u_opacity", opacity);
m_capShader->setUniform("u_mirror", 1);
if (reflectionPainting) {
m_capShader->setUniform(GLShader::ScreenTransformation, m_reflectionMatrix * m_rotationMatrix);
} else {
m_capShader->setUniform(GLShader::ScreenTransformation, m_rotationMatrix);
}
m_capShader->setUniform(GLShader::WindowTransformation, capMatrix);
m_capShader->setUniform("u_untextured", texturedCaps ? 0 : 1);
if (texturedCaps && effects->numberOfDesktops() > 3 && capTexture) {
capTexture->bind();
}
} else {
#ifdef KWIN_HAVE_OPENGL_1
pushMatrix(m_rotationMatrix * capMatrix);
glMatrixMode(GL_TEXTURE);
pushMatrix();
loadMatrix(m_textureMirrorMatrix);
glMatrixMode(GL_MODELVIEW);
glColor4f(capColor.redF(), capColor.greenF(), capColor.blueF(), cubeOpacity);
if (texturedCaps && effects->numberOfDesktops() > 3 && capTexture) {
// modulate the cap texture: cap color should be background for translucent pixels
// cube opacity should be used for all pixels
// blend with cap color
float color[4] = { capColor.redF(), capColor.greenF(), capColor.blueF(), cubeOpacity };
glActiveTexture(GL_TEXTURE0);
capTexture->bind();
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_DECAL);
glColor4fv(color);
// set Opacity to cube opacity
// TODO: change opacity during start/stop animation
glActiveTexture(GL_TEXTURE1);
capTexture->bind();
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE);
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB, GL_REPLACE);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB, GL_PREVIOUS);
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_ALPHA, GL_REPLACE);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_ALPHA, GL_CONSTANT);
glTexEnvfv(GL_TEXTURE_ENV, GL_TEXTURE_ENV_COLOR, color);
glActiveTexture(GL_TEXTURE0);
glTexParameterfv(GL_TEXTURE_2D, GL_TEXTURE_BORDER_COLOR, color);
}
#endif
}
glEnable(GL_BLEND);
glCullFace(firstCull);
m_cubeCapBuffer->render(GL_TRIANGLES);
if (mode == Sphere) {
capMatrix.scale(1.0, -1.0, 1.0);
}
capMatrix.translate(0.0, -rect.height(), 0.0);
if (capShader) {
m_capShader->setUniform("windowTransformation", capMatrix);
m_capShader->setUniform("u_mirror", 0);
} else {
#ifndef KWIN_HAVE_OPENGLES
glMatrixMode(GL_TEXTURE);
popMatrix();
glMatrixMode(GL_MODELVIEW);
#endif
popMatrix();
pushMatrix(m_rotationMatrix * capMatrix);
}
glCullFace(secondCull);
m_cubeCapBuffer->render(GL_TRIANGLES);
glDisable(GL_BLEND);
if (capShader) {
ShaderManager::instance()->popShader();
if (texturedCaps && effects->numberOfDesktops() > 3 && capTexture) {
capTexture->unbind();
}
} else {
popMatrix();
if (texturedCaps && effects->numberOfDesktops() > 3 && capTexture) {
#ifndef KWIN_HAVE_OPENGLES
glActiveTexture(GL_TEXTURE1);
glDisable(capTexture->target());
glActiveTexture(GL_TEXTURE0);
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);
glColor4f(0.0f, 0.0f, 0.0f, 0.0f);
capTexture->unbind();
#endif
}
}
}
void CubeEffect::paintCubeCap()
{
QRect rect = effects->clientArea(FullArea, activeScreen, effects->currentDesktop());
float cubeAngle = (float)((float)(effects->numberOfDesktops() - 2) / (float)effects->numberOfDesktops() * 180.0f);
float z = rect.width() / 2 * tan(cubeAngle * 0.5f * M_PI / 180.0f);
float zTexture = rect.width() / 2 * tan(45.0f * M_PI / 180.0f);
float angle = 360.0f / effects->numberOfDesktops();
bool texture = texturedCaps && effects->numberOfDesktops() > 3 && capTexture;
QVector<float> verts;
QVector<float> texCoords;
for (int i = 0; i < effects->numberOfDesktops(); i++) {
int triangleRows = effects->numberOfDesktops() * 5;
float zTriangleDistance = z / (float)triangleRows;
float widthTriangle = tan(angle * 0.5 * M_PI / 180.0) * zTriangleDistance;
float currentWidth = 0.0;
float cosValue = cos(i * angle * M_PI / 180.0);
float sinValue = sin(i * angle * M_PI / 180.0);
for (int j = 0; j < triangleRows; j++) {
float previousWidth = currentWidth;
currentWidth = tan(angle * 0.5 * M_PI / 180.0) * zTriangleDistance * (j + 1);
int evenTriangles = 0;
int oddTriangles = 0;
for (int k = 0; k < floor(currentWidth / widthTriangle * 2 - 1 + 0.5f); k++) {
float x1 = -previousWidth;
float x2 = -currentWidth;
float x3 = 0.0;
float z1 = 0.0;
float z2 = 0.0;
float z3 = 0.0;
if (k % 2 == 0) {
x1 += evenTriangles * widthTriangle * 2;
x2 += evenTriangles * widthTriangle * 2;
x3 = x2 + widthTriangle * 2;
z1 = j * zTriangleDistance;
z2 = (j + 1) * zTriangleDistance;
z3 = (j + 1) * zTriangleDistance;
float xRot = cosValue * x1 - sinValue * z1;
float zRot = sinValue * x1 + cosValue * z1;
x1 = xRot;
z1 = zRot;
xRot = cosValue * x2 - sinValue * z2;
zRot = sinValue * x2 + cosValue * z2;
x2 = xRot;
z2 = zRot;
xRot = cosValue * x3 - sinValue * z3;
zRot = sinValue * x3 + cosValue * z3;
x3 = xRot;
z3 = zRot;
evenTriangles++;
} else {
x1 += oddTriangles * widthTriangle * 2;
