kwin/lib/kwinglutils.cpp

1058 lines
29 KiB
C++
Raw Normal View History

/********************************************************************
KWin - the KDE window manager
This file is part of the KDE project.
Copyright (C) 2006-2007 Rivo Laks <rivolaks@hot.ee>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*********************************************************************/
#include "kwinglutils.h"
#ifdef KWIN_HAVE_OPENGL
#include "kwinglobals.h"
#include "kwineffects.h"
#include "kdebug.h"
#include <kstandarddirs.h>
#include <QPixmap>
#include <QImage>
#include <QHash>
#include <QFile>
#define MAKE_GL_VERSION(major, minor, release) ( ((major) << 16) | ((minor) << 8) | (release) )
namespace KWin
{
// Variables
// GL version, use MAKE_GL_VERSION() macro for comparing with a specific version
static int glVersion;
// GLX version, use MAKE_GL_VERSION() macro for comparing with a specific version
static int glXVersion;
// List of all supported GL and GLX extensions
static QStringList glExtensions;
static QStringList glxExtensions;
int glTextureUnitsCount;
// Functions
void initGLX()
{
// Get GLX version
int major, minor;
glXQueryVersion( display(), &major, &minor );
glXVersion = MAKE_GL_VERSION( major, minor, 0 );
// Get list of supported GLX extensions
glxExtensions = QString((const char*)glXQueryExtensionsString(
display(), DefaultScreen( display()))).split(" ");
glxResolveFunctions();
}
void initGL()
{
// Get OpenGL version
QString glversionstring = QString((const char*)glGetString(GL_VERSION));
QStringList glversioninfo = glversionstring.left(glversionstring.indexOf(' ')).split('.');
glVersion = MAKE_GL_VERSION(glversioninfo[0].toInt(), glversioninfo[1].toInt(),
glversioninfo.count() > 2 ? glversioninfo[2].toInt() : 0);
// Get list of supported OpenGL extensions
glExtensions = QString((const char*)glGetString(GL_EXTENSIONS)).split(" ");
// handle OpenGL extensions functions
glResolveFunctions();
GLTexture::initStatic();
GLShader::initStatic();
GLRenderTarget::initStatic();
}
bool hasGLVersion(int major, int minor, int release)
{
return glVersion >= MAKE_GL_VERSION(major, minor, release);
}
bool hasGLXVersion(int major, int minor, int release)
{
return glXVersion >= MAKE_GL_VERSION(major, minor, release);
}
bool hasGLExtension(const QString& extension)
{
return glExtensions.contains(extension) || glxExtensions.contains(extension);
}
bool checkGLError( const char* txt )
{
GLenum err = glGetError();
if( err != GL_NO_ERROR )
{
kWarning(1212) << "GL error (" << txt << "): 0x" << QString::number( err, 16 ) ;
return true;
}
return false;
}
int nearestPowerOfTwo( int x )
{
// This method had been copied from Qt's nearest_gl_texture_size()
int n = 0, last = 0;
for (int s = 0; s < 32; ++s) {
if (((x>>s) & 1) == 1) {
++n;
last = s;
}
}
if (n > 1)
return 1 << (last+1);
return 1 << last;
}
void renderGLGeometry( int count, const float* vertices, const float* texture, const float* color,
int dim, int stride )
{
return renderGLGeometry( infiniteRegion(), count, vertices, texture, color, dim, stride );
}
void renderGLGeometry( const QRegion& region, int count,
const float* vertices, const float* texture, const float* color,
int dim, int stride )
{
// Using arrays only makes sense if we have larger number of vertices.
