Anything in xcb_ structs are always in X local, all member variables
aside from buffers are in kwin local space.
This patch ignores a few paths that are not relevant on wayland.
Currently, if you want to use TimeLine, you need to track the last
presentation timestamp which boils down to carrying some boilerplate
code.
The current situation can be improved by making TimeLine work with
presentation timestamps.
Part-of: <https://invent.kde.org/plasma/kwin/-/merge_requests/2473>
Firstly we weren't waiting for a signal at all, we are relying on events
being processed externally which is wrong.
Secondly ScreenLocker::KSldApp::self()->lockState() is tri-state;
unlocked, acquiring, locked. This gets compressed to a boolean where
acquiring and locked are the same.
If we run the tests whilst we're still acquiring the lock screen we can
call unlocked before we've finished locking. The greeter might then be
shown afterwards triggering a re-lock. It's a confused state.
The XRender backend has been removed, leaving most of KWinXRenderUtils unused.
The few features that are still used, notable `XRenderPicture` and pict format
are moved into the x11/common directory.
Signed-off-by: Victoria Fischer <victoria.fischer@mbition.io>
This change makes the WindowItem track the opacity and schedule a
repaint. It further decouples the legacy scene from code window
abstractions.
It's an API breaking change. WindowPaintData no longer can make windows
more opaque. It only provides additional opacity factor.
With this, the WindowItem will know whether it's actually visible. As
the result, if a native wayland window has been minimized, kwin won't
try to schedule a new frame if just a frame callback has been committed.
EffectWindow::enablePainting() and EffectWindow::disablePainting() act
as a stone in the shoe. They have the final say whether the given window
is visible and they are invoked too late in the rendering process.
WindowItem needs to know whether the window is visible in advance,
before compositing starts.
This change replaces EffectWindow::enablePainting() and
EffectWindow::disablePainting() with EffectWindow::refVisible() and
EffectWindow::unrefVisible(). If an effect calls the refVisible()
function, the window will be kept visible regardless of its state. It
should be called when a window is minimized or closed, etc. If an effect
doesn't want to paint a window, it should not call effects->paintWindow().
EffectWindow::refVisible() doesn't replace EffectWindow::refWindow() but
supplements it. refVisible() only ensures that a window will be kept
visible while refWindow() ensures that the window won't be destroyed
until the effect is done with it.
Possibility to implement realtime screenedges gestures in scripted effects,
implement it in the windowsaperture show desktop effect.
* Expose registerRealtimeScreenEdge to JavaScript, the callback will be
a JS function.
* Add the concept of freezeInTime() in the animation js bindings,
it will either create an animation frozen at a given time or freeze a running animation
that can be restored and ran to completition at any time
* add an edges property only for showdesktop as it's not directly on the effect configuration
libinput_device_get_user_data() can be used to get the associated Device
object with libinput_device. That way, we won't need to maintain a
private list of all input devices.
This makes KWin switch to in-tree copy of KWaylandServer codebase.
KWaylandServer namespace has been left as is. It will be addressed later
by renaming classes in order to fit in the KWin namespace.
When we do more color management stuff we'll need it in more places,
making it a hard requirement reduces the amount of needed ifdefs and
should make adding color management features a little simpler.
AbstractOutput is not so Abstract and it's common to avoid the word
"Abstract" in class names as it doesn't contribute any new information.
It also significantly reduces the line width in some places.
Added this interface to the VirtualDesktopManager. Realtime touchpad gestures update the interface to allow for mac os style desktop switching.
Also makes gestured switching use natural direction.
BUG: 185710
Input event flow has been refactored so all input events originate from
input devices.
The X11 backend uses InputRedirection so make it forward events to
relevant input device handlers.
Reduce the code duplication and boilerplate to create and destroy
the test clients by making the related variables class members.
Handle special cases using an extensible flag mechanism.
With this change, the Workspace would provide clientArea() overloads
that take only AbstractOutput and VirtualDesktop. integer ids are
obsolete as they are unstable.
Swipe with three fingers
- left to switch to the previous virtual desktop
- right to switch to the next virtual desktop
- up and down to toggle the overview
CCBUG: 439925
The .clang-format file is based on the one in ECM except the following
style options:
- AlwaysBreakBeforeMultilineStrings
- BinPackArguments
- BinPackParameters
- ColumnLimit
- BreakBeforeBraces
- KeepEmptyLinesAtTheStartOfBlocks
These are two conceptually different tasks that were intertwined.
On it's own it doesn't accomplish anything but is an important refactor
for longer term goals, namely:
- moving xwayland into kwin_wayland_wrapper with our wayland restart
handling support
- having multiple X connections
Behaviour should be the same.
[6/6] Make autotests create fake input devices
This test was the only one where input() could return a nullptr. With
this test removed, autotests can now expect input() to always return a
sane valid value and are therefor simpler to write.
That test belongs in kwayland-server anyway and kwayland-server's test
suite already tests that starting without XDG_RUNTIME_DIR is a no-no
thing
[5/6] Make autotests create fake input devices
Migrate all input simulation functions from kwinApp()->platform()->...
to the their counter part in the Test namespace.
[4/6] Make autotests create fake input devices
This translates all required input simulating methods from
kwinApp()->platform()->... to seperate functions in the Test namespace.
[3/6] Make autotests create fake input devices
This commit adds back all three VirtualInputDevices for simulating
keyboard, touch and pointer input events from autotests.
[1/6] Make autotests create fake input devices
The goal of this patch set is simulating user input in unit tests via
InputDevices and no longer use the Platform to fake input. This matches
more closely with how input is processed when running a full plasma
wayland session, i.e. with the DRM and libinput backends.
