Rational behind this change is that displayWidth and displayHeight are
X specific API calls in kwinglobals. For the future it's easier to only
rely on functionality which goes through the EffectsHandler API which
allows easier adjustments in KWin core.
displayWidth() and displayHeight() are only used to get the size or the
complete rect of all screens. This is also provided by:
effects->virtualScreenGeometry() or
effects->virtualScreenSize()
REVIEW: 116021
As all effects have always been compiled into the same .so file it's
questionable whether resolving the effects through a library is useful
at all. By linking against the built-in effects we gain the following
advantages:
* don't have to load/unload the KLibrary
* don't have to resolve the create, supported and enabled functions
* no version check required
* no dependency resolving (effects don't use it)
* remove the KWIN_EFFECT macros from the effects
All the effects are now registered in an effects_builtins file which
maps the name to a factory method and supported or enabled by default
methods.
During loading the effects we first check whether there is a built-in
effect by the given name and make a shortcut to create it through that.
If that's not possible the normal plugin loading is used.
Completely unscientific testing [1] showed an improvement of almost 10
msec during loading all the effects I use.
[1] QElapsedTimer around the loading code, start kwin five times, take
average.
REVIEW: 115073
Videos for the following effects are added:
* Dim Inactive
* Dim Screen for Administration Mode
* Invert
* Looking Glass
* Magnifier
* Mouse Click
* Track Mouse
* Zoom
Link for Present Windows video fixed.
Most effects had a "collection" for one action. We don't need the
action collection, all it was used for is setting the object name.
With the removal of KActionCollection the effects do not need to link
XmlGui any more, though the dependency is still pulled in through
plasma.
With QtQuick2 it's possible that the scene graph rendering context either
lives in an own thread or uses the main GUI thread. In the latter case
it's the same thread as our compositing OpenGL context lives in. This
means our basic assumption that between two rendering passes the context
stays current does not hold.
The code already ensured that before we start a rendering pass the
context is made current, but there are many more possible cases. If we
use OpenGL in areas not triggered by the rendering loop but in response
to other events the context needs to be made current. This includes the
loading and unloading of effects (some effects use OpenGL in the static
effect check, in the ctor and dtor), background loading of texture data,
lazy loading after first usage invoked by shortcut, etc. etc.
To properly handle these cases new methods are added to EffectsHandler
to make the compositing OpenGL context current. These calls delegate down
into the scene. On non-OpenGL scenes they are noop, but on OpenGL they go
into the backend and make the context current. In addition they ensure
that Qt doesn't think that it's QOpenGLContext is current by calling
doneCurrent() on the QOpenGLContext::currentContext(). This unfortunately
causes an additional call to makeCurrent with a null context, but there
is no other way to tell Qt - it doesn't notice when a different context
is made current with low level API calls. In the multi-threaded
architecture this doesn't matter as ::currentContext() returns null.
A short evaluation showed that a transition to QOpenGLContext doesn't
seem feasible. Qt only supports either GLX or EGL while KWin supports
both and when entering the transition phase for Wayland, it would become
extremely tricky if our native platform is X11, but we want a Wayland
EGL context. A future solution might be to have a "KWin-QPA plugin" which
uses either xcb or Wayland and hides everything from Qt.
The API documentation is extended to describe when the effects-framework
ensures that an OpenGL context is current. The effects are changed to
make the context current in cases where it's not guaranteed. This has
been done by looking for creation or deletion of GLTextures and Shaders.
If there are other OpenGL usages outside the rendering loop, ctor/dtor
this needs to be changed, too.
* KDE/4.11:
Remove assertion in KDecorationUnstable's constructor.
SVN_SILENT made messages (.desktop file)
Cursor Theme KCM: Show correct resize cursor in preview for themes without a file called "size_fdiag"
Fixed missing signal/slot connection:
Fix zoom effect cursor position on initial zoom in.
SVN_SILENT made messages (.desktop file)
Don't show borders for a maximized Laptop client
Always use PositionCenter for maximized windows
Fix click on trash plasmoid when on desktop and widgets are unlocked
Conflicts:
kwin/clients/aurorae/src/aurorae.cpp
kwin/libkdecorations/kdecoration.cpp
plasma/desktop/applets/trash/trash.cpp
plasma/desktop/toolboxes/plasma-toolbox-desktoptoolbox.desktop
plasma/desktop/toolboxes/plasma-toolbox-paneltoolbox.desktop
plasma/generic/wallpapers/color/plasma-wallpaper-color.desktop
plasma/generic/wallpapers/image/plasma-wallpaper-image.desktop
* "" needs to be wrapped in QStringLiteral
* QString::fromUtf8 needed for const char* and QByteArray
* QByteArray::constData() needed to get to the const char*
Many headers included KLocale to use i18n and co. But those methods are
defined in KLocalizedString and not in KLocale.
With KF5 klocale.h does no longer include KLocalizedString causing lots
of compile errors.
* use xcb_fixes_foo
* drop QX11Info - we don't need it in the effects
* use QScopedPointer for GLTexture/XRenderPicture
* remove commented code
* use kDebug instead of qDebug
Of course XCursor library is still used as there is no XCB replacement.
What could be considered is adding a getCursor hook into the
EffectsHandler as also the ScreenShot Effect is getting the cursor and
using XCursor doesn't seem future proof to me ;-)
Sorry for putting everything into one commit.
REVIEW: 109083
ScreenEdgesEffect failed compiling, mouseclick and zoom are yelling
warnings.
Compiling is tested with XRender enabled, for the disabled test I need to
wait for my Jenkins installation ;-)
The CompositingType enum turns into flags and two new values are
introduced: OpenGL1Compositing and OpenGL2Compositing.
Those new values are or-ed to OpenGLCompositing so that a simple check
for the flag OpenGLCompositing works in case of one of those two new
values. To make the generic check for OpenGL compositing easier a method
in EffectsHandler is introduced to just check for this.
The scenes now return either OpenGL1Compositing or OpenGL2Compositing
depending on which Scene implementation. None returns OpenGLCompositing.