x2 += (oddTriangles + 1) * widthTriangle * 2;
x3 = x1 + widthTriangle * 2;
z1 = j * zTriangleDistance;
z2 = (j + 1) * zTriangleDistance;
z3 = j * zTriangleDistance;
float xRot = cosValue * x1 - sinValue * z1;
float zRot = sinValue * x1 + cosValue * z1;
x1 = xRot;
z1 = zRot;
xRot = cosValue * x2 - sinValue * z2;
zRot = sinValue * x2 + cosValue * z2;
x2 = xRot;
z2 = zRot;
xRot = cosValue * x3 - sinValue * z3;
zRot = sinValue * x3 + cosValue * z3;
x3 = xRot;
z3 = zRot;
oddTriangles++;
}
float texX1 = 0.0;
float texX2 = 0.0;
float texX3 = 0.0;
float texY1 = 0.0;
float texY2 = 0.0;
float texY3 = 0.0;
if (texture) {
if (capTexture->isYInverted()) {
texX1 = x1 / (rect.width()) + 0.5;
texY1 = 0.5 + z1 / zTexture * 0.5;
texX2 = x2 / (rect.width()) + 0.5;
texY2 = 0.5 + z2 / zTexture * 0.5;
texX3 = x3 / (rect.width()) + 0.5;
texY3 = 0.5 + z3 / zTexture * 0.5;
texCoords << texX1 << texY1;
} else {
texX1 = x1 / (rect.width()) + 0.5;
texY1 = 0.5 - z1 / zTexture * 0.5;
texX2 = x2 / (rect.width()) + 0.5;
texY2 = 0.5 - z2 / zTexture * 0.5;
texX3 = x3 / (rect.width()) + 0.5;
texY3 = 0.5 - z3 / zTexture * 0.5;
texCoords << texX1 << texY1;
}
}
verts << x1 << 0.0 << z1;
if (texture) {
texCoords << texX2 << texY2;
}
verts << x2 << 0.0 << z2;
if (texture) {
texCoords << texX3 << texY3;
}
verts << x3 << 0.0 << z3;
}
}
}
delete m_cubeCapBuffer;
m_cubeCapBuffer = new GLVertexBuffer(GLVertexBuffer::Static);
m_cubeCapBuffer->setData(verts.count() / 3, 3, verts.constData(), texture ? texCoords.constData() : NULL);
}
void CubeEffect::paintCylinderCap()
{
QRect rect = effects->clientArea(FullArea, activeScreen, effects->currentDesktop());
float cubeAngle = (float)((float)(effects->numberOfDesktops() - 2) / (float)effects->numberOfDesktops() * 180.0f);
float radian = (cubeAngle * 0.5) * M_PI / 180;
float radius = (rect.width() * 0.5) * tan(radian);
float segment = radius / 30.0f;
bool texture = texturedCaps && effects->numberOfDesktops() > 3 && capTexture;
QVector<float> verts;
QVector<float> texCoords;
for (int i = 1; i <= 30; i++) {
int steps = 72;
for (int j = 0; j <= steps; j++) {
const float azimuthAngle = (j * (360.0f / steps)) * M_PI / 180.0f;
const float azimuthAngle2 = ((j + 1) * (360.0f / steps)) * M_PI / 180.0f;
const float x1 = segment * (i - 1) * sin(azimuthAngle);
const float x2 = segment * i * sin(azimuthAngle);
const float x3 = segment * (i - 1) * sin(azimuthAngle2);
const float x4 = segment * i * sin(azimuthAngle2);
const float z1 = segment * (i - 1) * cos(azimuthAngle);
const float z2 = segment * i * cos(azimuthAngle);
const float z3 = segment * (i - 1) * cos(azimuthAngle2);
const float z4 = segment * i * cos(azimuthAngle2);
if (texture) {
if (capTexture->isYInverted()) {
texCoords << (radius + x1) / (radius * 2.0f) << (z1 + radius) / (radius * 2.0f);
texCoords << (radius + x2) / (radius * 2.0f) << (z2 + radius) / (radius * 2.0f);
texCoords << (radius + x3) / (radius * 2.0f) << (z3 + radius) / (radius * 2.0f);
texCoords << (radius + x4) / (radius * 2.0f) << (z4 + radius) / (radius * 2.0f);
texCoords << (radius + x3) / (radius * 2.0f) << (z3 + radius) / (radius * 2.0f);
texCoords << (radius + x2) / (radius * 2.0f) << (z2 + radius) / (radius * 2.0f);
} else {
texCoords << (radius + x1) / (radius * 2.0f) << 1.0f - (z1 + radius) / (radius * 2.0f);
texCoords << (radius + x2) / (radius * 2.0f) << 1.0f - (z2 + radius) / (radius * 2.0f);
texCoords << (radius + x3) / (radius * 2.0f) << 1.0f - (z3 + radius) / (radius * 2.0f);
texCoords << (radius + x4) / (radius * 2.0f) << 1.0f - (z4 + radius) / (radius * 2.0f);
texCoords << (radius + x3) / (radius * 2.0f) << 1.0f - (z3 + radius) / (radius * 2.0f);
texCoords << (radius + x2) / (radius * 2.0f) << 1.0f - (z2 + radius) / (radius * 2.0f);
}
}
verts << x1 << 0.0 << z1;
verts << x2 << 0.0 << z2;
verts << x3 << 0.0 << z3;
verts << x4 << 0.0 << z4;
verts << x3 << 0.0 << z3;
verts << x2 << 0.0 << z2;
}
}
delete m_cubeCapBuffer;
m_cubeCapBuffer = new GLVertexBuffer(GLVertexBuffer::Static);
m_cubeCapBuffer->setData(verts.count() / 3, 3, verts.constData(), texture ? texCoords.constData() : NULL);
}
void CubeEffect::paintSphereCap()
{
QRect rect = effects->clientArea(FullArea, activeScreen, effects->currentDesktop());
float cubeAngle = (float)((float)(effects->numberOfDesktops() - 2) / (float)effects->numberOfDesktops() * 180.0f);
float zTexture = rect.width() / 2 * tan(45.0f * M_PI / 180.0f);
float radius = (rect.width() * 0.5) / cos(cubeAngle * 0.5 * M_PI / 180.0);
float angle = acos((rect.height() * 0.5) / radius) * 180.0 / M_PI;
angle /= 30;
bool texture = texturedCaps && effects->numberOfDesktops() > 3 && capTexture;
QVector<float> verts;
QVector<float> texCoords;
for (int i = 0; i < 30; i++) {
float topAngle = angle * i * M_PI / 180.0;
float bottomAngle = angle * (i + 1) * M_PI / 180.0;