// Otherwise overhead of enabling/disabling them is too big.
bool use_arrays = (count > 5);
if( use_arrays )
{
glPushAttrib( GL_ENABLE_BIT );
glPushClientAttrib( GL_CLIENT_VERTEX_ARRAY_BIT );
// Enable arrays
glEnableClientState( GL_VERTEX_ARRAY );
glVertexPointer( dim, GL_FLOAT, stride, vertices );
if( texture != NULL )
{
glEnableClientState( GL_TEXTURE_COORD_ARRAY );
glTexCoordPointer( 2, GL_FLOAT, stride, texture );
}
if( color != NULL )
{
glEnableClientState( GL_COLOR_ARRAY );
glColorPointer( 4, GL_FLOAT, stride, color );
}
}
// Clip using scissoring
PaintClipper pc( region );
for( PaintClipper::Iterator iterator;
!iterator.isDone();
iterator.next())
{
if( use_arrays )
glDrawArrays( GL_QUADS, 0, count );
else
renderGLGeometryImmediate( count, vertices, texture, color, dim, stride );
}
if( use_arrays )
{
glPopClientAttrib();
glPopAttrib();
}
}
void renderGLGeometryImmediate( int count, const float* vertices, const float* texture, const float* color,
int dim, int stride )
{
// Find out correct glVertex*fv function according to dim parameter.
void ( *glVertexFunc )( const float* ) = glVertex2fv;
if( dim == 3 )
glVertexFunc = glVertex3fv;
else if( dim == 4 )
glVertexFunc = glVertex4fv;
// These are number of _floats_ per item, not _bytes_ per item as opengl uses.
int vsize, tsize, csize;
vsize = tsize = csize = stride / sizeof(float);
if( !stride )
{
// 0 means that arrays are tightly packed. This gives us different
// strides for different arrays
vsize = dim;
tsize = 2;
csize = 4;
}
glBegin( GL_QUADS );
// This sucks. But makes it faster.
if( texture && color )
{
for( int i = 0; i < count; i++ )
{
glTexCoord2fv( texture + i*tsize );
glColor4fv( color + i*csize );
glVertexFunc( vertices + i*vsize );
}
}
else if( texture )
{
for( int i = 0; i < count; i++ )
{
glTexCoord2fv( texture + i*tsize );
glVertexFunc( vertices + i*vsize );
}
}
else if( color )
{
for( int i = 0; i < count; i++ )
{
glColor4fv( color + i*csize );
glVertexFunc( vertices + i*vsize );
}
}
else
{
for( int i = 0; i < count; i++ )
glVertexFunc( vertices + i*vsize );
}
glEnd();
}
void addQuadVertices(QVector<float>& verts, float x1, float y1, float x2, float y2)
{
verts << x1 << y1;
verts << x1 << y2;
verts << x2 << y2;
verts << x2 << y1;
}
void renderRoundBox( const QRect& area, float roundness, GLTexture* texture )
{
static GLTexture* circleTexture = 0;
if( !texture && !circleTexture )
{
QString texturefile = KGlobal::dirs()->findResource("data", "kwin/circle.png");
circleTexture = new GLTexture(texturefile);
}
if( !texture )
{
texture = circleTexture;
}
glPushAttrib( GL_CURRENT_BIT | GL_ENABLE_BIT | GL_TEXTURE_BIT );
glEnable( GL_BLEND );
glBlendFunc( GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA );
glPushMatrix();
QVector<float> verts, texcoords;
verts.reserve(80);
texcoords.reserve(80);
// center
addQuadVertices(verts, area.left() + roundness, area.top() + roundness, area.right() - roundness, area.bottom() - roundness);
addQuadVertices(texcoords, 0.5, 0.5, 0.5, 0.5);
// sides
// left
addQuadVertices(verts, area.left(), area.top() + roundness, area.left() + roundness, area.bottom() - roundness);
addQuadVertices(texcoords, 0.0, 0.5, 0.5, 0.5);
// top
addQuadVertices(verts, area.left() + roundness, area.top(), area.right() - roundness, area.top() + roundness);
addQuadVertices(texcoords, 0.5, 0.0, 0.5, 0.5);
// right
addQuadVertices(verts, area.right() - roundness, area.top() + roundness, area.right(), area.bottom() - roundness);
addQuadVertices(texcoords, 0.5, 0.5, 1.0, 0.5);
// bottom
addQuadVertices(verts, area.left() + roundness, area.bottom() - roundness, area.right() - roundness, area.bottom());
