AbstractOutput is not so Abstract and it's common to avoid the word
"Abstract" in class names as it doesn't contribute any new information.
It also significantly reduces the line width in some places.
The main motivation behind this change is to unify render target
representation across opengl and software renderers and avoid accessing
the render backend directory in order to get the render target.
Using the global coordinate system when specifying output layer damage
regions would be very confusing. In order to make the coordinate system
comprehensible, use the layer-local coordinate system.
The infinite region is used to tell the Compositor when it needs to
repaint the entire layer.
The .clang-format file is based on the one in ECM except the following
style options:
- AlwaysBreakBeforeMultilineStrings
- BinPackArguments
- BinPackParameters
- ColumnLimit
- BreakBeforeBraces
- KeepEmptyLinesAtTheStartOfBlocks
It's not possible to get the surface damage before calling
Scene::paint(), which is a big problem because it blocks proper surface
damage and buffer damage calculation when walking render layer tree.
This change reworks the scene compositing stages to allow getting the
next surface damage before calling Scene::paint().
The main challenge is that the effects can expand the surface damage. We
have to call prePaintWindow() and prePaintScreen() before actually
starting painting. However, prePaintWindow() is called after starting
rendering.
This change makes Scene call prePaintWindow() and prePaintScreen() so
it's possible to know the surface damage beforehand. Unfortunately, it's
also a breaking change. Some fullscreen effects will have to adapt to
the new Scene paint order. Paint hooks will be invoked in the following
order:
* prePaintScreen() once per frame
* prePaintWindow() once per frame
* paintScreen() can be called multiple times
* paintWindow() can be called as many times as paintScreen()
* postPaintWindow() once per frame
* postPaintScreen() once per frame
After walking the render layer tree, the Compositor will poke the render
backend for the back buffer repair region and combine it with the
surface damage to get the buffer damage, which can be passed to the
render backend (in order to optimize performance with tiled gpus) and
Scene::paint(), which will determine what parts of the scene have to
repainted based on the buffer damage.
Software cursor has always been a major source of problems. Hopefully,
porting it to RenderLayer will help us with that.
Note that the cursor layer is currently visible only when using software
cursor, however it will be changed once the Compositor can allocate
a real hardware cursor plane.
Currently, software cursor uses graphics-specific APIs (OpenGL and
QPainter) to paint itself. That will be changed in the future when
rendering parts are extracted from the Scene in a reusable helper.
This is the first tiny step towards the layer-based compositing in kwin.
The RenderLayer represents a layer with some contents. The actual
contents is represented by the RenderLayerDelegate class.
Currently, the RenderLayer is just a simple class responsible for
geometry, and repaints, but it will grow in the future. For example,
render layers need to form a tree.
The next (missing) biggest component in the layer-based compositing are
output layers. When output layers are added, each render layer would
have an output layer assigned to it or have its output layer inherited
from the parent.
The render layer tree wouldn't be affected by changes to the output
layer tree so transition between software and hardware cursors can be
seamless.
The next big milestone will be to try to port some of existing kwin
functionality to the RenderLayer, e.g. software cursor or screen edges.
The responsibilities of the Scene must be reduced to painting only so we
can move forward with the layer-based compositing.
This change moves direct scanout logic from the opengl scene to the base
scene class and the compositor. It makes the opengl scene less
overloaded and allows to share direct scanout logic.
Having a render loop in the Platform has always been awkward. Another
way to interpret the platform not supporting per screen rendering would
be that all outputs share the same render loop.
On X11, Scene::painted_screen is going to correspond to the primary
screen, we should not rely on this assumption though!
Neither SceneQPainter nor SceneOpenGL have to compute the projection
matrix by themselves. It can be done by the Scene when setting the
projection matrix. The main benefit behind this change is that it
reduces the amount of custom setup code around paintScreen(), which
makes us one step closer to getting rid of graphics-specific paint()
function and just calling paintScreen().
Because the GLRenderTarget and the GLVertexBuffer use the global
coordinate system, they are not ergonomic in render layers.