float yTop = rect.height() * 0.5 - radius * cos(topAngle);
yTop -= (yTop - rect.height() * 0.5) * capDeformationFactor;
float yBottom = rect.height() * 0.5 - radius * cos(bottomAngle);
yBottom -= (yBottom - rect.height() * 0.5) * capDeformationFactor;
for (int j = 0; j < 36; j++) {
const float x1 = radius * sin(topAngle) * sin((90.0 + j * 10.0) * M_PI / 180.0);
const float z1 = radius * sin(topAngle) * cos((90.0 + j * 10.0) * M_PI / 180.0);
const float x2 = radius * sin(bottomAngle) * sin((90.0 + j * 10.0) * M_PI / 180.00);
const float z2 = radius * sin(bottomAngle) * cos((90.0 + j * 10.0) * M_PI / 180.0);
const float x3 = radius * sin(bottomAngle) * sin((90.0 + (j + 1) * 10.0) * M_PI / 180.0);
const float z3 = radius * sin(bottomAngle) * cos((90.0 + (j + 1) * 10.0) * M_PI / 180.0);
const float x4 = radius * sin(topAngle) * sin((90.0 + (j + 1) * 10.0) * M_PI / 180.0);
const float z4 = radius * sin(topAngle) * cos((90.0 + (j + 1) * 10.0) * M_PI / 180.0);
if (texture) {
if (capTexture->isYInverted()) {
texCoords << x4 / (rect.width()) + 0.5 << 0.5 + z4 / zTexture * 0.5;
texCoords << x1 / (rect.width()) + 0.5 << 0.5 + z1 / zTexture * 0.5;
texCoords << x2 / (rect.width()) + 0.5 << 0.5 + z2 / zTexture * 0.5;
texCoords << x2 / (rect.width()) + 0.5 << 0.5 + z2 / zTexture * 0.5;
texCoords << x3 / (rect.width()) + 0.5 << 0.5 + z3 / zTexture * 0.5;
texCoords << x4 / (rect.width()) + 0.5 << 0.5 + z4 / zTexture * 0.5;
} else {
texCoords << x4 / (rect.width()) + 0.5 << 0.5 - z4 / zTexture * 0.5;
texCoords << x1 / (rect.width()) + 0.5 << 0.5 - z1 / zTexture * 0.5;
texCoords << x2 / (rect.width()) + 0.5 << 0.5 - z2 / zTexture * 0.5;
texCoords << x2 / (rect.width()) + 0.5 << 0.5 - z2 / zTexture * 0.5;
texCoords << x3 / (rect.width()) + 0.5 << 0.5 - z3 / zTexture * 0.5;
texCoords << x4 / (rect.width()) + 0.5 << 0.5 - z4 / zTexture * 0.5;
}
}
verts << x4 << yTop << z4;
verts << x1 << yTop << z1;
verts << x2 << yBottom << z2;
verts << x2 << yBottom << z2;
verts << x3 << yBottom << z3;
verts << x4 << yTop << z4;
}
}
delete m_cubeCapBuffer;
m_cubeCapBuffer = new GLVertexBuffer(GLVertexBuffer::Static);
m_cubeCapBuffer->setData(verts.count() / 3, 3, verts.constData(), texture ? texCoords.constData() : NULL);
}
void CubeEffect::postPaintScreen()
{
effects->postPaintScreen();
if (activated) {
if (start) {
if (timeLine.currentValue() == 1.0) {
start = false;
timeLine.setCurrentTime(0);
// more rotations?
if (!rotations.empty()) {
rotationDirection = rotations.dequeue();
rotating = true;
// change the curve shape if current shape is not easeInOut
if (currentShape != QTimeLine::EaseInOutCurve) {
// more rotations follow -> linear curve
if (!rotations.empty()) {
currentShape = QTimeLine::LinearCurve;
}
// last rotation step -> easeOut curve
else {
currentShape = QTimeLine::EaseOutCurve;
}
timeLine.setCurveShape(currentShape);
} else {
// if there is at least one more rotation, we can change to easeIn
if (!rotations.empty()) {
currentShape = QTimeLine::EaseInCurve;
timeLine.setCurveShape(currentShape);
}
}
}
}
effects->addRepaintFull();
return; // schedule_close could have been called, start has to finish first
}
if (stop) {
if (timeLine.currentValue() == 1.0) {
effects->setCurrentDesktop(frontDesktop);
stop = false;
timeLine.setCurrentTime(0);
activated = false;
// set the new desktop
if (keyboard_grab)
effects->ungrabKeyboard();
keyboard_grab = false;
effects->destroyInputWindow(input);
effects->setActiveFullScreenEffect(0);
delete m_cubeCapBuffer;
m_cubeCapBuffer = NULL;
if (desktopNameFrame)
desktopNameFrame->free();
}
effects->addRepaintFull();
}
if (rotating || verticalRotating) {
if (rotating && timeLine.currentValue() == 1.0) {
timeLine.setCurrentTime(0.0);
rotating = false;
desktopChangedWhileRotating = false;
manualAngle = 0.0;
// more rotations?
if (!rotations.empty()) {
rotationDirection = rotations.dequeue();
rotating = true;
// change the curve shape if current shape is not easeInOut
if (currentShape != QTimeLine::EaseInOutCurve) {
// more rotations follow -> linear curve
if (!rotations.empty()) {
currentShape = QTimeLine::LinearCurve;
}
// last rotation step -> easeOut curve
else {
currentShape = QTimeLine::EaseOutCurve;
}
timeLine.setCurveShape(currentShape);
} else {
// if there is at least one more rotation, we can change to easeIn
if (!rotations.empty()) {
currentShape = QTimeLine::EaseInCurve;
timeLine.setCurveShape(currentShape);
}
}
} else {
// reset curve shape if there are no more rotations
if (currentShape != QTimeLine::EaseInOutCurve) {
currentShape = QTimeLine::EaseInOutCurve;
timeLine.setCurveShape(currentShape);
}
}
}
if (verticalRotating && verticalTimeLine.currentValue() == 1.0) {
verticalTimeLine.setCurrentTime(0);
verticalRotating = false;
manualVerticalAngle = 0.0;
// more rotations?