This ensures that we get a warning if the config header is not included
instead of compiling the code as if it was disabled. Interestingly, some
checks already used #if KWIN_BUILD_*, so those were generating -Wundef
warnings when the feature is disabled. Commit 886173cab assumed that all
those features were already 01, so this unbreaks the build if any of the
features is disabled.
Fixes: 886173cab ("Reduce ifdefs in Workspace::supportInformation()")
It's leftover after the times when widget style was using wayland
connection. Breeze had to destroy all wayland resources before
terminating the internal connection.
Xcursor loading code has hardcoded search paths, in order to take into
account distros installing app data in a different location,
libwayland-cursor sets the ICONDIR to the icon directory computed based
on the install prefix.
However, that won't work with gitlab CI because it relocates binaries. A
more robust way to find cursors would be to use QStandardPaths to find
all the icon directories on the system.
Another advantage of using own cursor loading code is that it allows us
to reuse cursor images that are symlinks. For example, with
breeze_cursors, almost half of the files in the cursors directory are
symlinks.
The main disadvantage of this approach is that we would have to keep the
search paths up to date. However, on the hand, there are not that many
of them, e.g. ~/.icons, ~/.local/share/icons, /usr/share/icons,
/usr/local/share/icons. The last three are implicitly handled by the
QStandardPaths.
With the xdg_toplevel.configure_bounds support, the compositor is
finally able to tell the client the maximum recommended window size.
That approach allows us to keep the compositor side simple and it
prevents (as long as the app is well behaved) annoying visual glitches
such as mapping window with one size and then quickly resizing it to
the final size.
There are two operations failing currently, so we QEXPECT_FAIL
them for now:
- A new client is not moved to the screen set by the rule
(Wayland only). Affects Apply, Force and Remember
- Disabling and enabling an output will not move the client
to the Forced screen (On X11 and Wayland, BUG:409979)
If the user wants to move a tiled window, but changes their mind and
tiles the window back to the previous position, the geometryRestore()
will be corrupted because initialMoveResizeGeometry() is the same as the
geometry of the window in the tiled mode.
This change fixes tracking of the geometry restore by precomputing the
geometry restore when starting interactive move. That way, if the window
is untiled and tiled again without release left pointer button, the
geometry restore will be set to the correct value in setQuickTileMode().
This change also adjusts the test suite so such a subtle case won't be
broken again without noticing it.
It can also be applied to client-side decorations. As long as the
compositor can ask the client to use some specific decoration mode, the
"no border" property can be set.
If there's only one configure event that changes the position of the
window and it gets acknowledged but no buffer is attached yet, and a new
configure is sent, then the ConfigurePosition flag won't be inherited
by the new configure event and the window will be misplaced.
In order to fix that, this change makes XdgSurfaceClient pop the last
acknowledged configure event from the m_configureEvents list only when
it's about to be applied for sure.
BUG: 448856
Historically, noBorder() was used for two things:
* as a substitute for AbstractClient::isDecorated()
* to determine whether the AbstractClient should have a decoration
With async decoration updates refactoring, a few things around
noBorder() have changed, which exposed an existing bug in the handling
of borderless maximized windows.
It's possible to have a case where an initially maximized window makes
an xdg_toplevel.set_maximized request before the initial commit, but
creates the decoration object after the initial commit.
Since XdgToplevelClient::userCanSetNoBorder() would return false when
maximize() is called in XdgToplevelClient::initialize(), m_userNoBorder
won't be updated and therefore the window can end up having a server
side decoration.
Previously, it wasn't the case because kwin would do nothing if the
decoration is installed and its preferred mode changes after the initial
commit but before the surface is mapped. With async decoration fixes,
kwin would react as expected, which unfortunately has exposed the bug.
The root cause of the problem is the fact that noBorder() is overloaded,
which makes it error-prone.
This patch changes how the noBorder property is treated. Now, it only
indicates whether the compositor wants the window to have no borders. If
noBorder() is true, it means that the compositor doesn't want the window
to have a server-side decoration; on the other hand, if noBorder() is
false, it doesn't imply that the window should have a decoration.
BUG: 448740
geometryRestore() is no longer updated after mapping the window, so
setQuickTileMode() has to update geometryRestore() explicitly to the
correct value.
With this change, geometryRestore() will be updated as follows:
* if the window is tiled, geometryRestore() is valid, nothing to do
* the window has been dragged to the top edge, set geometryRestore() to
the geometry that the window had when starting move
* otherwise, use the current move resize geometry
dontInteractiveMoveResize() was added to workaround kwin sending bad
configure events when double clicking mpv to make it fullscreen.
With async geometry updates fixed, dontInteractiveMoveResize() can be
finally removed.
Another reason to remove dontInteractiveMoveResize() is that it can make
kwin crash with a debug build. For example, if you enable resizing
maximized windows in breeze decoration settings and resize a maximized
window, kwin would eventually crash in
the AbstractClient::handleInteractiveMoveResize() function because neither
isInteractiveMove() nor isInteractiveResize() return true.
On Wayland, the move resize geometry and the frame geometry are
completely out of sync.
This change synchronizes emitting of the clientStepUserMovedResized
signal to the move resize geometry changes.
It simplifies code of InternalClient and XdgSurfaceClient, and makes
adding support for other shell surface protocols easier as there's less
boilerplate stuff that you would need to take care of.
It's not practical, regular users don't care about window geometry. One
could argue that it can be useful for creating window rules, but window
rules kcm pulls relevant properties from kwin.
If needed, one can reimplement this feature as a QtQuick script that creates
an overlay window positioned above the window that is being interactively
moved or resized.
Same as real hardware wl_keyboard, key should be sent before modifier
change. For example, Left Ctrl press and release should produce
key events in the order of Control_L and Control+Control_L.