addQuadVertices(texcoords, 0.5, 0.5, 0.5, 1.0);
// corners
// top-left
addQuadVertices(verts, area.left(), area.top(), area.left() + roundness, area.top() + roundness);
addQuadVertices(texcoords, 0.0, 0.0, 0.5, 0.5);
// top-right
addQuadVertices(verts, area.right() - roundness, area.top(), area.right(), area.top() + roundness);
addQuadVertices(texcoords, 0.5, 0.0, 1.0, 0.5);
// bottom-left
addQuadVertices(verts, area.left(), area.bottom() - roundness, area.left() + roundness, area.bottom());
addQuadVertices(texcoords, 0.0, 0.5, 0.5, 1.0);
// bottom-right
addQuadVertices(verts, area.right() - roundness, area.bottom() - roundness, area.right(), area.bottom());
addQuadVertices(texcoords, 0.5, 0.5, 1.0, 1.0);
texture->bind();
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
// We have two elements per vertex in the verts array
int verticesCount = verts.count() / 2;
texture->enableNormalizedTexCoords();
renderGLGeometry( verticesCount, verts.data(), texcoords.data() );
texture->disableNormalizedTexCoords();
texture->unbind();
glPopMatrix();
glPopAttrib();
}
void renderRoundBoxWithEdge( const QRect& area, float roundness )
{
static GLTexture* texture = 0;
if( !texture )
{
QString texturefile = KGlobal::dirs()->findResource("data", "kwin/circle-edgy.png");
texture = new GLTexture(texturefile);
}
renderRoundBox( area, roundness, texture );
}
//****************************************
// GLTexture
//****************************************
bool GLTexture::mNPOTTextureSupported = false;
bool GLTexture::mFramebufferObjectSupported = false;
bool GLTexture::mSaturationSupported = false;
GLTexture::GLTexture()
{
init();
}
GLTexture::GLTexture( const QImage& image, GLenum target )
{
init();
load( image, target );
}
GLTexture::GLTexture( const QPixmap& pixmap, GLenum target )
{
init();
load( pixmap, target );
}
GLTexture::GLTexture( const QString& fileName )
{
init();
load( fileName );
}
GLTexture::GLTexture( int width, int height )
{
init();
if( NPOTTextureSupported() || ( isPowerOfTwo( width ) && isPowerOfTwo( height )))
{
mTarget = GL_TEXTURE_2D;
mScale.setWidth( 1.0 / width);
mScale.setHeight( 1.0 / height);
can_use_mipmaps = true;
glGenTextures( 1, &mTexture );
bind();
glTexImage2D( mTarget, 0, GL_RGBA, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, 0);
unbind();
}
}
GLTexture::~GLTexture()
{
discard();
assert( mUnnormalizeActive == 0 );
assert( mNormalizeActive == 0 );
}
void GLTexture::init()
{
mTexture = None;
mTarget = 0;
mFilter = 0;
y_inverted = false;
can_use_mipmaps = false;
has_valid_mipmaps = false;
mUnnormalizeActive = 0;
mNormalizeActive = 0;
}
void GLTexture::initStatic()
{
mNPOTTextureSupported = hasGLExtension( "GL_ARB_texture_non_power_of_two" );
mFramebufferObjectSupported = hasGLExtension( "GL_EXT_framebuffer_object" );
mSaturationSupported = ((hasGLExtension("GL_ARB_texture_env_crossbar")
&& hasGLExtension("GL_ARB_texture_env_dot3")) || hasGLVersion(1, 4))
&& (glTextureUnitsCount >= 4) && glActiveTexture != NULL;
}
bool GLTexture::isNull() const
{
return mTexture == None;
}
QSize GLTexture::size() const
{
return mSize;
}
bool GLTexture::load( const QImage& image, GLenum target )
{
if( image.isNull())
return false;
QImage img = image;
mTarget = target;
if( mTarget != GL_TEXTURE_RECTANGLE_ARB )
{
if( !NPOTTextureSupported()
&& ( !isPowerOfTwo( image.width()) || !isPowerOfTwo( image.height())))
{ // non-rectangular target requires POT texture
img = img.scaled( nearestPowerOfTwo( image.width()),
nearestPowerOfTwo( image.height()));
}
mScale.setWidth( 1.0 / img.width());
mScale.setHeight( 1.0 / img.height());