if (!verticalRotations.empty()) {
verticalRotationDirection = verticalRotations.dequeue();
verticalRotating = true;
if (verticalRotationDirection == Upwards) {
if (verticalPosition == Normal)
verticalPosition = Up;
if (verticalPosition == Down)
verticalPosition = Normal;
}
if (verticalRotationDirection == Downwards) {
if (verticalPosition == Normal)
verticalPosition = Down;
if (verticalPosition == Up)
verticalPosition = Normal;
}
}
}
effects->addRepaintFull();
return; // rotation has to end before cube is closed
}
if (schedule_close) {
schedule_close = false;
stop = true;
effects->addRepaintFull();
}
}
}
void CubeEffect::prePaintWindow(EffectWindow* w, WindowPrePaintData& data, int time)
{
if (activated) {
if (cube_painting) {
if (mode == Cylinder || mode == Sphere) {
int leftDesktop = frontDesktop - 1;
int rightDesktop = frontDesktop + 1;
if (leftDesktop == 0)
leftDesktop = effects->numberOfDesktops();
if (rightDesktop > effects->numberOfDesktops())
rightDesktop = 1;
if (painting_desktop == frontDesktop)
data.quads = data.quads.makeGrid(40);
else if (painting_desktop == leftDesktop || painting_desktop == rightDesktop)
data.quads = data.quads.makeGrid(100);
else
data.quads = data.quads.makeGrid(250);
}
if (w->isOnDesktop(painting_desktop)) {
QRect rect = effects->clientArea(FullArea, activeScreen, painting_desktop);
if (w->x() < rect.x()) {
data.quads = data.quads.splitAtX(-w->x());
}
if (w->x() + w->width() > rect.x() + rect.width()) {
data.quads = data.quads.splitAtX(rect.width() - w->x());
}
if (w->y() < rect.y()) {
data.quads = data.quads.splitAtY(-w->y());
}
if (w->y() + w->height() > rect.y() + rect.height()) {
data.quads = data.quads.splitAtY(rect.height() - w->y());
}
if (useZOrdering && !w->isDesktop() && !w->isDock() && !w->isOnAllDesktops())
data.setTransformed();
w->enablePainting(EffectWindow::PAINT_DISABLED_BY_DESKTOP);
} else {
// check for windows belonging to the previous desktop
int prev_desktop = painting_desktop - 1;
if (prev_desktop == 0)
prev_desktop = effects->numberOfDesktops();
if (w->isOnDesktop(prev_desktop) && mode == Cube && !useZOrdering) {
QRect rect = effects->clientArea(FullArea, activeScreen, prev_desktop);
if (w->x() + w->width() > rect.x() + rect.width()) {
w->enablePainting(EffectWindow::PAINT_DISABLED_BY_DESKTOP);
data.quads = data.quads.splitAtX(rect.width() - w->x());
if (w->y() < rect.y()) {
data.quads = data.quads.splitAtY(-w->y());
}
if (w->y() + w->height() > rect.y() + rect.height()) {
data.quads = data.quads.splitAtY(rect.height() - w->y());
}
data.setTransformed();
effects->prePaintWindow(w, data, time);
return;
}
}
// check for windows belonging to the next desktop
int next_desktop = painting_desktop + 1;
if (next_desktop > effects->numberOfDesktops())
next_desktop = 1;
if (w->isOnDesktop(next_desktop) && mode == Cube && !useZOrdering) {
QRect rect = effects->clientArea(FullArea, activeScreen, next_desktop);
if (w->x() < rect.x()) {
w->enablePainting(EffectWindow::PAINT_DISABLED_BY_DESKTOP);
data.quads = data.quads.splitAtX(-w->x());
if (w->y() < rect.y()) {
data.quads = data.quads.splitAtY(-w->y());
}
if (w->y() + w->height() > rect.y() + rect.height()) {
data.quads = data.quads.splitAtY(rect.height() - w->y());
}
data.setTransformed();
effects->prePaintWindow(w, data, time);
return;
}
}
w->disablePainting(EffectWindow::PAINT_DISABLED_BY_DESKTOP);
}
}
}
effects->prePaintWindow(w, data, time);
}
void CubeEffect::paintWindow(EffectWindow* w, int mask, QRegion region, WindowPaintData& data)
{
ShaderManager *shaderManager = ShaderManager::instance();
GLShader *shader = NULL;
QMatrix4x4 origMatrix;
if (activated && cube_painting) {
shader = shaderManager->pushShader(ShaderManager::GenericShader);
//kDebug(1212) << w->caption();
float opacity = cubeOpacity;
if (start) {
opacity = 1.0 - (1.0 - opacity) * timeLine.currentValue();
if (reflectionPainting)
opacity = 0.5 + (cubeOpacity - 0.5) * timeLine.currentValue();
// fade in windows belonging to different desktops
if (painting_desktop == effects->currentDesktop() && (!w->isOnDesktop(painting_desktop)))
opacity = timeLine.currentValue() * cubeOpacity;
}
if (stop) {
opacity = 1.0 - (1.0 - opacity) * (1.0 - timeLine.currentValue());
if (reflectionPainting)
opacity = 0.5 + (cubeOpacity - 0.5) * (1.0 - timeLine.currentValue());
// fade out windows belonging to different desktops
if (painting_desktop == effects->currentDesktop() && (!w->isOnDesktop(painting_desktop)))
opacity = cubeOpacity * (1.0 - timeLine.currentValue());
}
// z-Ordering
if (!w->isDesktop() && !w->isDock() && useZOrdering && !w->isOnAllDesktops()) {
float zOrdering = (effects->stackingOrder().indexOf(w) + 1) * zOrderingFactor;
if (start)
zOrdering *= timeLine.currentValue();
if (stop)
zOrdering *= (1.0 - timeLine.currentValue());
data.translate(0.0, 0.0, zOrdering);
}
// check for windows belonging to the previous desktop
int prev_desktop = painting_desktop - 1;
if (prev_desktop == 0)
prev_desktop = effects->numberOfDesktops();
int next_desktop = painting_desktop + 1;
if (next_desktop > effects->numberOfDesktops())
next_desktop = 1;
if (!shader) {
pushMatrix();
}
if (w->isOnDesktop(prev_desktop) && (mask & PAINT_WINDOW_TRANSFORMED)) {
QRect rect = effects->clientArea(FullArea, activeScreen, prev_desktop);
WindowQuadList new_quads;
foreach (const WindowQuad & quad, data.quads) {