Assigning the device pixel ratio to GLRenderTarget and GLVertexBuffer is
an interesting api design choice too. Scaling is a window system
abstraction, which is absent in OpenGL or Vulkan. For example, it's not
possible to create an OpenGL texture with a scale factor of 2. It only
works with device pixels.
This change makes the GLRenderTarget and the GLVertexBuffer more
ergonomic for usages other than rendering the workspace by removing all
the global coordinate system and scaling stuff. That's the
responsibility of the users of those two classes.
This makes the Scene less overloaded and it's needed for things such as
render layers.
In hindsight, it would be great to merge checkGraphicsReset() and
beginFrame(), e.g. make beginFrame() return the status like in QRhi or
VkSwapchain. If it's OUT_OF_DATE or something, reinitialize the
compositor.
EffectQuickScene is not used strictly by effects, aurorae decorations
use it too to render window decorations.
This change renames the EffectQuickView/Scene to
OffscreenQuickView/Scene to clear up the naming scheme.
The Compositor contains nothing that can potentially get dirty and need
repainting.
As is, the advantages of this move aren't really noticeable, but it
makes sense with multiple scenes.
Backend parts are far from ideal, they can be improved later on as we
progress with the scene redesign.
The main idea behind the render backend is to decouple low level bits
from scenes. The end goal is to make the render backend provide render
targets where the scene can render.
Design-wise, such a split is more flexible than the current state, for
example we could start experimenting with using qtquick (assuming that
the legacy scene is properly encapsulated) or creating multiple scenes,
for example for each output layer, etc.
So far, the RenderBackend class only contains one getter, more stuff will
be moved from the Scene as it makes sense.
Currently, the scene owns the renderer, which puts more
responsibilities on the scene other than painting windows and it also
puts some limitations on what we can do, for example, there can be only
one scene, etc.
This change decouples the scene and the renderer so the scene is more
swappable.
Scenes are no longer implemented as plugins because opengl backend
and scene creation needs to be wrapped in opengl safety points. We
could still create the render backend and then go through the list
of scene plugins, but accessing concrete scene implementation is
much much simpler. Besides that, having scenes implemented as plugins
is not worthwhile because there are only two scenes and each contributes
very small amount of binary size. On the other hand, we still need to
take into account how many times kwin accesses the hard drive to load
plugins in order to function as expected.
We use surfaceless contexts with internal windows. We also require
the EGL_KHR_surfaceless_context extension for making context current
without outputs.
Arguably, we could use pbuffers, but since mainstream drivers (Mesa and
NVIDIA) support surfaceless contexts, the extra complexity doesn't buy
us anything.
Currently, thumbnail items are rendered by kwin. This means that qtquick
code cannot do things such as applying shader effects to window thumbnails
or simply draw custom controls on top of thumbnails.
With this change, task switchers and qml extensions will be able to
place their own contents on top of thumbnails and apply custom effects
to them.
In order to integrate window thumbnails, a window is rendered on kwin
side using its own opengl context. A fence is inserted in the command
stream to ensure that the qtquick machinery doesn't start using the
offscreen texture while there are still rendering commands being executed.
Thumbnails are rendered into offscreen textures as we don't have full
control over when qtquick windows render their contents and to work around
the fact that things such as VAOs can't be shared across OpenGL contexts.
WindowThumbnailItem and DesktopThumbnailItem act as texture providers.
At the moment, we handle window quads inefficiently. Window quads from
all items are merged into a single list just to be broken up again.
This change removes window quads from libkwineffects. This allows us to
handle window quads efficiently. Furthermore, we could optimize methods
such as WindowVertex::left() and so on. KWin spends reasonable amount
of time in those methods when many windows have to be composited.
It's a necessary prerequisite for making wl_surface painting code role
agnostic.
The scene items depend on the scene windows for caching window quads.
The goal of this change is to move window quads management to item.