can_use_mipmaps = true;
}
else
{
mScale.setWidth( 1.0 );
mScale.setHeight( 1.0 );
can_use_mipmaps = false;
}
setFilter( GL_LINEAR );
mSize = img.size();
y_inverted = false;
img = convertToGLFormat( img );
setDirty();
if( isNull())
glGenTextures( 1, &mTexture );
bind();
glTexImage2D( mTarget, 0, GL_RGBA, img.width(), img.height(), 0,
GL_RGBA, GL_UNSIGNED_BYTE, img.bits());
unbind();
return true;
}
bool GLTexture::load( const QPixmap& pixmap, GLenum target )
{
if( pixmap.isNull())
return false;
return load( pixmap.toImage(), target );
}
bool GLTexture::load( const QString& fileName )
{
if( fileName.isEmpty())
return false;
return load( QImage( fileName ));
}
void GLTexture::discard()
{
setDirty();
if( mTexture != None )
glDeleteTextures( 1, &mTexture );
mTexture = None;
}
void GLTexture::bind()
{
glEnable( mTarget );
glBindTexture( mTarget, mTexture );
enableFilter();
}
void GLTexture::unbind()
{
glBindTexture( mTarget, 0 );
glDisable( mTarget );
}
void GLTexture::render( QRegion region, const QRect& rect )
{
const float verts[ 4 * 2 ] =
{
rect.x(), rect.y(),
rect.x(), rect.y() + rect.height(),
rect.x() + rect.width(), rect.y() + rect.height(),
rect.x() + rect.width(), rect.y()
};
const float texcoords[ 4 * 2 ] =
{
0, 1, // y needs to be swapped (normalized coords)
0, 0,
1, 0,
1, 1
};
enableNormalizedTexCoords();
renderGLGeometry( region, 4, verts, texcoords );
disableNormalizedTexCoords();
}
void GLTexture::enableUnnormalizedTexCoords()
{
assert( mNormalizeActive == 0 );
if( mUnnormalizeActive++ != 0 )
return;
// update texture matrix to handle GL_TEXTURE_2D and GL_TEXTURE_RECTANGLE
glMatrixMode( GL_TEXTURE );
glPushMatrix();
glLoadIdentity();
glScalef( mScale.width(), mScale.height(), 1 );
if( !y_inverted )
{
// Modify texture matrix so that we could always use non-opengl
// coordinates for textures
glScalef( 1, -1, 1 );
glTranslatef( 0, -mSize.height(), 0 );
}
glMatrixMode( GL_MODELVIEW );
}
void GLTexture::disableUnnormalizedTexCoords()
{
if( --mUnnormalizeActive != 0 )
return;
// Restore texture matrix
glMatrixMode( GL_TEXTURE );
glPopMatrix();
glMatrixMode( GL_MODELVIEW );
}
void GLTexture::enableNormalizedTexCoords()
{
assert( mUnnormalizeActive == 0 );
if( mNormalizeActive++ != 0 )
return;
// update texture matrix to handle GL_TEXTURE_2D and GL_TEXTURE_RECTANGLE
glMatrixMode( GL_TEXTURE );
glPushMatrix();
glLoadIdentity();
glScalef( mSize.width() * mScale.width(), mSize.height() * mScale.height(), 1 );
if( y_inverted )
{
// Modify texture matrix so that we could always use non-opengl
// coordinates for textures
glScalef( 1, -1, 1 );
glTranslatef( 0, -1, 0 );
}
glMatrixMode( GL_MODELVIEW );
}
void GLTexture::disableNormalizedTexCoords()
{
if( --mNormalizeActive != 0 )
return;
// Restore texture matrix
glMatrixMode( GL_TEXTURE );
glPopMatrix();
glMatrixMode( GL_MODELVIEW );
}
GLuint GLTexture::texture() const
{
return mTexture;
}
GLenum GLTexture::target() const
{
return mTarget;
}
GLenum GLTexture::filter() const
{
return mFilter;
}
bool GLTexture::isDirty() const
{
return has_valid_mipmaps;
}
void GLTexture::setTexture( GLuint texture )
{
discard();
mTexture = texture;
}
void GLTexture::setTarget( GLenum target )
{
mTarget = target;
}
void GLTexture::setFilter( GLenum filter )
{
mFilter = filter;
}
void GLTexture::setWrapMode( GLenum mode )
{
bind();
glTexParameteri( mTarget, GL_TEXTURE_WRAP_S, mode );
glTexParameteri( mTarget, GL_TEXTURE_WRAP_T, mode );
unbind();
}
void GLTexture::setDirty()
{
has_valid_mipmaps = false;
}
void GLTexture::enableFilter()
{
if( mFilter == GL_LINEAR_MIPMAP_LINEAR )
{ // trilinear filtering requested, but is it possible?