if (quad.right() > rect.width() - w->x()) {
new_quads.append(quad);
}
}
data.quads = new_quads;
if (shader) {
data.setXTranslation(-rect.width());
} else {
data.setRotationAxis(Qt::YAxis);
data.setRotationOrigin(QVector3D(rect.width() - w->x(), 0.0, 0.0));
data.setRotationAngle(-360.0f / effects->numberOfDesktops());
float cubeAngle = (float)((float)(effects->numberOfDesktops() - 2) / (float)effects->numberOfDesktops() * 180.0f);
float point = rect.width() / 2 * tan(cubeAngle * 0.5f * M_PI / 180.0f);
QMatrix4x4 matrix;
matrix.translate(rect.width() / 2, 0.0, -point);
matrix.rotate(-360.0f / effects->numberOfDesktops(), 0.0, 1.0, 0.0);
matrix.translate(-rect.width() / 2, 0.0, point);
multiplyMatrix(matrix);
}
}
if (w->isOnDesktop(next_desktop) && (mask & PAINT_WINDOW_TRANSFORMED)) {
QRect rect = effects->clientArea(FullArea, activeScreen, next_desktop);
WindowQuadList new_quads;
foreach (const WindowQuad & quad, data.quads) {
if (w->x() + quad.right() <= rect.x()) {
new_quads.append(quad);
}
}
data.quads = new_quads;
if (shader) {
data.setXTranslation(rect.width());
} else {
data.setRotationAxis(Qt::YAxis);
data.setRotationOrigin(QVector3D(-w->x(), 0.0, 0.0));
data.setRotationAngle(-360.0f / effects->numberOfDesktops());
float cubeAngle = (float)((float)(effects->numberOfDesktops() - 2) / (float)effects->numberOfDesktops() * 180.0f);
float point = rect.width() / 2 * tan(cubeAngle * 0.5f * M_PI / 180.0f);
QMatrix4x4 matrix;
matrix.translate(rect.width() / 2, 0.0, -point);
matrix.rotate(360.0f / effects->numberOfDesktops(), 0.0, 1.0, 0.0);
matrix.translate(-rect.width() / 2, 0.0, point);
multiplyMatrix(matrix);
}
}
QRect rect = effects->clientArea(FullArea, activeScreen, painting_desktop);
if (start || stop) {
// we have to change opacity values for fade in/out of windows which are shown on front-desktop
if (prev_desktop == effects->currentDesktop() && w->x() < rect.x()) {
if (start)
opacity = timeLine.currentValue() * cubeOpacity;
if (stop)
opacity = cubeOpacity * (1.0 - timeLine.currentValue());
}
if (next_desktop == effects->currentDesktop() && w->x() + w->width() > rect.x() + rect.width()) {
if (start)
opacity = timeLine.currentValue() * cubeOpacity;
if (stop)
opacity = cubeOpacity * (1.0 - timeLine.currentValue());
}
}
// HACK set opacity to 0.99 in case of fully opaque to ensure that windows are painted in correct sequence
// bug #173214
if (opacity > 0.99f)
opacity = 0.99f;
if (opacityDesktopOnly && !w->isDesktop())
opacity = 0.99f;
data.multiplyOpacity(opacity);
if (w->isOnDesktop(painting_desktop) && w->x() < rect.x()) {
WindowQuadList new_quads;
foreach (const WindowQuad & quad, data.quads) {
if (quad.right() > -w->x()) {
new_quads.append(quad);
}
}
data.quads = new_quads;
}
if (w->isOnDesktop(painting_desktop) && w->x() + w->width() > rect.x() + rect.width()) {
WindowQuadList new_quads;
foreach (const WindowQuad & quad, data.quads) {
if (quad.right() <= rect.width() - w->x()) {
new_quads.append(quad);
}
}
data.quads = new_quads;
}
if (w->y() < rect.y()) {
WindowQuadList new_quads;
foreach (const WindowQuad & quad, data.quads) {
if (quad.bottom() > -w->y()) {
new_quads.append(quad);
}
}
data.quads = new_quads;
}
if (w->y() + w->height() > rect.y() + rect.height()) {
WindowQuadList new_quads;
foreach (const WindowQuad & quad, data.quads) {
if (quad.bottom() <= rect.height() - w->y()) {
new_quads.append(quad);
}
}
data.quads = new_quads;
}
if (shader) {
origMatrix = shader->getUniformMatrix4x4("screenTransformation");
GLShader *currentShader = shader;
if (mode == Cylinder) {
shaderManager->pushShader(cylinderShader);
cylinderShader->setUniform("xCoord", (float)w->x());
cylinderShader->setUniform("cubeAngle", (effects->numberOfDesktops() - 2) / (float)effects->numberOfDesktops() * 90.0f);
float factor = 0.0f;
if (start)
factor = 1.0f - timeLine.currentValue();
if (stop)
factor = timeLine.currentValue();
cylinderShader->setUniform("timeLine", factor);
data.shader = cylinderShader;
currentShader = cylinderShader;
}
if (mode == Sphere) {
shaderManager->pushShader(sphereShader);
sphereShader->setUniform("u_offset", QVector2D(w->x(), w->y()));
sphereShader->setUniform("cubeAngle", (effects->numberOfDesktops() - 2) / (float)effects->numberOfDesktops() * 90.0f);
float factor = 0.0f;
if (start)
factor = 1.0f - timeLine.currentValue();
if (stop)
factor = timeLine.currentValue();
sphereShader->setUniform("timeLine", factor);
data.shader = sphereShader;
currentShader = sphereShader;
}
if (reflectionPainting) {
currentShader->setUniform(GLShader::ScreenTransformation, m_reflectionMatrix * m_rotationMatrix * origMatrix);
} else {
currentShader->setUniform(GLShader::ScreenTransformation, m_rotationMatrix*origMatrix);
}
}
}
effects->paintWindow(w, mask, region, data);
if (activated && cube_painting) {
if (shader) {
if (mode == Cylinder || mode == Sphere) {
shaderManager->popShader();
} else {
shader->setUniform(GLShader::ScreenTransformation, origMatrix);
}
shaderManager->popShader();
}
if (w->isDesktop() && effects->numScreens() > 1 && paintCaps) {
QRect rect = effects->clientArea(FullArea, activeScreen, painting_desktop);
QRegion paint = QRegion(rect);
for (int i = 0; i < effects->numScreens(); i++) {
if (i == w->screen())
continue;
paint = paint.subtracted(QRegion(effects->clientArea(ScreenArea, i, painting_desktop)));