Merging window quads in one list and then splitting them is inefficient,
it will be highly desirable if window quads are removed from the public
api so we can optimize window quad management.
With this change, the window quad type becomes irrelevant to render
backends for the most part. Note that the Xrender backend is a bit
nitpicky about window quads, so the shadow item doesn't create generic
"WindowQuadShadow" quads anymore.
The Xrender backend was added at the time when OpenGL drivers were not
particularly stable. Nowadays though, it's a totally different situation.
The OpenGL render backend has been the default one for many years. It's
quite stable, and it allows implementing many advanced features that
other render backends don't.
Many features are not tested with it during the development cycle; the
only time when it is noticed is when changes in other parts of kwin break
the build in the xrender backend. Effectively, the xrender backend is
unmaintained nowadays.
Given that the xrender backend is effectively unmaintained and our focus
being shifted towards wayland, this change drops the xrender backend in
favor of the opengl backend.
Besides being de-facto unmaintained, another issue is that QtQuick does
not support and most likely will never support the Xrender API. This
poses a problem as we want thumbnail items to be natively integrated in
the qtquick scene graph.
Currently, the implementation of the DecoratedClient and the decoration
renderer are strongly coupled. This poses a problem with the item based
design as the ultimate goal is to have scene items construct paint nodes
which are then fed to the renderer. The DecorationItem has to have
control over the decoration texture. Another issue is that the scene
cannot smoothly cross-fade between two window states if the decoration
is removed, e.g. from fullscreen mode to normal and vice versa.
This change moves the decoration renderer to the decoration item. With
the introduction of a generic scene texture atlas, we hope to get rid of
the decoration renderer altogether.
They are used only by X11Client, so make X11Client call relevants
methods on the surface item directly instead. In hindsight, it will be a
really good idea to make SurfaceItemX11 and SurfaceItemXwayland(?)
automatically manage the window pixmap. However, it can be done once
an item freezing api is added and we fix the cross-fade animation.
Currently, items depend on scene windows for creating pixmaps, repaint
scheduling, and caching quads.
This change moves repaint scheduling from scene windows to items to
make the scene items depend less on scene windows.
In hindsight, we may clean up the repaint scheduling machinery further
by introducing view objects.
One of the scene redesign goals is to make wayland surface items
re-usable. So we have the same rendering path for drag-and-drop icons,
software cursors, and window surfaces.
The biggest issue at the moment is that window pixmaps are tightly
coupled with scene windows.
This change de-couples window pixmaps from scene windows. In order to
achieve that, some architecture changes were made.
The WindowPixmap class was replaced with the SurfacePixmap class. A
surface pixmap is created by a surface item.
Under the hood, a SurfacePixmap will create a PlatformSurfaceTexture
object, which contains all the information necessary for the renderer.
The SceneOpenGLTexture class was removed. However, the GLX and the EGL
on X11 backends still mess with GLTexture's internals.
Currently, dealing with sub-surfaces is very difficult due to the scene
design being heavily influenced by X11 requirements.
The goal of this change is to re-work scene abstractions to make improving
the wayland support easier.
The Item class is based on the QQuickItem class. My hope is that one day
we will be able to transition to QtQuick for painting scene, but in
meanwhile it makes more sense to have a minimalistic internal item class.
The WindowItem class represents a window. The SurfaceItem class represents
the contents of either an X11, or a Wayland, or an internal surface. The
DecorationItem and the ShadowItem class represent the server-side deco and
drop-shadow, respectively.
At the moment, the SurfaceItem is bound to the scene window, but the long
term plan is to break that connection so we could re-use the SurfaceItem
for things such as software cursors and drag-and-drop additional icons.
One of the responsibilities of the Item is to schedule repaints as needed.
Ideally, there shouldn't be any addRepaint() calls in the core code. The
Item class schedules repaints on geometry updates. In the future, it also
has to request an update if its opacity or visibility changes.
This provides the compositor a way to indicate what output is being
rendered. The effects such as the screenshot can check the provided
screen object in order to function as expected.