if( NPOTTextureSupported()
&& framebufferObjectSupported()
&& can_use_mipmaps )
{
glTexParameteri( mTarget, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR );
glTexParameteri( mTarget, GL_TEXTURE_MAG_FILTER, GL_LINEAR );
if( !has_valid_mipmaps )
{
glGenerateMipmap( mTarget );
has_valid_mipmaps = true;
}
}
else
{ // can't use trilinear, so use bilinear
setFilter( GL_LINEAR );
glTexParameteri( mTarget, GL_TEXTURE_MIN_FILTER, GL_LINEAR );
glTexParameteri( mTarget, GL_TEXTURE_MAG_FILTER, GL_LINEAR );
}
}
else if( mFilter == GL_LINEAR )
{
glTexParameteri( mTarget, GL_TEXTURE_MIN_FILTER, GL_LINEAR );
glTexParameteri( mTarget, GL_TEXTURE_MAG_FILTER, GL_LINEAR );
}
else
{ // if neither trilinear nor bilinear, default to fast filtering
setFilter( GL_NEAREST );
glTexParameteri( mTarget, GL_TEXTURE_MIN_FILTER, GL_NEAREST );
glTexParameteri( mTarget, GL_TEXTURE_MAG_FILTER, GL_NEAREST );
}
}
static void convertToGLFormatHelper(QImage &dst, const QImage &img, GLenum texture_format)
{ // Copied from Qt
Q_ASSERT(dst.size() == img.size());
Q_ASSERT(dst.depth() == 32);
Q_ASSERT(img.depth() == 32);
const int width = img.width();
const int height = img.height();
const uint *p = (const uint*) img.scanLine(img.height() - 1);
uint *q = (uint*) dst.scanLine(0);
if (texture_format == GL_BGRA) {
if (QSysInfo::ByteOrder == QSysInfo::BigEndian) {
// mirror + swizzle
for (int i=0; i < height; ++i) {
const uint *end = p + width;
while (p < end) {
*q = ((*p << 24) & 0xff000000)
| ((*p >> 24) & 0x000000ff)
| ((*p << 8) & 0x00ff0000)
| ((*p >> 8) & 0x0000ff00);
p++;
q++;
}
p -= 2 * width;
}
} else {
const uint bytesPerLine = img.bytesPerLine();
for (int i=0; i < height; ++i) {
memcpy(q, p, bytesPerLine);
q += width;
p -= width;
}
}
} else {
if (QSysInfo::ByteOrder == QSysInfo::BigEndian) {
for (int i=0; i < height; ++i) {
const uint *end = p + width;
while (p < end) {
*q = (*p << 8) | ((*p >> 24) & 0xFF);
p++;
q++;
}
p -= 2 * width;
}
} else {
for (int i=0; i < height; ++i) {
const uint *end = p + width;
while (p < end) {
*q = ((*p << 16) & 0xff0000) | ((*p >> 16) & 0xff) | (*p & 0xff00ff00);
p++;
q++;
}
p -= 2 * width;
}
}
}
}
QImage GLTexture::convertToGLFormat( const QImage& img ) const
{ // Copied from Qt's QGLWidget::convertToGLFormat()
QImage res(img.size(), QImage::Format_ARGB32);
convertToGLFormatHelper(res, img.convertToFormat(QImage::Format_ARGB32), GL_RGBA);
return res;
}
//****************************************
// GLShader
//****************************************
bool GLShader::mFragmentShaderSupported = false;
bool GLShader::mVertexShaderSupported = false;
void GLShader::initStatic()
{
mFragmentShaderSupported = mVertexShaderSupported =
hasGLExtension("GL_ARB_shader_objects") && hasGLExtension("GL_ARB_shading_language_100");
mVertexShaderSupported &= hasGLExtension("GL_ARB_vertex_shader");
mFragmentShaderSupported &= hasGLExtension("GL_ARB_fragment_shader");
}
GLShader::GLShader(const QString& vertexfile, const QString& fragmentfile)
{
mValid = false;
mVariableLocations = 0;
mProgram = 0;
mTextureWidth = -1.0f;
mTextureHeight = -1.0f;
loadFromFiles(vertexfile, fragmentfile);
}
GLShader::~GLShader()
{
if(mVariableLocations)
{
mVariableLocations->clear();
delete mVariableLocations;