}
paint = paint.subtracted(QRegion(w->geometry()));
// in case of free area in multiscreen setup fill it with cap color
if (!paint.isEmpty()) {
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
QVector<float> verts;
float quadSize = 0.0f;
int leftDesktop = frontDesktop - 1;
int rightDesktop = frontDesktop + 1;
if (leftDesktop == 0)
leftDesktop = effects->numberOfDesktops();
if (rightDesktop > effects->numberOfDesktops())
rightDesktop = 1;
if (painting_desktop == frontDesktop)
quadSize = 100.0f;
else if (painting_desktop == leftDesktop || painting_desktop == rightDesktop)
quadSize = 150.0f;
else
quadSize = 250.0f;
foreach (const QRect & paintRect, paint.rects()) {
for (int i = 0; i <= (paintRect.height() / quadSize); i++) {
for (int j = 0; j <= (paintRect.width() / quadSize); j++) {
verts << qMin(paintRect.x() + (j + 1)*quadSize, (float)paintRect.x() + paintRect.width()) << paintRect.y() + i*quadSize;
verts << paintRect.x() + j*quadSize << paintRect.y() + i*quadSize;
verts << paintRect.x() + j*quadSize << qMin(paintRect.y() + (i + 1)*quadSize, (float)paintRect.y() + paintRect.height());
verts << paintRect.x() + j*quadSize << qMin(paintRect.y() + (i + 1)*quadSize, (float)paintRect.y() + paintRect.height());
verts << qMin(paintRect.x() + (j + 1)*quadSize, (float)paintRect.x() + paintRect.width()) << qMin(paintRect.y() + (i + 1)*quadSize, (float)paintRect.y() + paintRect.height());
verts << qMin(paintRect.x() + (j + 1)*quadSize, (float)paintRect.x() + paintRect.width()) << paintRect.y() + i*quadSize;
}
}
}
bool capShader = false;
if (effects->compositingType() == OpenGL2Compositing && m_capShader->isValid()) {
capShader = true;
ShaderManager::instance()->pushShader(m_capShader);
m_capShader->setUniform("u_mirror", 0);
m_capShader->setUniform("u_untextured", 1);
if (reflectionPainting) {
m_capShader->setUniform(GLShader::ScreenTransformation, m_reflectionMatrix * m_rotationMatrix * origMatrix);
} else {
m_capShader->setUniform(GLShader::ScreenTransformation, m_rotationMatrix * origMatrix);
}
m_capShader->setUniform(GLShader::WindowTransformation, QMatrix4x4());
}
GLVertexBuffer *vbo = GLVertexBuffer::streamingBuffer();
vbo->reset();
QColor color = capColor;
capColor.setAlphaF(cubeOpacity);
vbo->setColor(color);
vbo->setData(verts.size() / 2, 2, verts.constData(), NULL);
if (!capShader || mode == Cube) {
// TODO: use sphere and cylinder shaders
vbo->render(GL_TRIANGLES);
}
if (capShader) {
ShaderManager::instance()->popShader();
}
glDisable(GL_BLEND);
}
}
if (!shader) {
popMatrix();
}
}
}
bool CubeEffect::borderActivated(ElectricBorder border)
{
if (!borderActivate.contains(border) &&
!borderActivateCylinder.contains(border) &&
!borderActivateSphere.contains(border))
return false;
if (effects->activeFullScreenEffect() && effects->activeFullScreenEffect() != this)
return false;
if (borderActivate.contains(border)) {
if (!activated || (activated && mode == Cube))
toggleCube();
else
return false;
}
if (borderActivateCylinder.contains(border)) {
if (!activated || (activated && mode == Cylinder))
toggleCylinder();
else
return false;
}
if (borderActivateSphere.contains(border)) {
if (!activated || (activated && mode == Sphere))
toggleSphere();
else
return false;
}
return true;
}
void CubeEffect::toggleCube()
{
kDebug(1212) << "toggle cube";
toggle(Cube);
}
void CubeEffect::toggleCylinder()
{
kDebug(1212) << "toggle cylinder";
if (!useShaders)
useShaders = loadShader();
if (useShaders)
toggle(Cylinder);
else
kError(1212) << "Sorry shaders are not available - cannot activate Cylinder";
}
void CubeEffect::toggleSphere()
{
kDebug(1212) << "toggle sphere";
if (!useShaders)
useShaders = loadShader();
if (useShaders)
toggle(Sphere);
else
kError(1212) << "Sorry shaders are not available - cannot activate Sphere";
}
void CubeEffect::toggle(CubeMode newMode)
{
if ((effects->activeFullScreenEffect() && effects->activeFullScreenEffect() != this) ||
effects->numberOfDesktops() < 2)
return;
if (!activated) {
mode = newMode;
setActive(true);
} else {
setActive(false);
}
}
void CubeEffect::grabbedKeyboardEvent(QKeyEvent* e)
{
if (stop)
return;
// taken from desktopgrid.cpp
if (e->type() == QEvent::KeyPress) {
// check for global shortcuts
// HACK: keyboard grab disables the global shortcuts so we have to check for global shortcut (bug 156155)
if (mode == Cube && cubeShortcut.contains(e->key() + e->modifiers())) {
toggleCube();
return;
}
if (mode == Cylinder && cylinderShortcut.contains(e->key() + e->modifiers())) {
toggleCylinder();
return;
}
if (mode == Sphere && sphereShortcut.contains(e->key() + e->modifiers())) {
toggleSphere();
return;
}
int desktop = -1;
// switch by F<number> or just <number>
if (e->key() >= Qt::Key_F1 && e->key() <= Qt::Key_F35)
desktop = e->key() - Qt::Key_F1 + 1;
else if (e->key() >= Qt::Key_0 && e->key() <= Qt::Key_9)
desktop = e->key() == Qt::Key_0 ? 10 : e->key() - Qt::Key_0;
if (desktop != -1) {
if (desktop <= effects->numberOfDesktops()) {
// we have to rotate to chosen desktop
// and end effect when rotation finished
rotateToDesktop(desktop);
setActive(false);
}
return;
}
switch(e->key()) {
// wrap only on autorepeat
case Qt::Key_Left:
// rotate to previous desktop
kDebug(1212) << "left";
if (!rotating && !start) {
rotating = true;
if (invertKeys)
rotationDirection = Right;
else
