Instead of using a DmaBufAttributes instance to communicate the settings
to create a new dmabuf, use a smaller DmaBufParams class that only
contains the information we need after destroying the BO.
There are a few benefits to using smart pointers from the standard library:
- std::unique_ptr has move semantics. With move semantics, transfer of ownership
can be properly expressed
- std::shared_ptr is more efficient than QSharedPointer
- more developers are used to them, making contributions for newcomers easier
We're also already using a mix of both; because Qt shared pointers provide
no benefits, porting to standard smart pointers improves consistency in
the code base. Because of that, this commit ports most of the uses of QSharedPointer
to std::shared_ptr, and some uses of QScopedPointer to std::unique_ptr
It appears that importing gbm_bo's using eglCreateImageKHR() doesn't
work on nvidia.
Another issue is that Platform::createDmaBufTexture() uses
gbm_bo_create(). The nvidia driver doesn't like that, it's preferred to
use gbm_bo_create_with_modifiers().
In order to address those issues, this change refactors how gbm_bo
objects are imported and how gbm_bo's are allocated for dmabuf textures,
so the same code can be reused in EglGbmBackend::textureForOutput()
and Platform::createDmaBufTexture().
This makes KWin switch to in-tree copy of KWaylandServer codebase.
KWaylandServer namespace has been left as is. It will be addressed later
by renaming classes in order to fit in the KWin namespace.
AbstractOutput is not so Abstract and it's common to avoid the word
"Abstract" in class names as it doesn't contribute any new information.
It also significantly reduces the line width in some places.
Input event flow has been refactored so all input events originate from
input devices.
The X11 backend uses InputRedirection so make it forward events to
relevant input device handlers.
The .clang-format file is based on the one in ECM except the following
style options:
- AlwaysBreakBeforeMultilineStrings
- BinPackArguments
- BinPackParameters
- ColumnLimit
- BreakBeforeBraces
- KeepEmptyLinesAtTheStartOfBlocks
At this point, it's safe to assume that only X11 has weird rendering
model, which stands in the way of making rendering abstractions nice and
intuitive, so let's check operation mode. If OperationModeX11 is
dropped, this will also simplify finding X11-specific code in kwin.
Having a render loop in the Platform has always been awkward. Another
way to interpret the platform not supporting per screen rendering would
be that all outputs share the same render loop.
On X11, Scene::painted_screen is going to correspond to the primary
screen, we should not rely on this assumption though!
Since the base Platform::applyOutputChanges() implementation only
applies changes to enabled outputs, it's not possible to re-enable a
previously disabled output.
The Compositor contains nothing that can potentially get dirty and need
repainting.
As is, the advantages of this move aren't really noticeable, but it
makes sense with multiple scenes.
Backend parts are far from ideal, they can be improved later on as we
progress with the scene redesign.
Hardware constraints limit the number of crtcs and which connector + crtc
combinations can work together. The current code is searching for working
combinations when a hotplug happens but that's not enough, it also needs
to happen when the user enables or disables outputs and when modesets are
done, and the configuration change needs to be applied with a single atomic
commit.
This commit removes the hard dependency of DrmPipeline on crtcs by moving
the pending state of outputs from the drm objects to DrmPipeline itself,
which ensures that it's independent from the set of drm objects currently
used. It also changes requests from KScreen to be applied truly atomically.
The main motivation behind this change is to prepare input abstractions
for virtual input devices so the wl_seat can properly advertise caps or
the cursor getting properly mapped/unmapped when a fake pointer is
added/removed on a system without a hardware mouse connected.
With this, there are three abstractions - InputDevice, InputBackend, and
InputRedirection.
An InputDevice represents an input device such as a mouse, a keyboard, a
tablet, etc. The InputBackend class notifies the InputRedirection about
(dis-)connected devices. The InputRedirection manages the input devices.
Such design allows to unify the event flow for real and virtual input
devices.
There can be several input backends active. For example, the libinput
backend and an input backend that provides virtual input devices, e.g.
libeis or org_kde_kwin_fake_input.
Currently, input events can flow directly to input device handlers and
sometimes they go through the InputRedirection, which simply forwards
them to the corresponding input device handler.
In case the user has just the one display but they don't want to show it
in their main workspace when sharing video, allow creating a virtual
display.
This also will allow using remote devices as support displays.
With AbstractOutput being used more heavily, it makes sense to have
something like Screens::number() in the Platform class. As is, the steps
to get an output for a given point are awkward - first, get the screen
id, then use the screen id to get the output.
We use surfaceless contexts with internal windows. We also require
the EGL_KHR_surfaceless_context extension for making context current
without outputs.
Arguably, we could use pbuffers, but since mainstream drivers (Mesa and
NVIDIA) support surfaceless contexts, the extra complexity doesn't buy
us anything.
The Xrender backend was added at the time when OpenGL drivers were not
particularly stable. Nowadays though, it's a totally different situation.
The OpenGL render backend has been the default one for many years. It's
quite stable, and it allows implementing many advanced features that
other render backends don't.
Many features are not tested with it during the development cycle; the
only time when it is noticed is when changes in other parts of kwin break
the build in the xrender backend. Effectively, the xrender backend is
unmaintained nowadays.
Given that the xrender backend is effectively unmaintained and our focus
being shifted towards wayland, this change drops the xrender backend in
favor of the opengl backend.
Besides being de-facto unmaintained, another issue is that QtQuick does
not support and most likely will never support the Xrender API. This
poses a problem as we want thumbnail items to be natively integrated in
the qtquick scene graph.
Currently, the implementation of the DecoratedClient and the decoration
renderer are strongly coupled. This poses a problem with the item based
design as the ultimate goal is to have scene items construct paint nodes
which are then fed to the renderer. The DecorationItem has to have
control over the decoration texture. Another issue is that the scene
cannot smoothly cross-fade between two window states if the decoration
is removed, e.g. from fullscreen mode to normal and vice versa.
This change moves the decoration renderer to the decoration item. With
the introduction of a generic scene texture atlas, we hope to get rid of
the decoration renderer altogether.
Platform::prepareShutdown() was introduced to work around the issue
where the platform accesses destroyed OutputDeviceInterface objects.
Since we no longer query OutputDeviceInterface for output info, the
Platform::prepareShutdown() function can be dropped.
Once in a while, we receive complaints from other fellow KDE developers
about the file organization of kwin. This change addresses some of those
complaints by moving all of source code in a separate directory, src/,
thus making the project structure more traditional. Things such as tests
are kept in their own toplevel directories.
This change may wreak havoc on merge requests that add new files to kwin,
but if a patch modifies an already existing file, git should be smart
enough to figure out that the file has been relocated.
We may potentially split the src/ directory further to make navigating
the source code easier, but hopefully this is good enough already.