}
if(mProgram)
{
glDeleteProgram(mProgram);
}
}
bool GLShader::loadFromFiles(const QString& vertexfile, const QString& fragmentfile)
{
QFile vf(vertexfile);
if(!vf.open(QIODevice::ReadOnly))
{
kError(1212) << "Couldn't open '" << vertexfile << "' for reading!" << endl;
return false;
}
QString vertexsource(vf.readAll());
QFile ff(fragmentfile);
if(!ff.open(QIODevice::ReadOnly))
{
kError(1212) << "Couldn't open '" << fragmentfile << "' for reading!" << endl;
return false;
}
QString fragsource(ff.readAll());
return load(vertexsource, fragsource);
}
bool GLShader::load(const QString& vertexsource, const QString& fragmentsource)
{
// Make sure shaders are actually supported
if(( !vertexsource.isEmpty() && !vertexShaderSupported() ) ||
( !fragmentsource.isEmpty() && !fragmentShaderSupported() ))
{
kDebug(1212) << "Shaders not supported";
return false;
}
GLuint vertexshader;
GLuint fragmentshader;
GLsizei logsize, logarraysize;
char* log = 0;
// Create program object
mProgram = glCreateProgram();
if(!vertexsource.isEmpty())
{
// Create shader object
vertexshader = glCreateShader(GL_VERTEX_SHADER);
// Load it
const QByteArray& srcba = vertexsource.toLatin1();
const char* src = srcba.data();
glShaderSource(vertexshader, 1, &src, NULL);
// Compile the shader
glCompileShader(vertexshader);
// Make sure it compiled correctly
int compiled;
glGetShaderiv(vertexshader, GL_COMPILE_STATUS, &compiled);
// Get info log
glGetShaderiv(vertexshader, GL_INFO_LOG_LENGTH, &logarraysize);
log = new char[logarraysize];
glGetShaderInfoLog(vertexshader, logarraysize, &logsize, log);
if(!compiled)
{
kError(1212) << "Couldn't compile vertex shader! Log:" << endl << log << endl;
delete[] log;
return false;
}
else if(logsize > 0)
kDebug(1212) << "Vertex shader compilation log:"<< log;
// Attach the shader to the program
glAttachShader(mProgram, vertexshader);
// Delete shader
glDeleteShader(vertexshader);
delete[] log;
}
if(!fragmentsource.isEmpty())
{
fragmentshader = glCreateShader(GL_FRAGMENT_SHADER);
// Load it
const QByteArray& srcba = fragmentsource.toLatin1();
const char* src = srcba.data();
glShaderSource(fragmentshader, 1, &src, NULL);
//glShaderSource(fragmentshader, 1, &fragmentsrc.latin1(), NULL);
// Compile the shader
glCompileShader(fragmentshader);
// Make sure it compiled correctly
int compiled;
glGetShaderiv(fragmentshader, GL_COMPILE_STATUS, &compiled);
// Get info log
glGetShaderiv(fragmentshader, GL_INFO_LOG_LENGTH, &logarraysize);
log = new char[logarraysize];
glGetShaderInfoLog(fragmentshader, logarraysize, &logsize, log);
if(!compiled)
{
kError(1212) << "Couldn't compile fragment shader! Log:" << endl << log << endl;
delete[] log;
return false;
}
else if(logsize > 0)
kDebug(1212) << "Fragment shader compilation log:"<< log;
// Attach the shader to the program
glAttachShader(mProgram, fragmentshader);
// Delete shader
glDeleteShader(fragmentshader);
delete[] log;
}
// Link the program
glLinkProgram(mProgram);
// Make sure it linked correctly
int linked;
glGetProgramiv(mProgram, GL_LINK_STATUS, &linked);
// Get info log
glGetProgramiv(mProgram, GL_INFO_LOG_LENGTH, &logarraysize);
log = new char[logarraysize];
glGetProgramInfoLog(mProgram, logarraysize, &logsize, log);