rotationDirection = Left;
} else {
if (rotations.count() < effects->numberOfDesktops()) {
if (invertKeys)
rotations.enqueue(Right);
else
rotations.enqueue(Left);
}
}
break;
case Qt::Key_Right:
// rotate to next desktop
kDebug(1212) << "right";
if (!rotating && !start) {
rotating = true;
if (invertKeys)
rotationDirection = Left;
else
rotationDirection = Right;
} else {
if (rotations.count() < effects->numberOfDesktops()) {
if (invertKeys)
rotations.enqueue(Left);
else
rotations.enqueue(Right);
}
}
break;
case Qt::Key_Up:
kDebug(1212) << "up";
if (invertKeys) {
if (verticalPosition != Down) {
if (!verticalRotating) {
verticalRotating = true;
verticalRotationDirection = Downwards;
if (verticalPosition == Normal)
verticalPosition = Down;
if (verticalPosition == Up)
verticalPosition = Normal;
} else {
verticalRotations.enqueue(Downwards);
}
} else if (manualVerticalAngle > 0.0 && !verticalRotating) {
// rotate to down position from the manual position
verticalRotating = true;
verticalRotationDirection = Downwards;
verticalPosition = Down;
manualVerticalAngle -= 90.0;
}
} else {
if (verticalPosition != Up) {
if (!verticalRotating) {
verticalRotating = true;
verticalRotationDirection = Upwards;
if (verticalPosition == Normal)
verticalPosition = Up;
if (verticalPosition == Down)
verticalPosition = Normal;
} else {
verticalRotations.enqueue(Upwards);
}
} else if (manualVerticalAngle < 0.0 && !verticalRotating) {
// rotate to up position from the manual position
verticalRotating = true;
verticalRotationDirection = Upwards;
verticalPosition = Up;
manualVerticalAngle += 90.0;
}
}
break;
case Qt::Key_Down:
kDebug(1212) << "down";
if (invertKeys) {
if (verticalPosition != Up) {
if (!verticalRotating) {
verticalRotating = true;
verticalRotationDirection = Upwards;
if (verticalPosition == Normal)
verticalPosition = Up;
if (verticalPosition == Down)
verticalPosition = Normal;
} else {
verticalRotations.enqueue(Upwards);
}
} else if (manualVerticalAngle < 0.0 && !verticalRotating) {
// rotate to up position from the manual position
verticalRotating = true;
verticalRotationDirection = Upwards;
verticalPosition = Up;
manualVerticalAngle += 90.0;
}
} else {
if (verticalPosition != Down) {
if (!verticalRotating) {
verticalRotating = true;
verticalRotationDirection = Downwards;
if (verticalPosition == Normal)
verticalPosition = Down;
if (verticalPosition == Up)
verticalPosition = Normal;
} else {
verticalRotations.enqueue(Downwards);
}
} else if (manualVerticalAngle > 0.0 && !verticalRotating) {
// rotate to down position from the manual position
verticalRotating = true;
verticalRotationDirection = Downwards;
verticalPosition = Down;
manualVerticalAngle -= 90.0;
}
}
break;
case Qt::Key_Escape:
rotateToDesktop(effects->currentDesktop());
setActive(false);
return;
case Qt::Key_Enter:
case Qt::Key_Return:
case Qt::Key_Space:
setActive(false);
return;
case Qt::Key_Plus:
zoom -= 10.0;
zoom = qMax(-zPosition, zoom);
rotateCube();
break;
case Qt::Key_Minus:
zoom += 10.0f;
rotateCube();
break;
default:
break;
}
effects->addRepaintFull();
}
}
void CubeEffect::rotateToDesktop(int desktop)
{
int tempFrontDesktop = frontDesktop;
if (!rotations.empty()) {
// all scheduled rotations will be removed as a speed up
rotations.clear();
}
if (rotating && !desktopChangedWhileRotating) {
// front desktop will change during the actual rotation - this has to be considered
if (rotationDirection == Left) {
tempFrontDesktop++;
} else if (rotationDirection == Right) {
tempFrontDesktop--;
}
if (tempFrontDesktop > effects->numberOfDesktops())
tempFrontDesktop = 1;
else if (tempFrontDesktop == 0)
tempFrontDesktop = effects->numberOfDesktops();
}
// find the fastest rotation path from tempFrontDesktop to desktop
int rightRotations = tempFrontDesktop - desktop;
if (rightRotations < 0)
rightRotations += effects->numberOfDesktops();
int leftRotations = desktop - tempFrontDesktop;
if (leftRotations < 0)
leftRotations += effects->numberOfDesktops();
if (leftRotations <= rightRotations) {
for (int i = 0; i < leftRotations; i++) {
rotations.enqueue(Left);
}
} else {
for (int i = 0; i < rightRotations; i++) {
rotations.enqueue(Right);
}
}
if (!start && !rotating && !rotations.empty()) {
rotating = true;
rotationDirection = rotations.dequeue();
}
// change timeline curve if more rotations are following
if (!rotations.empty()) {
currentShape = QTimeLine::EaseInCurve;
timeLine.setCurveShape(currentShape);
}
}
void CubeEffect::setActive(bool active)
{
foreach (CubeInsideEffect * inside, m_cubeInsideEffects) {
inside->setActive(true);
}
if (active) {
QString capPath = CubeConfig::capPath();
if (texturedCaps && !capTexture && !capPath.isEmpty()) {
QFutureWatcher<QImage> *watcher = new QFutureWatcher<QImage>(this);
connect(watcher, SIGNAL(finished()), SLOT(slotCubeCapLoaded()));
watcher->setFuture(QtConcurrent::run(this, &CubeEffect::loadCubeCap, capPath));
}
QString wallpaperPath = CubeConfig::wallpaper().toLocalFile();
if (!wallpaper && !wallpaperPath.isEmpty()) {
QFutureWatcher<QImage> *watcher = new QFutureWatcher<QImage>(this);
connect(watcher, SIGNAL(finished()), SLOT(slotWallPaperLoaded()));
watcher->setFuture(QtConcurrent::run(this, &CubeEffect::loadWallPaper, wallpaperPath));
}
if (!mousePolling) {
effects->startMousePolling();
mousePolling = true;
}
activated = true;
activeScreen = effects->activeScreen();
keyboard_grab = effects->grabKeyboard(this);
input = effects->createInputWindow(this, 0, 0, displayWidth(), displayHeight(),
Qt::OpenHandCursor);
frontDesktop = effects->currentDesktop();
zoom = 0.0;
zOrderingFactor = zPosition / (effects->stackingOrder().count() - 1);
start = true;
effects->setActiveFullScreenEffect(this);
kDebug(1212) << "Cube is activated";
verticalPosition = Normal;
verticalRotating = false;
manualAngle = 0.0;
manualVerticalAngle = 0.0;
if (reflection) {
QRect rect = effects->clientArea(FullArea, activeScreen, effects->currentDesktop());
#ifndef KWIN_HAVE_OPENGLES
// clip parts above the reflection area
double eqn[4] = {0.0, 1.0, 0.0, 0.0};
glPushMatrix();
glTranslatef(0.0, rect.height(), 0.0);
glClipPlane(GL_CLIP_PLANE0, eqn);
glPopMatrix();
#endif
float temporaryCoeff = float(rect.width()) / tan(M_PI / float(effects->numberOfDesktops()));
mAddedHeightCoeff1 = sqrt(float(rect.height()) * float(rect.height()) + temporaryCoeff * temporaryCoeff);
mAddedHeightCoeff2 = sqrt(float(rect.height()) * float(rect.height()) + float(rect.width()) * float(rect.width()) + temporaryCoeff * temporaryCoeff);
}
m_rotationMatrix.setToIdentity();
effects->addRepaintFull();
} else {
if (mousePolling) {
effects->stopMousePolling();
mousePolling = false;
}
schedule_close = true;
// we have to add a repaint, to start the deactivating
effects->addRepaintFull();
}
}
void CubeEffect::slotMouseChanged(const QPoint& pos, const QPoint& oldpos, Qt::MouseButtons buttons,
Qt::MouseButtons oldbuttons, Qt::KeyboardModifiers, Qt::KeyboardModifiers)
{
if (!activated)
return;
if (tabBoxMode)
return;
if (stop)
return;
QRect rect = effects->clientArea(FullArea, activeScreen, effects->currentDesktop());
if (buttons.testFlag(Qt::LeftButton)) {
bool repaint = false;
// vertical movement only if there is not a rotation
if (!verticalRotating) {
// display height corresponds to 180*
int deltaY = pos.y() - oldpos.y();
float deltaVerticalDegrees = (float)deltaY / rect.height() * 180.0f;
if (invertMouse)
manualVerticalAngle += deltaVerticalDegrees;
else
manualVerticalAngle -= deltaVerticalDegrees;
if (deltaVerticalDegrees != 0.0)
repaint = true;
}
// horizontal movement only if there is not a rotation
if (!rotating) {
// display width corresponds to sum of angles of the polyhedron
int deltaX = oldpos.x() - pos.x();
float deltaDegrees = (float)deltaX / rect.width() * 360.0f;
if (deltaX == 0) {
if (pos.x() == 0)
deltaDegrees = 5.0f;
if (pos.x() == displayWidth() - 1)
deltaDegrees = -5.0f;
}
if (invertMouse)
manualAngle += deltaDegrees;
else
manualAngle -= deltaDegrees;
if (deltaDegrees != 0.0)
repaint = true;
}
if (repaint) {
rotateCube();
effects->addRepaintFull();
}
}
if (!oldbuttons.testFlag(Qt::LeftButton) && buttons.testFlag(Qt::LeftButton)) {
XDefineCursor(display(), input, QCursor(Qt::ClosedHandCursor).handle());
}
if (oldbuttons.testFlag(Qt::LeftButton) && !buttons.testFlag(Qt::LeftButton)) {
XDefineCursor(display(), input, QCursor(Qt::OpenHandCursor).handle());
if (closeOnMouseRelease)
setActive(false);
}
if (oldbuttons.testFlag(Qt::RightButton) && !buttons.testFlag(Qt::RightButton)) {
// end effect on right mouse button
setActive(false);
}
}
void CubeEffect::windowInputMouseEvent(Window w, QEvent* e)
{
assert(w == input);
Q_UNUSED(w);
QMouseEvent *mouse = dynamic_cast< QMouseEvent* >(e);
if (mouse && mouse->type() == QEvent::MouseButtonRelease) {
if (mouse->button() == Qt::XButton1) {
if (!rotating && !start) {
rotating = true;
if (invertMouse)
rotationDirection = Right;
else
rotationDirection = Left;
} else {
if (rotations.count() < effects->numberOfDesktops()) {
if (invertMouse)
rotations.enqueue(Right);
else
rotations.enqueue(Left);
}
}
effects->addRepaintFull();
}
if (mouse->button() == Qt::XButton2) {
if (!rotating && !start) {
rotating = true;
if (invertMouse)
rotationDirection = Left;
else
rotationDirection = Right;
} else {
if (rotations.count() < effects->numberOfDesktops()) {
if (invertMouse)
rotations.enqueue(Left);
else
rotations.enqueue(Right);
}
}
effects->addRepaintFull();
}
}
}
void CubeEffect::slotTabBoxAdded(int mode)
{
if (activated)
return;
if (effects->activeFullScreenEffect() && effects->activeFullScreenEffect() != this)
return;
if (useForTabBox && mode == TabBoxDesktopListMode) {
effects->refTabBox();
tabBoxMode = true;
setActive(true);
rotateToDesktop(effects->currentTabBoxDesktop());
}
}
void CubeEffect::slotTabBoxUpdated()
{
if (activated) {
rotateToDesktop(effects->currentTabBoxDesktop());
effects->addRepaintFull();
}
}
void CubeEffect::slotTabBoxClosed()
{
if (activated) {
effects->unrefTabBox();
tabBoxMode = false;
setActive(false);
}
}
void CubeEffect::cubeShortcutChanged(const QKeySequence& seq)
{
cubeShortcut = KShortcut(seq);
}
void CubeEffect::cylinderShortcutChanged(const QKeySequence& seq)
{
cylinderShortcut = KShortcut(seq);
}
void CubeEffect::sphereShortcutChanged(const QKeySequence& seq)
{
sphereShortcut = KShortcut(seq);
}
void* CubeEffect::proxy()
{
return &m_proxy;
}
void CubeEffect::registerCubeInsideEffect(CubeInsideEffect* effect)
{
m_cubeInsideEffects.append(effect);
}
void CubeEffect::unregisterCubeInsideEffect(CubeInsideEffect* effect)
{
m_cubeInsideEffects.removeAll(effect);
}
bool CubeEffect::isActive() const
{
return activated;
}
} // namespace