if(!linked)
{
kError(1212) << "Couldn't link the program! Log" << endl << log << endl;
delete[] log;
return false;
}
else if(logsize > 0)
kDebug(1212) << "Shader linking log:"<< log;
delete[] log;
mVariableLocations = new QHash<QString, int>;
mValid = true;
return true;
}
void GLShader::bind()
{
glUseProgram(mProgram);
}
void GLShader::unbind()
{
glUseProgram(0);
}
int GLShader::uniformLocation(const QString& name)
{
if(!mVariableLocations)
{
return -1;
}
if(!mVariableLocations->contains(name))
{
int location = glGetUniformLocation(mProgram, name.toLatin1().data());
mVariableLocations->insert(name, location);
}
return mVariableLocations->value(name);
}
bool GLShader::setUniform(const QString& name, float value)
{
int location = uniformLocation(name);
if(location >= 0)
{
glUniform1f(location, value);
}
return (location >= 0);
}
bool GLShader::setUniform(const QString& name, int value)
{
int location = uniformLocation(name);
if(location >= 0)
{
glUniform1i(location, value);
}
return (location >= 0);
}
int GLShader::attributeLocation(const QString& name)
{
if(!mVariableLocations)
{
return -1;
}
if(!mVariableLocations->contains(name))
{
int location = glGetAttribLocation(mProgram, name.toLatin1().data());
mVariableLocations->insert(name, location);
}
return mVariableLocations->value(name);
}
bool GLShader::setAttribute(const QString& name, float value)
{
int location = attributeLocation(name);
if(location >= 0)
{
glVertexAttrib1f(location, value);
}
return (location >= 0);
}
void GLShader::setTextureHeight(float height)
{
mTextureHeight = height;
}
void GLShader::setTextureWidth(float width)
{
mTextureWidth = width;
}
float GLShader::textureHeight()
{
return mTextureHeight;
}
float GLShader::textureWidth()
{
return mTextureWidth;
}
/*** GLRenderTarget ***/
bool GLRenderTarget::mSupported = false;
void GLRenderTarget::initStatic()
{
mSupported = hasGLExtension("GL_EXT_framebuffer_object") && glFramebufferTexture2D;
}
GLRenderTarget::GLRenderTarget(GLTexture* color)
{
// Reset variables
mValid = false;
mTexture = color;
// Make sure FBO is supported
if(mSupported && mTexture && !mTexture->isNull())
{
initFBO();
}
else
kError(1212) << "Render targets aren't supported!" << endl;
}
GLRenderTarget::~GLRenderTarget()
{
if(mValid)
{
glDeleteFramebuffers(1, &mFramebuffer);
}
}
bool GLRenderTarget::enable()
{
if(!valid())
{
kError(1212) << "Can't enable invalid render target!" << endl;
return false;
}
glBindFramebuffer(GL_FRAMEBUFFER_EXT, mFramebuffer);
mTexture->setDirty();
return true;
}
bool GLRenderTarget::disable()
{
if(!valid())
{
kError(1212) << "Can't disable invalid render target!" << endl;
return false;
}
glBindFramebuffer(GL_FRAMEBUFFER_EXT, 0);
mTexture->setDirty();
return true;
}
void GLRenderTarget::initFBO()
{
glGenFramebuffers(1, &mFramebuffer);
glBindFramebuffer(GL_FRAMEBUFFER_EXT, mFramebuffer);
glFramebufferTexture2D(GL_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENT0_EXT,
mTexture->target(), mTexture->texture(), 0);
GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER_EXT);
if(status != GL_FRAMEBUFFER_COMPLETE_EXT)
{
kError(1212) << "Invalid fb status: " << status << endl;
}
glBindFramebuffer(GL_FRAMEBUFFER_EXT, 0);
mValid = true;
}
} // namespace
#endif